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Review Article

ABSTRACT
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell 
death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. 
Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the 
tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression 
and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, 
pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death 
modalities. We then discuss how these processes activate antigen-presenting cells, facilitate 
the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the 
complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, 
we summarize potential drugs and nanoparticles that can induce or inhibit these emerging 
RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing 
challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review 
enhances our understanding of the molecular mechanisms and biological impacts of RCD-
based therapies, providing new perspectives and strategies for cancer treatment. 
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INTRODUCTION

Regulated cell death (RCD), also known as 
Programmed Cell Death (PCD), involves 
cell death regulated by specific signaling 
pathways.[1–3] Various forms of  RCD 
have been identified, including apoptosis, 
necroptosis, pyroptosis, ferroptosis, and 
cuproptosis.[2,4,5] These processes play 

a crucial role in organism growth and 
development, as well as in maintaining internal 
homeostasis by eliminating infected, damaged, 
or self-destructing cells.[6] Dysregulated 
of  RCD can contribute to the onset and 
progression of  cancers.[1,7] Resistance to cell 
death is one of  the hallmarks of  tumors 
and a key mechanism of  tumor resistance 
to therapy.[1] Targeting RCD has been shown 
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to not only directly destroy tumor cells but also enhance the 
organism’s anti-tumor immunity, presenting promising clinical 
prospects for cancer therapy.[8–11]

The immune system is integral to preventing tumor 
development, progression, and metastasis, as well as 
modulating responses to treatment.[12–14] It has been reported 
that tumor cells undergoing RCD can release tumor-
associated antigens (TAAs), damage-associated molecular 
patterns (DAMPs), and pro-inflammatory cytokines, which 
elicit secondary immunity and affect the tumor immune 
microenvironment.[15–17] These effects may enhance 
immunostimulation or disrupt immunosuppression, 
leading to T-cell activation, dendritic cell (DC) maturation, 
proliferation, and tumor infiltration, potentially acting 
synergistically with existing immunotherapies.[18,19] RCD has 
multiple effects on the immune response,[5,20] RCD exerts 
a suppressive effect on immune response. For instance, 
during apoptosis, the activation of  caspases leads to the 
downregulation of  proteins such as cyclic GMP-AMP 
synthase (cGAS), MAVS, and interferon regulatory factor 
3 (IRF3), which are essential for the activation of  innate 
immunity.[21] These studies suggest that a summary of  
the relationship between RCD and tumor immunity is 
necessary to provide precisely targeted guidance for tumor 
immunotherapy. 

Tumor cells evade immune surveillance by reducing their 
immunogenicity and establishing immunosuppressive 
networks. Immunotherapies,  including immune 
checkpoint blockade (ICB), chimeric antigen receptor 
T (CART) cells, cytokine therapy, and dendritic 
cell vaccines, are designed to stimulate anti-tumor 
immune responses.[22–24] However, some patients exhibit 
a limited response to immunotherapy. Several studies 
have demonstrated that immunotherapies can have 
synergistic effects when combined with radiotherapy and 
chemotherapy.[25,26] Consequently, the combination of  
immunotherapy with other treatment modalities is gaining 
significant attention.[27,28] Moreover, targeting RCD can 
enhance the efficacy of  immune checkpoint inhibitors 
like anti-PD-1 antibodies, thereby improving anticancer 
outcomes.[23] Given the immunomodulatory effects of  
RCD, therapies that focus on RCD present a promising 
strategy to synergistically enhance immunotherapy and 
inhibit tumor development.[29–31] Therefore, it is highly 
desirable to review the potential of  targeting RCD to 
synergize with anticancer immunity. 

Currently, our understanding of  the interactions among 
various RCD pathways remains limited. Additionally, the 
potential applications of  these types of  RCD in anticancer 
immunity have yet to be thoroughly explored. This gap 
presents a critical area for future research that could lead 

to significant breakthroughs in cancer treatment strategies. 
In this review, we first delineate the molecular mechanisms 
of  five different types of  RCD, including apoptosis, 
necroptosis, pyroptosis, ferroptosis, and the recently 
discovered cuproptosis, along with their crosstalk. Next, 
we discuss their role in the anti-tumor immune response. 
We also summarized numerous clinically approved drugs 
that can suppress tumors by inducing RCD and affecting 
antitumor immunity. Finally, we discuss existing challenges 
and future prospects for targeting RCD in anticancer 
immunity. 

