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ABSTRACT
Background and Objectives: Relapse is one of the most critical causes of transplant failure 
in patients with acute myeloid leukemia (AML) receiving haploidentical-related donor (HID) 
hematopoietic stem cell transplantation (HSCT). We aimed to develop an artificial intelligence 
(AI)-based predictive model for post-transplant relapse in patients with AML receiving HID HSCT. 
Methods: This study included patients with consecutive AML (aged ≥ 12 years) receiving HID 
HSCT in complete remission (CR). We randomly selected 70% of the entire population (n = 
665) as the training cohort for developing the model and nomogram, which were both evaluated 
using data from the remaining 30% of the patients (validation cohort, n = 286). Furthermore, 
the model was validated in an independent cohort (n = 213) and in the clinical practice of 
five experienced clinicians. Results: Five variables (AML risk category, number of courses 
of induction chemotherapy for first CR, disease status, measurable residual disease before 
HSCT, and blood group disparity) were included in the final model (i.e., PKU-AML model). The 
concordance index of the nomogram was 0.707. The Hosmer−Lemeshow test showed a good 
fit for this model (P = 0.205). The calibration curve was close to the ideal diagonal line, and 
decision curve analysis showed a significantly better net benefit for this model. The reliability 
of our prediction nomogram was demonstrated in a validation cohort, an independent cohort, 
and in clinical practice. Conclusions: Our PKU-AML model can predict the relapse of patients 
with AML receiving HID HSCT in CR, providing an effective tool for the early prediction and 
timely management of post-transplant relapse.
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INTRODUCTION

Acute myeloid leukemia (AML), which 
is the most common form of  acute 
leukemia in adults, has the shortest 
survival.[1] Allogeneic hematopoietic stem 

cell transplantation (HSCT) is the most 
important curative therapy for AML, which 
can significantly improve the survival of  
patients with AML.[2-5] Because a human 
leukocyte antigen (HLA)-matched sibling 
donor (MSD) is usually unavailable and the 
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donor pools of  the Unrelated Donor Program are small, 
haploidentical-related donors (HIDs) are important and 
even represent the unique option of  donors for patients 
with AML in China.[2,3,6] Since 2019, the proportion of  
HIDs has increased to > 60% among the allogeneic HSCT 
recipients and they have become the most frequent donors 
in China.[6,7] HID HSCT shows superior clinical outcomes 
compared to chemotherapy as a post-remission treatment 
of  intermediate- and high-risk AML in first complete 
remission (CR).[8,9] In addition, some multicenter studies 
have reported that HID HSCT can achieve outcomes 
similar to[10,11] or even better than[12,13] those of  MSD HSCT 
for patients with AML in CR1, which suggests a stronger 
graft-versus-leukemia (GVL) effect with HID HSCT than 
MSD HSCT.[14]

However, the incidence of  post-transplant relapse is 
approximately 20% in patients with AML receiving HID 
HSCT in CR1,[8-11] suggesting that relapse is still inevitable 
and is one of  the most critical causes of  transplant failure.[15,16] 
Many studies have reported risk factors for relapse after 
HID HSCT; however, the results are controversial. For 
example, some authors have reported that the incidence 
of  relapse was as high as 30% in patients with AML with 
positive measurable residual disease (MRD), which was 
significantly higher than that in those who were MRD-
negative before HID HSCT.[17-19] However, some studies 
have observed that the incidence of  relapse was comparable 
between patients with AML with or without MRD before 
HID HSCT.[20-22] In addition, remission status (e.g., beyond 
CR1 vs. CR1) before HID HSCT may be associated with 
post-transplant relapse,[23] although this has not been 
supported by other studies.[24] Therefore, single risk factors 
are insufficient to predict relapse after HID HSCT. 

Comprehensive prognostic models have been established to 
predict clinical outcomes after,[25-30] and some (e.g., disease 
risk index [DRI],[31] hematopoietic cell transplantation 
specific comorbidity index [HCT-CI],[32] and disease risk 
comorbidity index [DRCI][16]) could also predict relapse in 
HID HSCT recipients. However, these studies included 
patients with hematological malignancies other than 
AML. Recently, a prognostic model focusing on patients 
with AML was established;[33] however, the number of  
HID HSCT recipients was small. Additionally, most of  
these studies used survival or non-relapse mortality as 
the primary endpoint to establish the model. To date, no 
comprehensive prognostic model has focused on post-
transplant relapse in patients with AML receiving HID 
HSCT. To improve decision-making and determination 
of  candidacy for more intensive relapse prophylaxis, a 
prediction model for relapse is necessary.

