Home Determination of limiter design and material composition of MT-II spherical tokamak
Article
Licensed
Unlicensed Requires Authentication

Determination of limiter design and material composition of MT-II spherical tokamak

  • Shahab Ud-Din Khan EMAIL logo , Muhammad Abdullah , Ahmad Ali , Riaz Khan , Sehrish Shakir , Zia Ur Rehman , Shahzaib Zahid and Rafaqat Ali
Published/Copyright: December 22, 2022
Become an author with De Gruyter Brill

Abstract

MT-II is a spherical tokamak with a major radius of 0.15 m and a minor radius of 0.09 m, currently under development at the Pakistan Tokamak Plasma Research Institute. It is designed with a higher elongation of 2.67. This paper presents the design and material analysis of the limiter configuration for the MT-II tokamak, which is being carried out in two phases. In the first phase, theoretical studies and calculations are performed to estimate the plasma edge temperature, density, particle velocity, input power, heat flux, heat load and surface temperature on the limiter tile. In the second phase, computational techniques are applied to analyses the material properties, the maximum/minimum surface temperature rise (∆T °C) at stable heat load and power deposition based on theoretical calculations that will help optimize the design parameters of the limiter. The type of material and the surface temperature of the limiter as well as the general design parameters of MT-II are included in the proposed poloidal limiter. The results suggest that crystalline vein graphite is a suitable candidate for the proposed poloidal limiter. A combination of mechanical and electrical feedthrough techniques are used to improve the performance of the limiter. The proposed limiter is able to meet the requirements of MT-II.


Corresponding author: Shahab Ud-Din Khan, Pakistan Tokamak Plasma Research Institute (PTPRI), P. O. Box 3329, Islamabad, Pakistan, E-mail:

Funding source: Grant-in-Aid from IAEA Co-Ordinated Research Project (CRP-F13018) https://www.iaea.org/projects/crp/f13018

Award Identifier / Grant number: PAK-22840

Acknowledgment

The research team show their gratitude and sincere appreciation to Pakistan Tokamak Plasma Research Institute (PTPRI) initiative for funding and support of this research.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project was partially supported by a Grant-in-Aid from IAEA Co-Ordinated Research Project (CRP-F13018) under research grant PAK-22840.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bak, J.G., Pitts, R.A., Kim, H.S., Lee, H.H., Bin, C., Juhn, J.W., Hong, S.H., Garcia, O.E., Kube, R.A., and Seo, D.C. (2017). Measurement of inner wall limiter SOL widths in KSTAR tokamak. Nucl. Mater. Energy 12: 1207–1276, https://doi.org/10.1016/j.nme.2016.12.001.Search in Google Scholar

Barnes, C.W., Dewar, R.L., Mazzucato, E., and Strachan, J.D. (1981). Fluctuations of the runaway electron flux to the PLT tokamak limiter. Phys. Lett. 81: 275–277, https://doi.org/10.1016/0375-9601(81)90714-3.Search in Google Scholar

Bhatt, S.B., Lachhvani, L.T., Govindarajan, J., Chenna Reddy, D., Pandya, S.N., and Jadeja, K.A. (2007). Limiter thermography in ADITYA tokamak. In: 2007 IEEE 22nd symposium on fusion engineering. IEEE, Gandhinagar.10.1109/FUSION.2007.4337923Search in Google Scholar

Burrell, K.H., Prater, R., Ejima, S., Angel, T., and Armentrout, C.J. (1984). Comparison of energy confinement in Doublet III limiter and divertor discharges with ohmic, neutral beam and electron cyclotron heating. In: 10th international conference on plasma physics and controlled nuclear fusion research, London (UK), 12–19 Sep 1984. Available from NTIS, PC A02/MF A01 as DE85000449.Search in Google Scholar

Buttery, R.J., Akers, R., Arends, E., Conway, N.J., Counsell, G.F., Cunningham, G., Gimblett, C.G., Gryaznevich, M., Hastie, R.J., Hole, M.J., et al.. (2004). Stability at high performance in the MAST spherical tokamak. Nucl. Fusion 44: 1027, https://doi.org/10.1088/0029-5515/44/9/012.Search in Google Scholar

Cardella, A., Skladnov, K., Ioki, K., Pacher, H., Strebkov, Y., and Daenner, W. (2002). Design and manufacturing of the ITER limiter. Fusion Eng. Des. 61–62: 111–116, https://doi.org/10.1016/S0920-3796(02)00223-5.Search in Google Scholar