CORE MOLECULAR MECHANISMS 
OF DIFFERENT CELL DEATH

Apoptosis
Apoptosis, the earliest identified form of  RCD,[32] is 
characterized by distinct morphologic features, including 
cell shrinkage, chromatin condensation, and tight packaging 
of  organelles and cytoplasm.[33] This process is mediated 
by caspases, a family of  cysteine-aspartic proteases that 
cleave specific target proteins, leading to the formation 
of  apoptosome.[34] Eventually, apoptosomes are rapidly 
phagocytosed by adjacent cells.[34] 

Mechanistically, apoptosis can be initiated via two main 
pathways: the intrinsic and extrinsic pathways.[35] The 
intrinsic pathway, also known as the mitochondrial pathway, 
is triggered by intracellular stressors such as DNA damage, 
growth factor or nutrient deprivation, and endoplasmic 
reticulum (ER) stress.[33,36] Key processes of  apoptosis are 
subsequently activated, encompassing the induction of  
mitochondrial outer membrane permeabilization (MOMP) 
and the release of  soluble proteins, such as Cytochrome 
c, through the pore formed in the mitochondrial outer 
membrane.[37,38] MOMP is tightly regulated by the BCL-
2 family proteins, which include effector proteins (BAX 
and BAK) , pro-apoptotic BH3-only proteins, and anti-
apoptotic proteins, such as BCL-2, BCL-XL, BCL-W, 
BCL-2-A1 and MCL1.[39–41] Cytochrome c, released 
from the intermembrane space, binds and activates the 
adaptor molecule apoptotic protease-activating factor 1 
(APAF1).[42] This activation leads to the oligomerization 
of  APAF1 and the recruitment of  pro-caspase 9, forming 
a complex known as the apoptosome.[43] The activation 
of  caspase 9 then catalyzes the cleavage and activation 
of  executioner caspases 3 and 7, ultimately resulting in 
apoptosis.[44–46] 

The extrinsic pathway also referred to as the death receptor 
pathway, provides an alternative route for the activation of  
caspases 3 and 7 through the mediation of  caspase 8.[47] 
Ligands such as Fasl, tumor necroptosis factor (TNF), or 
TNF-related apoptosis-inducing ligand (TRAIL) bind to 
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their corresponding receptors FasL, TNFR1/TNFR2, and 
death receptor 4 (DR4)/DR5 on the plasma membrane 
respectively.[48–51] Upon ligand binding, adaptor molecules 
FAS-associated via the death domain (FADD) and 
TNFRSF1A-associated via the death domain (TRADD) 
are recruited to the receptor complex.[52] These adaptors 
contain death domains that facilitate the recruitment of  
pro-caspase 8 to the death-inducing signaling complex 
(DISC), where caspase 8 is activated.[52] The activation of  
caspase 8 subsequently leads to the cleavage and activation 
of  caspase 3/7, ultimately triggering apoptosis (Figure 
1A).[53] 

Necroptosis
Necroptosis has been identified as an alternative form of  
cell death to apoptosis, mediated by the engagement of  
death domain receptors by their respective ligands.[54,55] 
The morphologic characteristics of  necroptosis include 
cell swelling, ruptured plasma membrane, and loss of  
cellular and organelle integrity. The passive leakage 
of  intracellular contents resulting from membrane 
rupture ultimately leads to inflammation and immune 
responses.[56]