Thus, we aimed to develop an artificial intelligence (AI)-based 

predictive model (i.e., PKU-AML model) for post-transplant 
relapse in AML patients receiving HID HSCT in CR.

METHODS

Study design and participants 
This study was conducted using the transplant database 
of  Peking University (PKU), Institute of  Hematology. 
The inclusion criteria were as follows: (1) patients with 
AML; (2) ≥ 12 years of  age; (3) received HID HSCT in CR 
between January 1, 2017, and March 5, 2021; and (4) having 
complete medical information (Figure 1). The final follow-
up was conducted on October 31, 2022. The study was 
conducted in accordance with the Declaration of  Helsinki 
and the protocol was approved by the Institutional Review 
Board of  Peking University People’s Hospital.

Transplant regimen
The protocols of  major preconditioning regimen,[10,34] graft-
versus-host disease (GVHD) prophylaxis (i.e., antithymocyte 
globulin [ATG], cyclosporine A, mycophenolate mofetil, 
and short-term methotrexate), and infection prophylaxis are 
presented in Supplemental Information.[35-40] MRD before 
and after HID HSCT was detectable by multiparameter flow 
cytometry (MFC) and a lower limit of  detection (LOD) of  
0.01% was targeted (Supplemental information).[21] Patients 
who showed MRD occurrence after HID HSCT received 
preemptive immunotherapy including donor lymphocyte 
infusion (DLI)[41] or interferon-α treatment[42] as previously 
reported (Supplemental information).

Data collection
The collected data included demographic characteristics of  
the patients (age, sex, and comorbidities), characteristics 
of  leukemia and treatment before HSCT (white blood 
cell count and AML risk category at diagnosis, number 
of  courses of  induction chemotherapy for first CR, time 
from diagnosis to HSCT, and disease status before HSCT), 
characteristics of  transplantation (donor/recipient sex-
matched, donor/recipient relation, blood group disparity, 
preconditioning regimen, graft type, and mononuclear cell 
and CD34+ cell counts in the graft), and MRD status before 
HSCT (Figure 1, Supplementary Table S1). 

Building machine learning models and nomogram
The proposed method consisted of  the following three 
steps: First, feature selection was conducted based on 
the entire dataset (n = 951). We then randomly selected 
70% of  the entire population (n = 665) as the training 
cohort for developing the machine learning model and 
nomogram, and the remaining 30% (n = 286) were used 
as the validation cohort. 

Therefore, a predictive model was established for the 
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training cohort. Multivariate logistic regression analysis 
was used for feature selection. We included variables with 
coefficients having P values < 0.1 as the input for the 
machine learning model. 

A logistic regression model was selected as the machine 
learning model to predict relapse. It was developed using 
data from a training cohort. This model assumes that the 
probability of  relapse ( ) can be computed based on 
Equation (1) using input variables ( ), where w and b 
can be trained from the training cohort. We chose w and 
b to minimize the loss function (with  regularization) 
represented in Equation (2). When a specific instance 
of  data is entered, the logistic regression model yields a 
probability (between 0 and 1) of  relapse. After obtaining 
the probability, determining the threshold for producing 
negative or positive results remains important. We 
constructed receiver operating characteristic (ROC) 
curves and calculated the g-means for each threshold. The 
threshold with the highest g-mean was selected. 

The accuracy, area under the curve (AUC), sensitivity, and 
specificity were computed for the training cohort.

A nomogram was developed using the well-trained logistic 
regression model. We first assigned each variable a point 
between 0 and 100 based on their estimated coefficients 
and ranges. We then summed all the points of  the variables 
and used a sigmoid function to map the probabilities.[43] 
Finally, we drew a horizontal line as a representative of  the 
threshold to facilitate probability assignment. Additionally, 
we distinguished the nominal variables using dashed 
axes and applied grids for computational assistance. The 
workflow is shown in the Supplemental Information.

Validated machine learning models and 
nomogram
We validated the machine learning models and nomogram 
in the validation cohort, which was further validated in an 
independent historical cohort (n = 213).[16] The accuracy, 
AUC, sensitivity, and specificity were computed for both 
cohorts. Calibration and decision curves were plotted 
to determine the usefulness of  the nomogram. We also 
compared the AUCs of  our AI-based model with those 
of  other existing predictive models. 

Additionally, we validated the discrimination and clinical 
usefulness[44] of  the nomogram by applying it clinically. 
We developed a questionnaire based on the clinical 
information and nomogram (Supplemental Information). 