Ghosh, J., Tanna, R., Bhatt, S., Chattopadhyay, P.K., Sathyanarayana, K., Chhaya, C., Gupta, C., Jadeja, K., Patel, K., et al.. (2016). Upgrade of ADITYA tokamak with limiter configuration to ADITYA upgrade tokamak with divertor configuration. In: IAEA fusion energy conference, 26th IAEA Fusion Energy Conference - IAEA CN-234, Kyoto, Japan, No. 26, 17–22 October 2016.Search in Google Scholar

Granetz, R.S., McCracken, G.M., Bombarda, F., Goetz, J.A., Jablonski, D., Labombard, B., Lipschultz, B., Ohkawa, H., Rice, J.E., Terry, J.L., et al.. (1997). A comparison of impurity screening between limiter and divertor plasmas in the Alcator C-Mod tokamak. J. Nucl. Mater. 241–243: 788–792, https://doi.org/10.1016/S0022-3115(97)80141-9.Search in Google Scholar

Grashin, S.A., Arkhipov, I.I., Budaev, V.P., Karpov, A.V., Klyuchnikov, L.A., Khimchenko, L.N., Melnikov, A.V., Sarychev, D.V., Sergeev, N.S., and Zemtsov, I.A. (2019). ITER-grade tungsten limiters damage under high turbulent heat flux in the T-10 tokamak. Fusion Eng. Des. 146: 2100–2104, https://doi.org/10.1016/j.fusengdes.2019.03.115.Search in Google Scholar

Hirooka, Y., Zushi, H., Bhattacharyay, R., Sakamoto, M., Idei, H., Yoshinaga, T., Nakashima, Y., and Higashizono, Y. (2009). Active particle control in the CPD compact spherical tokamak by a lithium-gettered rotating drum limiter. J. Nucl. Mater. 390–391: 502–506, https://doi.org/10.1016/j.jnucmat.2009.01.060.Search in Google Scholar

Hole, M.J., Wilson, H.R., Abeysuriya, R., and Larson, J.W. (2010). Ideal MHD stability of a spherical tokamak power plant and a component test facility. Plasma Phys. Contr. Fusion 52: 125005, https://doi.org/10.1088/0741-3335/52/12/125005.Search in Google Scholar

Hu, J.S., Zuo, G.Z., Maingi, R., Sun, Z., Tritz, K., Xu, W., Yang, Q.X., Andruczyk, D., Huang, M., Meng, X.C., et al.. (2019). Experiments of continuously and stably flowing lithium limiter in EAST towards a solution for the power exhaust of future fusion devices. Nucl. Mater. Energy 18: 99–104, https://doi.org/10.1016/j.nme.2018.12.017.Search in Google Scholar

Iversen, K., Klein, E., and Palussek, A. (1983). Production of limiters for the JET tokamak. In:Annual meeting on nuclear technology ’83, Reactor conference. Berlin, Germany, June 1983, pp. 14–16.Search in Google Scholar

Janos, A., Owens, D.K., Darrow, D., Redi, M.H., Zarnstorff, M.C., and Zweben, S.J. (1995). Measurement of limiter heating due to alpha particle losses during high fusion power deuterium-tritium operation of the TFTR tokamak. Rev. Sci. Instrum. 66: 354, https://doi.org/10.1063/1.1146409.Search in Google Scholar

Khan, S.U.-D., Danish, S.N., Haider, S., and Khan, S.U.-D. (2015). Theoretical calculation simulation studies of ABV nuclear reactor coupled with desalination system. Int. J. Energy Res. 39: 1554–1563, https://doi.org/10.1002/er.3363.Search in Google Scholar

Khan, S.U.-D., Khan, S.-U.-D., Alaswad, S.O., Song, Y., Hussain, S., and Khan, R. (2020). Impurity transport and halo current effects on tungsten divertor system. J. Radiat. Res. Appl. Sci. 13: 309–317, https://doi.org/10.1080/16878507.2020.1738090.Search in Google Scholar

Khan, S.U.-D., Song, Y., and Dalong, C. (2018a). Theoretical relation between halo current-plasma energy displacement/deformation in EAST. J. Theor. Appl. Phys. 12: 23–31, https://doi.org/10.1007/s40094-018-0276-1.Search in Google Scholar

Khan, S.U.-D., Song, Y., Khan, S.U.-D., Rana, U.A., and Khan, R. (2018b). Steady state and transient analysis of novel design helium cooled ceramic blanket (HCCB) system of China fusion engineering test reactor (CFETR). J. Fusion Energy 37: 308–316, https://doi.org/10.1007/s10894-018-0191-0.Search in Google Scholar

Khan, S.U. and Khan, S.U. (2017). Karachi Nuclear Power Plant (KANUPP): as case study for techno-economic assessment of nuclear power coupled with water desalination. Energy 127: 372–380, https://doi.org/10.1016/j.energy.2017.02.055.Search in Google Scholar