The necroptotic pathway can be initiated by activating 
RIPK3 through various death domain receptors that recruit 
their corresponding adaptor proteins. RIPK3 contains 
a C-terminal RIP homotypic interaction motif  (RHIM), 
which is crucial for its activation and for mediating the 
initiation of  necroptosis.[57] Upon binding of  TNF to 
TNFR1, complex I is formed, which includes TRADD, 
FADD, RIPK1, TRAF, and cIAP1 and cIAP2. In cases 
where caspase 8 activity is inhibited, RIPK1 binds to 
RIPK3 through the shared RHIM, thereby facilitating the 
recruitment of  additional RIPK3 molecules to form an 
initial RIPK1-RIPK3 heterodimeric complex.[55,58–61] This 
concentration of  RIPK3 not only promotes homodimeric 
interactions among RIPK3 molecules but also activates 
RIPK3 through autophosphorylation. Furthermore, TRIF-
dependent Toll-like receptors (TLR3 and Toll-like receptor 
4 [TLR4]) can activate RIPK3 through RHIM-dependent 
interactions.[62,63] Additionally, the interferon (IFN)-
independent expression of  the DNA-dependent activator 
of  IFN regulatory factors, DAI (also known as ZBP1 or 
DLM-1), contains an RHIM that can activate RIPK3.[64] 
Subsequently, activated RIPK3 phosphorylates mixed 
lineage kinase domain-like protein (MLKL). Following 
phosphorylation, oligomerized MLKL (pMLKL) forms 
the “necrosome” complex, which then translocates to the 
plasma membrane.[65,66] This translocation increases plasma 
membrane permeability, leading to membrane rupture 
and the release of  DAMPs.[67] Consequently, necroprosis 
occurs, triggering inflammatory and immune responses 
(Figure 1B). 

Pyroptosis
Proinflammatory PCD, first identified in macrophages 
following pathogen infection, was termed pyroptosis in 
2001 by Brad T. Cookson and his colleagues.[68] Pyroptosis 
is characterized by cell swelling, lysis, and the release of  
many proinflammatory factors.[69,70] Additionally, pyroptosis 
involves DNA damage and chromatin condensation, 
features that are reminiscent of  apoptosis.[71] Pyroptosis is 
executed by inflammasome-activated gasdermin (GSDM), 
a member of  a large family of  proteins known for their 
novel membrane pore-forming activity.[72,73] Mechanistically, 
GSDMs are cleaved by caspases, which liberate the pore-
forming domain (PFD) from the repressor domain, resulting 
in the formation of  pores in the cell membrane.[74,75] 

Current research has confirmed that the activation of  
pyroptosis can occur through multiple pathways.[5,69] 
Pyroptosis resulting from cleavage of  GSDMD by 
caspase 1, 4, 5, and-11, is one of  the main approaches.[76,77] 
Pathogens-associated molecular patterns (PAMPS) and 
DAMPs initiate the activation of  NLRP3 inflammasome, 
which then recruits and activates caspase 1.[78] The cleavage 
of  GSDMD by caspase 1 leads to the formation of  pores in 
the plasma membrane and the release of  IL-1β and IL-18, 
resulting in pyroptosis through the canonical pathway.[79] 
Moreover, caspase 11 in mice and caspase 4/5 in humans 
can directly bind lipopolysaccharide (LPS) in response to 
LPS exposure, leading to GSDMD cleavage and subsequent 
pyroptosis via a non-canonical pathway.[80–82] Furthermore, 
ESCRT-dependent membrane repair mechanisms can 
inhibit pyroptosis downstream of  GSDMD activation.[83] 

Multiple studies are discovering that other GSDMs also 
form cytotoxic pores and implicate GSDMs in various 
pathways of  pyroptosis.[84] Notably, in instances where 
the canonical NLRP3 pathway is inhibited, pyroptosis 
can still be induced in macrophages through the cleavage 
of  GSDME by caspase 3.[85,86] Specifically, the cleavage 
of  GSDMC by caspase 8 following TNFα treatment can 
also induce pyroptosis.[87] Additionally, pyroptosis may be 
triggered by the cleavage of  GSDMB by GZMA from 
cytotoxic lymphocytes.[88,89] Additionally, the streptococcal 
pyrogenic exotoxin B (SpeB), a protease virulence 
factor secreted by the major human pathogen group 
A Streptococcus (GAS), cleaves GSDMA and triggers 
pyroptosis.[90,91] These findings suggest that the gasdermin 
family likely serves as pivotal effectors of  pyroptosis 
(Figure 1C).[92,93]