Five experienced clinicians received the questionnaires and 
were required to compute the relapse probabilities and 
binary outcomes (relapse or non-relapse) based on clinical 
information and nomogram; each clinician was required 
to evaluate 10 patients. We plotted a calibration figure 
and confusion matrix to check the agreement between 
the clinical applications and the real performance of  the 
nomogram.

Definitions
The AML risk category was assessed using the European 
LeukemiaNet (ELN) genetic risk.[45] The definitions 
for engraftment, relapse, non-relapse mortality (NRM), 
event-free survival (EFS), leukemia-free survival (LFS), 
and overall survival (OS) are shown in Supplemental 
information.

Statistical analysis
Data were censored at the time of  death or last available 
follow-up. The primary outcome was the relapse rate. 
Secondary outcomes included MRD, EFS, NRM, LFS, 
and OS. The minimum sample size was 472 according 
to calculations carried out in PASS version 11.0.7 (α = 
0.05, power[1–β] = 0.9, and R2 = 0.15). In this study, 
data from 665 patients in the training cohort were used to 
construct the nomogram. Mann–Whitney U-test was used 
to compare continuous variables, and χ2 and Fisher’s exact 
tests was used for categorical variables. The Kaplan–Meier 
method was used to estimate the probability of  survival. 
We used competing risk analyses to calculate the cumulative 
incidence of  MRD occurrence, NRM, and relapse.[46] 
Testing was two-sided, with statistical significance set at P 
< 0.05. Statistical analyses were performed using R software 
(version 4.2.0) (http://www.r-project.org), Python (version 
3.9.12), and SPSS 26.0 software (SPSS, Chicago, IL).

RESULTS

Patient characteristics
Characteristics of  the 951 patients are presented in Table 
1. Neutrophil engraftment was achieved by 948 (99.6%) 
patients, and the median time from transplantation to 
neutrophil engraftment was 13 days (range, 6–33 days). 
Platelet engraftment was achieved by 900 (94.6%) patients, 
and the median time from transplantation to platelet 
engraftment was 16 days (range, 5–184 days). Notably, 516 
(54.2%) patients developed acute graft versus host disease 
(aGVHD) after allo-HSCT. The cumulative incidences of  
grade I–IV, grade II–IV, and grade III–IV aGVHD 100 
days after allo-HSCT were 54.3% (95% CI, 51.1%–57.5%), 
23.5% (95% CI, 20.8%–26.2%), and 7.5% (95% CI, 5.8%–
9.2%), respectively. Furthermore, 401 (42.1%) patients 
developed chronic GVHD (cGVHD) after allo-HSCT. The 
cumulative incidences of  moderate to severe and severe 
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Table 1: Patient characteristics

Characteristics

Adults Children

Training cohort
(n = 617)

Validation 
cohort
(n = 261)

P value
Training 
cohort
(n = 48)

Validation 
cohort
(n = 25)

P value

Median age at allo-HSCT, years (range) 35 (18-66) 34 (18-63) 0.301 15 (12-17) 16 (12-17) 0.164

Gender, n (%) 0.064 0.451

  Male 352 (57.1) 131 (50.2) 27 (56.3) 17 (68.0)

  Female 265 (42.9) 130 (49.8) 21 (43.8) 8 (32.0)

Number of courses of induction for first CR, 
median (range) 1 (1-4) 1 (1-5) 0.484 1 (1-5) 1 (1-5) 0.506

Disease status before allo-HSCT, n (%) 0.958 0.323

  CR1 433 (70.2) 226 (86.6) 35 (72.9) 21 (84.0)

  CR2 146 (23.7) 33 (12.6) 9 (18.8) 4 (16.0)

  ≥ CR3 38 (6.2) 2 (0.8) 4 (8.4) 0 (0)

AML risk category at diagnosis, n (%) 0.799 0.861

  Favorable 112 (16.8) 50 (19.2) 4 (8.3) 3 (12.0)

  Intermediate 353 (57.2) 152 (58.2) 35 (72.9) 17 (68.0)

  Poor 152 (24.6) 59 (22.6) 9 (18.8) 5 (20.0)

HCT-CI scores before allo-HSCT, n (%) 0.244 0.174

  0 (low risk) 460 (74.6) 181 (69.3) 44 (91.7) 19 (76.0)

  1–2 (intermediate risk) 125 (20.3) 66 (25.3) 3 (6.3) 4 (16.0)

  ≥ 3 (high risk) 32 (5.2) 14 (5.4) 1 (2.1) 2 (8.0)