Kodarkar, N.M., Gore, A.S., Bhatt, S.B., and Rodge, M.K. (2012). Analysis of Limiters for ADITYA Tokamak. Int. J. Mech. Ind. Eng. (IJMIE) 2: 9, https://doi.org/10.47893/IJMIE.2012.1064.Search in Google Scholar

Kugel, H.W. and Ulrickson, M. (1981). Design of the PDX tokamak wall armor and inner limiter system. Report PPPL-1785, Plasma Physics Laboratory, Princeton University.10.2172/6278317Search in Google Scholar

Liu, J., Gao, X., Hu, L., Asif, M., Chen, Z., Ding, B., Zhou, Q., Liu, H., Jie, Y., and Kong, W. (2006). Lower hybrid current drive experiments with graphite limiters in the HT-7 superconducting tokamak. Phys. Lett. 350: 386–391, https://doi.org/10.1016/j.physleta.2005.10.069.Search in Google Scholar

Ludwig, G.O., Del Bosco, E., Ferreira, J.G., Berni, L.A., Oliveira, R.M., Andrade, M.C.R., Shibata, C.S., Ueda, M., Barbosa, L.F.W., Barroso, J.J., et al.. (2003). Spherical tokamak development in Brazil. Braz. J. Phys. 33: 848–859, https://doi.org/10.1590/s0103-97332003000400041.Search in Google Scholar

McGrath, R.T. (1990). Shaping of the plasma facing surfaces of the ALT-II full toroidal belt limiter. Fusion Eng. Des. 13: 267–282, https://doi.org/10.1016/0920-3796(90)90047-A.Search in Google Scholar

Ribeiro, C., Herrera, J.J.E., and Chávez-Alarcón, E. (2014). Bean-shaped spherical tokamak equilibrium with ergodic limiter. IEEE Trans. Plasma Sci. 42: 585, https://doi.org/10.1109/TPS.2014.2304725.Search in Google Scholar

Sagara, A., Shoji, T., Noda, N., Fujiwara, M., Hosokawa, M., Ida, K., Idei, H., Iguchi, H., Kaneko, O., Karita, A., et al.. (1990). Temperature-controlled graphite limiter experiments in CHS plasma. J. Nucl. Mater. 176–177: 174–179, https://doi.org/10.1016/0022-3115(90)90041-K.Search in Google Scholar

Shahzad, A., Ali, R., Kamran, M., Khan, S.U.-D., Khan, S.U.-D., and Farooq, A. (2020). Axisymmetric flow with heat transfer over exponentially stretching sheet: a computational approach. Phys. Stat. Mech. Appl. 544: 124242, https://doi.org/10.1016/j.physa.2020.124242.Search in Google Scholar

Singh Maurya, G. (2016). Analysis of impurities on contaminated surface of the tokamak limiter using laser induced breakdown spectroscopy. Spectrochim. Acta, Part B 126: 17–22, https://doi.org/10.1016/j.sab.2016.10.010.Search in Google Scholar

Tan, Y., Gao, Z., and He, Y. (2009). Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak. Fusion Eng. Des. 84: 2064–2071, https://doi.org/10.1016/j.fusengdes.2008.12.051.Search in Google Scholar

Wesson, J. (2011). Tokamaks. International series of monographs on physics, Vol. 149. Oxford University Press, Oxford.Search in Google Scholar

Wong, K.L., Kaye, S., Mikkelsen, D.R., Krommes, J.A., Hill, K., Bell, R., and LeBlanc, B. (2007). Microtearing instabilities and electron transport in the NSTX spherical tokamak. Phys. Rev. Lett. 99: 135003, https://doi.org/10.1103/PhysRevLett.99.135003.Search in Google Scholar PubMed

Ye, M.Y., Maier, H., Herrmann, A., Rohde, V., Bolt, H., Neu, R., and Neuhauser, J. (2005). Tungsten limiter tests in ASDEX upgrade. J. Nucl. Mater. 337–339: 104–108, https://doi.org/10.1016/j.jnucmat.2004.10.163.Search in Google Scholar

Zheng, Y., Zhen, F., Cuiwen, L., Li, L., Wei, L., Longwen, Y., Qinwei, Y., and Yong, L. (2004). Imaging system and plasma imaging on HL-2A tokamak. Plasma Sci. Technol. 6: 2353–2358, https://doi.org/10.1088/1009-0630/6/4/001.Search in Google Scholar

Received: 2022-08-11
Published Online: 2022-12-22
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2022-0073/html?lang=en
Scroll to top button