Ferroptosis
Ferroptosis is an iron-dependent form of  cell death 
characterized by lipid peroxidation in the plasma 
membrane.[7,94–96] Morphologically, it is marked by reduced 
mitochondrial volume, fractured mitochondrial outer 
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Figure 1: Molecular mechanisms and crosstalk among five cell death modalities: Apoptosis, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. (A) 
Apoptosis is a programmed form of cell death executed by activating intrinsic (mitochondrial pathway) and extrinsic (death receptor pathway) signaling 
pathways. These pathways ultimately activate caspases, enzymes that degrade key proteins within the cell, leading to orderly cellular disassembly and 
death. (B) Necroptosis is a controlled form of necrosis, considered an alternative to apoptosis, particularly when apoptotic pathways are inhibited. It is 
facilitated by activating specific signaling proteins, such as RIPK1, RIPK3, and MLKL, promoting cell membrane rupture and subsequent leakage of cellular 
contents. (C) Pyroptosis is a form of cell death dependent on inflammasomes and caspases (such as Caspase-1, Caspase-4, Caspase-5, Caspase-11). This 
form of death involves gaseous swelling, ultimately leading to cell membrane rupture and the release of inflammatory mediators like IL-1β and IL-18.(D) 
Ferroptosis is a form of cell death driven by iron-dependent oxidative stress. Its hallmark is the accumulation of lipid peroxidation within the cell, primarily 
caused by uncontrolled iron-catalyzed reactions, leading to the loss of cell membrane integrity. (E) Cuproptosis is a form of cell death induced by copper. 
Copper ions directly interact with multiple mitochondrial fatty acid dehydrogenases, leading to protein aggregation and inactivation, thereby impairing 
mitochondrial function, and resulting in cell death. Caspase-6 plays a critical crosstalk role in PANoptosis, mutually activating with caspase-3/7 and 
cleaving downstream caspase-8 to promote apoptosis. It also facilitates apoptosis by cleaving RIPK1 and promotes necroptosis through interaction with 
RIPK3. Additionally, caspase-6 triggers the activation of the NLRP3 inflammasome mediated by ZBP1, regulating pyroptosis. Caspase-8 directly cleaves 
GSDMD to induce pyroptotic cell death, while caspase-9 promotes extrinsic apoptosis. GSDMD acts as an executor of multiple cell death pathways; 
ROS are implicated in triggering both ferroptosis and pyroptosis; Iron overload, a critical driver of ferroptosis, facilitates the opening of the mitochondrial 
permeability transition pore (MPTP), intensifying RIP1 phosphorylation and leading to necroptosis.
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membranes, diminished mitochondrial cristae, and a normal-
size nucleus without chromatin condensation.[97] Under normal 
physiological conditions, a delicate balance among iron, 
ROS, and lipids is crucial for cellular function. However, 
disruption of  this balance leads to lipid peroxidation that 
surpasses the capacity of  internal antioxidants, ultimately 
resulting in ferroptosis.[98–100] 

A key aspect of  ferroptosis is that free polyunsaturated 
fatty acids must be esterified to membrane phospholipids 
to induce lethality upon peroxidation.[101] Acyl-CoA 
synthetase long-chain family member 4 (ACSL4) and 
lysophosphatidylcholine acyltransferase 3 (LPCAT3) 
are the main enzymes involved in the biosynthesis and 
esterification of  polyunsaturated fatty acid phospholipids 
(PUFA-PLs), respectively.[7] Iron serves as a cofactor for 
the lipoxygenase (LOX) family or NADPH-cytochrome 
P450 reductase (POR), facilitating enzymatic lipid 
peroxidation.[102–104] Furthermore, Fe2+, as an unstable 
form of  iron, can participate in Fenton and Fenton-like 
reactions, catalyzing the formation of  free radicals that 
contribute to non-enzymatic lipid peroxidation.[105,106] 
Enhanced iron uptake through the transferrin receptor 
(TFRC) promotes ferroptosis.[107] Additionally, the 
degradation of  the intracellular iron exporter SLC40A1/
ferroportin-1 enhances susceptibility to ferroptosis in 
vitro.[108,109] Nuclear receptor coactivator 4 (NCOA4)-
induced ferritin autophagy, also known as ferritinophagy, 
selectively degrades ferritin, elevating intracellular 
iron levels and accelerating lipid peroxidation, thereby 
promoting ferroptosis.[110] 