MFC before HSCT, n (%) 0.334 0.110

  Negative 473 (76.7) 187 (71.6) 36 (75.0) 20 (80.0)

  ≥ 0.01%, < 0.1% 22 (3.6) 11 (4.2) 3 (6.3) 0

  ≥ 0.1%, < 1% =2 83 (13.5) 47 (18.0) 4 (8.3) 5 (20.0)

  ≥ 1% = 3 39 (6.3) 16 (6.1) 5 (10.4) 0

Conditioning regimen, n (%) 0.294 NA

Chemotherapy-based regimen 609 (98.7) 260 (99.6) 48 (100) 25 (100.0)

TBI-based regimen 8 (1.3) 1 (0.4) 0 0

Donor/recipient gender matched, n (%) 0.290 0.685

  Female donor/male recipient combination 500 (81.0) 220 (84.3) 44 (91.7) 22 (88.0)

  Others 117 (19.0) 41 (15.7) 4 (8.3) 3 (12.0)

Donor/recipient relation, n (%) 0.057 0.423

  Maternal donor 37 (6.0) 231 (88.5) 5 (10.4) 24 (96.0)

  Collateral donor 14 (2.3) 16 (6.1) 0 1 (4.0)

  Others 566 (91.7) 14 (5.4) 43 (89.6) 0

Blood group disparity, n (%) 0.333 0.758

  matched 347 (56.2) 140 (53.6) 23 (47.9) 14 (56.0)

  minor mismatched 126 (20.4) 48 (18.4) 12 (25.0) 6 (24.0)

  major mismatched or minor and 
  major mismatched 144 (23.3) 73 (28.0) 13 (27.1) 5 (20.0)

MNC counts in graft, median (range, ×108/
kg)

8.46 (2.18-
19.49)

8.59 (2.18-
14.9) 0.415 8.90 (6.66-

17.27)
8.61 (5.81-
15.72) 0.429

CD34+ cell counts in graft, median (range, 
×106/kg)

2.45 (0.27-
34.38)

2.31 (0.33-
9.57) 0.342 2.54 (0.24-

7.10)
1.96 (0.62-
17.86) 0.368

Median follow-up after HSCT, days (range) 941 (24-2190) 1034 (21-
2190) 0.056 894.5 (24-

2190)
1206 (180-
1955) 0.436

Allo-HSCT, allogeneic hematopoietic stem cell transplantation; CR, complete remission; HLA, human leukocyte antigen; HCT-CI, hematopoietic cell transplantation-
specific comorbidity index; TBI, total body irradiation; MNC, mononuclear cell.
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cGVHD at three years after allo-HSCT was 24.0% (95% CI, 
21.2%–26.8%) and 8.2% (95% CI, 6.4–10.0%), respectively. 
Twenty-six patients (24.7%) with FLT3-ITD mutations 
simultaneously received sorafenib as a maintenance therapy. 
The median duration of  maintenance therapy was 28 days 
(range, 11–210 days). 

Furthermore, 111 patients experienced relapse, and the 
median time from HSCT to relapse was 220 days (range, 
22–1738 days). Eighty patients died of  NRM. The median 
follow-up duration was 945 days (range, 21–2190) days. The 
probabilities of  relapse, NRM, LFS, and OS at three years 
after HID HSCT were 12.5% (95% CI, 10.2%–14.7%), 
8.7% (95% CI, 6.8%–10.5%), 78.9% (95% CI, 76.2%–
81.7%), and 83.2% (95% CI, 80.7%–85.7%), respectively.

Development of machine learning model 
Five variables (AML risk category at diagnosis, number of  
courses of  induction chemotherapy for first CR, disease 
status before HSCT, measurable residual disease before 
HSCT, and blood group disparity; Supplementary Table 
S2 and S3, Figure 2A and 2B) were included in the PKU-
AML model, and the equation was as follows:

Probability (relapse) = 

where Y = 0.5677 × (AML risk category at diagnosis) + 
0.0690 × (number of  courses of  induction for first CR) 
+ 0.4583 × (disease status before HSCT) + 0.4061 × 
(MFC before HSCT) – 0.1623 × (blood group disparity) 
– 2.9641. 

The threshold of  probability was set at 0.1106, and the 
g-mean was 0.668. The force plot (Figure 2C and 2D) 
illustrates how the features contributed to the prediction of  
the model for all observations. The sensitivity, specificity, 
AUC, and accuracy scores of  the training cohort are shown 
in Figure 2E and were 0.7000, 0.6250, 0.7071, and 0.6329, 
respectively, in the validation cohort (Figure 2F).

Development of prediction nomogram
A nomogram was designed using the training cohort 
based on the machine learning model (Figure 3A), and 
the validation cohort showed that the concordance index 
was 0.707 (95% CI 0.645–0.770). The calibration plots in 
the training and validation cohorts (Figure 3B and 3C) 
revealed satisfactory agreement between the nomogram 
prediction and actual observations for the probability of  
relapse. Based on the decision curve analysis (Figure 3D 
and 3E), if  the threshold probability was > 0.1, using this 
nomogram to predict relapse would provide a greater 
net benefit than either a treat-all-patients scheme or a 
treat-none scheme. The optimal cutoff  value of  the total 
nomogram scores was determined to be 95 (Figure 3F), and 
the patients were separated into low- and high-risk groups. 
The Hosmer−Lemeshow test showed that the model had 
a good fit (P = 0.205). 

In the training cohort, the three-year cumulative incidence 
of  relapse after HID HSCT were 18.9% (95% CI, 
13.8%–24.0%) and 9.2% (95% CI, 6.1%–12.2%) in the 
high- and low-risk groups, respectively (P < 0.001; Figure 
3G). In the validation cohort, the three-year cumulative 

Figure 1: Flow chart of the study and data analysis process.
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incidence of  relapse after HID HSCT were 19.5% (95% 
CI, 11.9%–27.1%) and 5.9% (95% CI, 2.1%–9.7%) in the 
high- and low-risk groups, respectively (P < 0.001; Figure 
3H). We observed that the three-year cumulative incidence 
of  relapse was significantly higher in high-risk patients 
than in low-risk patients in all subgroups and was as high 
as 26.8% in high-risk patients who received HID HSCT 
after CR1 (Supplementary Table S4).

Validation of the PKU-AML model in an 
independent cohort
A total of  consecutive 213 patients with AML were included, 
and their characteristics are shown in Supplementary Table 
S5. The AUC and accuracy scores of  the PKU-AML 
model were 0.7074 and 0.8685, respectively (Figure 4A). 
The concordance index was 0.7074 (95% CI 0.300–1.000). 
The calibration plots (Figure 4B) revealed a satisfactory 
agreement between the nomogram prediction and the 
actual observation of  the probability of  relapse. Based on 
decision curve analysis, if  the threshold probability was > 
0.1, using this nomogram to predict relapse would provide 
more net benefit than either a treat-all-patient scheme or a 
treat-none scheme (Figure 4C). The three-year cumulative 
incidence of  relapse after HID HSCT were 16.9% (95% 
CI, 10.7%–23.0%) and 3.6% (95% CI, 0–8.7%) in the 
high- and low-risk groups, respectively, (P = 0.018; Figure 
4D) in this cohort.

Validation of the nomogram in clinical practice
A total of  50 questionnaires were returned. The calibration 
curve obtained from the questionnaires (Figure 5A) showed 
that the nomogram-maintained consistency with the 
predictive probability when applied clinically. It tended to 
slightly overestimate the probability of  relapse when the 
actual probability was small. The confusion matrix (Figure 
5B) illustrated an accuracy of  0.92 for the actual usage. 
Among the four false-positive instances, three were from 
one patient predicted by the nomogram with a relapse 
probability of  0.1006, which was close to the threshold 
of  0.1106. However, the proportion for patients with 

nomogram-predicted relapse probability between 0.10 and 
0.11 was only 0.031. In this case, false distinguishments 
rarely occurred.

Comparison of predictive value between our 
PKU-AML model and other existing models
Five existing models were included: Hematopoietic cell 
transplantation comorbidity index (HCI-CI) score, HCT-
CI/Age score,[47] AML-specific disease risk group,[33] 
haploidentical European Group for Blood and Marrow 
Transplantation (EBMT) risk score (haplo-EBMT),[26] 
and haploidentical DRCI (haplo-DRCI).[16] The ROC and 
precision-recall curves of  our PKU-AML model and these 
existing models for relapse prediction are shown in Figure 
6 and Supplementary Table S6. The AUC and average 
precision of  our PKU-AML model were superior to those 
of  the other existing models for predicting post-transplant 
relapse after HID HSCT. We compared the PKU-AML 
model with the MRD before HSCT and ELN genetic 
risk. The AUC and average precision of  our model were 
superior in predicting post-transplant relapse after HID 
HSCT (Supplementary Figure S1).

Validation of the prediction nomogram for other 
outcomes after HID HSCT
As the training cohort was developed based on relapse and 
not on other outcomes, we combined the training cohort 
with the validation cohort to analyze secondary outcomes.