Glutathione (GSH), a component of  the cellular 
antioxidative system, is essential in eliminating excessive 
ROS.[111] Inhibition of  the cystine-glutamate antiporter 
system Xc- leads to GSH depletion and inactivation 
of  the glutathione-dependent lipid hydroperoxidase 
glutathione peroxidase 4 (GPX4). GPX4, which depends 
on GSH as a reducing cofactor, functions to prevent 
ferroptosis.[112,113] The GSH-GPX4 axis is currently 
regarded as the most important mechanism for resisting 
ferroptosis. Additionally, three alternative mechanisms 
exist that resist ferroptosis independently of  GPX4. 
Ferroptosis suppressor protein 1 (FSP1) mitigates 
ferroptosis mediated by ubiquinone.[114] Furthermore, 
the enzyme dihydroorotate dehydrogenase (DHODH) 
reduces CoQ to CoQH2 in the mitochondrial inner 
membrane, thereby alleviating ferroptosis, particularly 
in cases of  mitochondrial GPX4 deficiency.[108] Recent 
evidence also indicates that the enzyme MBOAT1/2 
inhibits ferroptosis by selectively increasing cellular levels 
of  PE-MUFA while reducing cellular levels of  PE-PUFA. 
This anti-ferroptosis pathway operates independently of  
GPX4 or FSP (Figure 1D).[115] 

Cuproptosis
Cuproptosis, a term introduced by Peter Tsvetkov and 
colleagues in 2022, describeds a newly discovered form 
of  RCD that relies on the accumulation of  intracellular 
copper.[116] Unlike other forms of  RCD, which are typically 
characterized by distinctive morphological changes, the 
morphological features of  cells undergoing cuproptosis 
remain undefined, necessitating further research.[117] 

Copper is a trace element essential to various signaling 
pathways and tumor-related pathophysiology within the 
human body.[118] The cytotoxicity of  the copper ionophores 
is attributed to the accumulation of  intracellular copper 
rather than the carrier itself.[116] For a long time, the 
mechanism by which elesclomol, a copper ionophore, 
transports excess copper ions into cells to induce cell death 
has been a subject of  controversy, with many researchers 
categorizing this process as apoptosis.[119,120] However, 
recent studies have established cuproptosis as a distinct, 
non-apoptotic form of  cell death that is closely associated 
with mitochondrial respiration and the lipoic acid (LA) 
pathway. Mechanistically, elesclomol facilitates the transport 
of  Cu (Ⅱ) into mitochondria, directly targeting the 
mitochondrial enzyme ferredoxin 1 (FDX1), which reduces 
Cu (Ⅱ) to the more toxic Cu (Ⅰ) . Subsequently, Cu (Ⅰ) 
binds immediately to lipoylated DLAT, a component 
of  the tricarboxylic acid (TCA) cycle, promoting the 
oligomerization of  lipoylated DLAT and destabilizing iron-
sulfur (Fe-S) cluster proteins. This destabilization leads to 
proteotoxic stress and ultimately results in cell death.[116] 

As a novel type of  RCD, our understanding of  cuproptosis 
is still limited. Nonetheless, existing research suggests 
that targeting cuproptosis could represent a potentially 
effective treatment strategy for eliminating tumors. Further 
investigations are crucial to fully elucidate the mechanisms 
and cellular morphology associated with cuproptosis, as 
well as to identify specific inducers and inhibitors of  this 
cell death pathway (Figure 1E). 