Notably, 244 patients developed MRD after HID HSCT. 
Low-risk patients showed a lower cumulative incidence 
of  MRD occurrence than high-risk patients (Table 2 and 
S7), and the cumulative incidence of  MRD occurrence 
at three years after HID HSCT were 30.8% (95% CI 
26.0%–35.6%) and 23.2% (95% CI 19.6%–26.7%) for 
the high- and low-risk group, respectively (P = 0.011, 
Supplementary Figure S2). The low-risk group showed a 
lower probability of  EFS than the high-risk group (Tables 
2 and S8), and the probability of  EFS at three years after 
HID HSCT were 55.8% (95% CI 50.8%–61.2%) and 65.4% 

Table 2: The three-year probability of clinical outcomes after HID HSCT between the low- and high-risk groups.

High-risk group Low-risk group
P value

Cumulative incidence (95%CI) Cumulative incidence (95%CI)

MRD occurrence 30.8 (26.0–35.6) 23.2 (19.6–26.7) 0.011

EFS 55.8 (50.8–61.2) 65.4 (61.4–69.5) 0.003

NRM 8.0 (4.4–11.6) 9.1 (6.3%–11.9) 0.561

LFS 73.0 (68.5–77.9) 82.7 (79.5–86.0) <0.001

OS 78.6 (74.4–83.1) 86.1 (83.2–89.2) 0.004

CI, confidence interval; HID haploidentical related donor; HSCT, hematopoietic stem cell transplantation; MRD, measurable residual disease; EFS, event free 
survival; NRM, non-relapse mortality; LFS, leukemia-free survival; OS, overall survival.
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(95% CI 61.4%–69.5%) for the high- and low-risk groups, 
respectively (P = 0.003, Supplementary Figure S2). A total 
of  210 patients received preemptive immunotherapies, 173 
patients received preemptive Interferon (IFN) α treatment, 
and 37 patients received preemptive DLI. The cumulative 

incidence of  relapse at three years after preemptive 
immunotherapy were 33.7% (95% CI, 22.5%–44.9%) and 
15.9% (95% CI, 9.1%–22.7%) in the high- and low-risk 
groups, respectively (P = 0.011). The probability of  LFS 
at three years after preemptive immunotherapy were 60.6% 

Figure 2: The process of model development. SHAP value summary plot for the logistic regression model. SHAP value (x-axis), feature (y-axis), feature values 
(color). Explanation: Each point on graph is a feature and corresponding SHAP values of an instance, the position on the y-axis is determined by the feature, 
the position on the x-axis is determined by the SHAP value, the color represents the feature value from small to large, and the overlapping points are on the 
y-axis direction, so we can understand the distribution of SHAP values for each feature. (A) SHAP = SHapley Additive exPlanations. The mean absolute SHAP 
values of the top 5 features (B). The x-axis (instances) values are sorted by (C) similarity, and (D) output values. Values higher on the vertical axis indicate higher 
likelihood of relapse. Values lower on the vertical axis indicate a lower likelihood of relapse. Values that are red drive the relapse risk up. Values that are blue 
drive the relapse risk down. Receiver operating characteristic (ROC) curve and confusion matrix for relapse model in the training (E) and validation cohorts (F).
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Figure 3: Nomogram for estimating the probability of relapse and its predictive performance. Nomogram predicting the probability of relapse for AML patients 
receiving haploidentical hematopoietic stem cell transplantation in complete remission based on training cohort. AML risk category at diagnosis: favorable 
= 0, intermediate = 1, adverse = 2; number of courses of induction chemotherapy for first CR: numerical value; disease status before HSCT: CR1 = 1, CR2 
= 2, ≥ CR3 = 3; MFC before HSCT: negative = 0, ≥ 0.01% but < 0.1% = 1, ≥ 0.1% but <1% = 2; ≥ 1% = 3; blood group disparity: matched = 0, minor 
mismatched = 1, major mismatched or minor and major mismatched = 2 (A). Calibration plot of actual probability versus predicted probability of relapse based 
on training (B) and validation cohort (C). Decision curve analysis demonstrating the net benefit associated with the use of our model for predicting relapse 
based on training (D) and validation cohort (E). Accuracy of the prediction score of the nomogram for estimating the probability of relapse (F).
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Figure 4: Validation of AI-based model in an independent cohort. Receiver operating characteristic (ROC) curve and confusion matrix for relapse model in the 
independent cohorts (A). Calibration plot of actual probability versus predicted probability of relapse based on independent cohort (B). Decision curve analysis 
demonstrating the net benefit associated with the use of our model for predicting relapse based on independent cohort (C). The 3-year cumulative incidence 
of relapse after transplantation in the low‑ and high‑risk groups in independent cohort (D).
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(95% CI, 50.3%–73.1%) and 80.2% (95% CI, 73.1%–
88.1%) in the high- and low-risk groups, respectively (P = 
0.006). In patients who received preemptive IFN-α therapy, 
the cumulative incidence of  relapse at three years after 
IFN-α therapy were 23.8% (95% CI, 11.9%–35.6%) and 
10.1% (95% CI, 4.1%–16.1%) in the high- and low-risk 
groups, respectively (P = 0.054). The probability of  LFS 
at three years after IFN-α therapy were 68.8% (95% CI, 
57.4%–82.5%) and 85.4% (95% CI, 78.6%–92.8%) in the 
high- and low-risk groups, respectively (P = 0.023). The 
high-risk group showed a trend toward a higher incidence 
of  relapse and lower probability of  LFS than the low-risk 
group in patients receiving preemptive DLI.