Crosstalk among components of RCD
RCD pathways do not appear to be isolated signaling cascades. 
Evidence indicates that pathways regulating different RCD 
patterns exhibit crosstalk at various levels.[5] For example, 
the pathways of  apoptosis, necroptosis, and pyroptosis 
(collectively referred to as PANoptosis) can transform 
into one another under certain conditions.[121] Research 
has revealed that caspase-6 plays a crosstalk role in the 
mechanistic pathway among PANoptosis.[121] In apoptosis, 
caspase-3 activates caspase-6, which subsequently cleaves 
downstream caspase-8, underscoring its critical role in 
this process.[122] Additionally, caspase-6 can be activated 
by caspase-3/7 and can reciprocally activate these caspases 
during apoptosis, thereby establishing itself  as both an 
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initiator and executor within the apoptotic pathway.[123,124] 
Caspase-6 also plays a dual role in regulating necroptosis. 
It has been reported to promote apoptosis by cleaving 
RIPK1, which in turn inhibits necroptosis by suppressing 
the production of  inflammatory cytokines.[125] Conversely, 
caspase-6 can promote necroptosis through its 
interaction with RIPK3, facilitating the binding of  
RIPK3 and ZBP1.[126] Furthermore, caspase 6 promotes 
ZBP1-mediated activation of  NLRP3 inflammasome, 
which mediates pyroptosis.[121,126–131] Notably, the caspase 
family plays a significant role in the regulation of  
various cell death.[132] In particular conditions, caspase-8, 
traditionally viewed as an apoptosis initiator, can directly 
cleave GSDMD to induce pyroptosis.[133,134] Similarly, 
caspase-9, which is involved in the initiation of  extrinsic 
apoptosis, is essential for necroptosis and regulates the 
formation of  the necrosome.[135] 

Studies have demonstrated that GSDMD serves as an 
executioner for multiple cell death pathways.[136,137] In 
Lrrk2G2019S macrophages, mitochondrial ROS guides 
GSDMD to mitochondria following inflammasome 
activation, where mitochondrial GSDMD (mito-GSDMD) 
converts cell death from pyroptosis to necroptosis.[138] 
ROS are implicated in triggering both ferroptosis and 
pyroptosis.[139] Elevated levels of  ROS also promote 
the activation of  the NLRP3 inflammasome, leading to 
pyroptosis.[140,141] Furthermore, inducers of  ferroptosis have 
been found to cause ER stress and enhance the expression 
of  the pro-apoptotic molecule PUMA without triggering 
apoptosis.[142] Iron overload, a key driver of  ferroptosis, 
facilitates the opening of  the mitochondrial permeability 
transition pore (MPTP) , which exacerbates RIP1 
phosphorylation and leads to necroptosis.[143] Additionally, 
ferroptosis inducers, such as sorafenib and erastin have 
been shown to promote cuproptosis by inhibiting system 
Xc-, thereby downregulating intracellular GSH synthesis, 
as GSH acts as a copper chelator.[144] Recent findings 
also indicate that copper-driven cascade can trigger the 
maturation of  dendritic cells and initiate intense T cell-
mediated pyroptosis,[145] highlighting the role of  copper in 
pyroptosis (Figure 1). However, whether copper-dependent 
cuproptosis is associated with ferroptosis, pyroptosis and 
other RCD still needs further investigations. 

THE ROLE OF RCD IN CANCER 
IMMUNE RESPONSE

Apoptosis in anti-tumor immunity
Cell death modalities are classified based on their 
immunogenic potential into non-immunogenic types, 
such as apoptosis, and immunogenic types, such as 
necroptosis, pyroptosis, ferroptosis, and cuproptosis. 
Unlike other forms of  cell death, apoptotic cells typically 