The probabilities of  LFS and OS at three years after HID 
HSCT for patients in the high-risk group were significantly 

lower than those for patients in the low-risk group (Table 
2). The three-year cumulative incidence of  NRM after HID 
HSCT was comparable between groups (Table 2). 

DISCUSSION

Based on a large-sample cohort using relapse as the primary 
endpoint, we established the PKU-AML model for post-
transplant relapse in patients with AML receiving HID 
HSCT, which was validated in an independent cohort and 
in clinical practice. It can also predict the occurrence of  
LFS, OS, and MRD after HID HSCT and the outcomes 
after preemptive immunotherapies. The AUC of  the 
other existing models ranged from 0.536 to 0.653, and 
the average precision of  these models ranged from 0.113 
to 0.162. Therefore, existing models are not sufficient 

Figure 5: Clinical performance for nomogram. Calibration plot of probability from questionnaire versus actual probability of relapse based on nomogram (A). 
Confusion matrix of relapse outcome from questionnaire versus actual outcome of relapse based on nomogram (B).

Figure 6: Models performance evaluation and comparisons in validation cohort. Receiver operating characteristic (ROC) curve (A) and precision-recall curves 
(B) of our AI-based model and other existing models for relapse prediction. 
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to predict post-transplant relapse in patients with AML 
receiving HID HSCT, suggesting that relapse prediction is 
indeed difficult for these patients. Our PKU-AML model 
predicted relapse more efficiently than existing models for 
HID HSCT recipients. To the best of  our knowledge, this 
is the first comprehensive model for relapse prediction 
in a disease-specific population of  patients with AML 
undergoing HID HSCT for CR. 

Current nomogram development methods match the 
overall points and predictive probabilities through an 
imbalanced-scale axis, which may lead to misestimation 
of  probabilities. To alleviate this problem, the nomogram 
developed in this study substituted this matching strategy 
with risk graph (graph beneath the “Overall Point” axis). 
In addition, the auxiliary lines among the “Point” axis and 
other axes of  variables (blue dashed vertical lines) also 
assist the computation of  the nomogram. Furthermore, the 
graphic design for the axes of  the variables was improved. 
Different styles of  axes represent different variable types; 
for instance, dashed lines represent nominal variables and 
solid lines represent continuous variables. These assistant 
designs significantly improved the speed and accuracy of  
the calculations. Assuming that n variables are included in 
the logistic regression model, the computational complexity 
of  computing the logistic regression by hand is at least O 
(n^2). In contrast, the complexity of  computation using the 
nomogram is O(n), which drastically reduces the difficulty 
of  applying the logistic regression model. The calibration 
curve and confusion matrix showed excellent performance 
for clinical use.

Posttransplant relapse is simultaneously influenced by 
several risk factors. For example, Jentzsch et al.[48] reported 
that ELN intermediate-risk patients who were MRD-
positive during second remission and underwent HSCT 
showed the highest incidence of  relapse, even higher than 
that in ELN high-risk patients who were MRD-negative 
during second remission and underwent HSCT. This 
suggests that combining multiple risk factors can predict 
post-transplant relapse more effectively and establishing a 
comprehensive prognostic model. 

MRD can significantly increase the risk of  post-transplant 
relapse.[49-51] In a study by Liu et al.,[52] patients with AML 
with increasing MRD after HID HSCT showed the highest 
incidence of  relapse (100%) than those with decreasing 
MRD (19.2%) or MRD-negative (9.6%) peri-HSCT. Our 
nomogram predicted the occurrence of  MRD after HID 
HSCT, which might explain why it can effectively predict 
post-transplant relapse. 

Considering the fact that our nomogram could predict 
relapse after HID HSCT, which methods could further 

decrease the risk of  relapse is important to improve 
the outcomes of  high-risk patients. Some intensified 
conditioning regimens (e.g ., cladribine-based[53] or 
decitabine-based[54] regimen) have been used in patients 
with advanced-stage acute leukemia. Therefore, high-risk 
patients with AML identified by our prediction nomogram 
may also benefit from these intensified conditioning 
regimens; however, their safety should be further confirmed 
in HID HSCT recipients.

Prophylactic DLI has been reported to decrease relapse 
in patients with refractory/relapsed acute leukemia.[55,56] 
Based on this, Yan et al.[57] developed a total therapy strategy 
(i.e., prophylactic DLI with multiple DLIs subsequently 
administered based on MRD and GVHD status) that could 
decrease relapse and improve long-term LFS in refractory/
relapsed patients with AML. Maintenance therapy, 
including additional agents targeting specific molecular 
aberrations (e.g., FLT3 inhibitors[53]), hypomethylating 
agents, and certain new drugs (e.g., venetoclax), may help 
decrease relapse and improve the survival of  patients with 
advanced-stage AML.[58,59] Therefore, the efficacy and safety 
of  these maintenance therapy strategies require further 
studies in high-risk HID HSCT recipients identified by 
our prediction nomogram. 

Although preemptive immunotherapy can decrease the 
risk of  relapse and improve the survival of  patients 
with MRD,[49] we observed that nearly one-third of  the 
high-risk patients who showed MFC positivity after 
allo-HSCT experienced relapse even after receiving 
preemptive immunotherapy. This suggests that preemptive 
immunotherapies may not overcome the poor prognostic 
significance of  MRD positivity in patients with AML 
categorized into high-risk groups by PKU-AML model. 
Considering that patients with a low disease burden are 
more likely to benefit from a second HSCT,[60] using it for 
the upfront management of  high-risk patients identified 
by our PKU-AML model may be reasonable when they 
experience MRD after HID HSCT. In addition, other 
protocols (e.g., venetoclax, PD-1 inhibitors, daratumumab, 
and selinexor) should be identified.

We chose the final follow-up date as the time point for 
assessing relapse to determine whether relapse occurred 
within an observable timeframe. We chose this time 
point to explore whether relapse occurred during the 
foreseeable time period. In the study of  Ji et al.[61], the 
median follow-up period was 56.0 months (interquartile 
range [IQR], 39.0–74.4) for the training set, 41.6 months 
(IQR, 33.5–53.1) for the internal validation set, and 59.5 
months (IQR, 37.0–79.8) for the external validation set. 
Chu et al.[62] retrospective reviewed patients treated over a 
19-year period between October 1, 2000, and October 1, 
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2019. Therefore, we selected a final follow-up period for 
our model.

This study had some limitations. Although this PKU-
AML model was established based on a large cohort, 
this was a single-center study, and the efficacy of  this 
model should be further validated in other independent 
cohorts. Additionally, MRD monitoring and preemptive 
interventions were commonly used in our cohort, which 
may have prevented relapse in some patients. This may 
artificially decrease the incidence of  posttransplant relapse. 
However, considering the higher incidence of  MRD 
and the poorer efficacy of  preemptive immunotherapy 
in high-risk patients, we speculate that the difference in 
relapse between high- and low-risk patients may be more 
significant in cohorts without preemptive interventions. 
In addition, we did not include any additional mutations. 
We believe that the more variables included in the model, 
the worse it will be generalized in the clinic. Additionally, 
the size of  the training set was not sufficiently large. If  
we include all mutation statuses in the model, we may 
require a larger dataset. If  a larger dataset is available, our 
model and nomogram can be validated. Finally, ATG was 
administered to prevent GVHD in this study. Therefore, 
the predictive value of  our model should be further 
confirmed in patients receiving HID HSCT with post-
transplantation cyclophosphamide, and in those receiving 
MSD or unrelated donor HSCT.

In summary, we established the PKU-AML model to predict 
post-transplant relapse in patients with AML receiving 
HID HSCT in CR, which was further confirmed using an 
independent cohort and in clinical practice. This model 
can be popularized easily, helps provide risk stratification-
directed prophylaxis, and may help decrease the risk of  
relapse. Future prospective multicenter studies should 
further confirm the efficacy of  our PKU-AML model.

Supplementary Information

Supplementary information of  this article can be found 
online at www.intern-med.com.
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