cleared rapidly by phagocytes are traditionally considered 
incapable of  activating innate immunity and instead possess 
anti-inflammatory properties, a phenomenon referred 
to as “innate immune tolerance”, crucial for normal 
physiological processes within the organism.[146] Previous 
studies have shown that during apoptosis, mitochondrial 
DNA (mtDNA) and cytochrome c are released into the 
cytoplasm, where the mtDNA robustly activates the 
cGAS-stimulator of  interferon genes (STING) pathway, 
leading to IFN-I production and inflammatory responses. 
In 2014, publications from the teams of  Richard Flavell 
and Benjamin Kile concurrently highlighted the pivotal role 
of  apoptotic caspases in maintaining this innate immune 
silence.[147,148] Subsequent research by Jiang Z and colleagues 
demonstrated that activated CASP3/6/7 can effectively 
block mtDNA-induced cGAS-STING activation by 
cleaving cGAS and IRF3, thereby preventing IFN-I 
production and inflammatory responses.[21] Additionally, 
cleavage of  MAVS and IRF3 thoroughly blocks RIG-I-
MAVS mediated innate immune activation. These findings 
elucidate how apoptosis ensures the critical aspect of  
“innate immune silence”. Caspases have also been shown 
to indirectly inactivate DAMPs, such as HMGB1.[149] 
Blocking caspases in conjunction with MOMP can activate 
NF-κB and induce a mitochondrial DNA-mediated TFN-I 
response, thus triggering a robust ICD.[147,150] Consistently, 
caspase inhibition has been shown to induce anti-tumor 
activity and lead to tumor regression. 

However, under specific conditions, apoptotic cells can 
exhibit immunogenic properties. For example, certain 
anti-tumor therapies, including chemotherapeutic drugs, 
gamma-irradiation, or photodynamic therapy, can induce 
a specific form of  apoptosis with immunostimulatory or 
adjuvant-like properties, termed immunogenic apoptosis 
(IA).[151] The stimulatory effects of  chemotherapeutic drugs 
and ionizing radiation may mobilize pattern recognition 
receptors (PRRs) such as cGAS.[17,151] In such cases, 
increased mitochondrial membrane permeability following 
therapy can activate the cGAS-stimulator of  the IFN genes 
pathway, leading to the release of  mitochondrial DNA.[19] 
Additionally, during cancer therapy, the phagocytic capacity 
of  phagocytes may be overwhelmed by a large number 
of  dying cells. This can lead to secondary necrosis of  
apoptotic cells, subsequent release of  DAMPs into the 
microenvironment, and thereby provoking inflammation 
and immune responses.[152] 

Necroptosis in anti-tumor immunity
Necroptosis plays a crucial role in stimulating tumor 
immunogenicity and enhancing anti-tumor immunity.[153] 
This form of  cell death not only triggers the activation 
and assembly of  death-inducing proteins but also 
stimulates the transcription of  danger signals, which are 
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subsequently released into the tissue microenvironment 
upon cell dissolution. The DAMPs released by tumor 
cells undergoing necroptosis activate DCs, leading 
to the maturation and activation of  CD8+ T cells, 
thereby enhancing their tumor-killing function.[154] The 
immunogenicity of  necroptosis largely depends on the 
synergistic action of  RIPK1 activation and NF-κB signal 
transduction.[155] The activation of  RIPK1 and RIPK3 
not only contributes to the transcriptional induction of  
DAMPs, which is then dissolved and released through 
MLKL-mediated cell rupture, but also triggers NF-κB 
and IFN signaling pathways.[155–157] As the release of  
intracellular DAMPs promotes inflammation, necroptosis 
is also considered an inflammatory form of  cell death. For 
instance, in cervical cancer cells, tumor cells undergoing 
necroptosis release IL-1α, a necessary precursor for 
DCs’ production of  IL-12, which is essential for anti-
tumor responses.[158] Similarly, the release of  IL-1α and 
the activation of  DCs are strictly dependent on RIPK3 
expression in tumor cells. The NF-κB signaling pathway 
induces the production of  cytokines such as TNF, immune-
inducing factors like CC chemokine ligand 2 (CCL2), CXC 
chemokine ligands 1/8/9 (CXCL1/8/9), and members 
of  the IL-6 and IL-1 families, and IFN-1.[159] Additionally, 
research by Yatim et al. underscores the necessity of  
NF-κB in initiating immune responses and its interplay 
with the TME during necroptosis.[155] In necroptosis, the 
inflammatory mediators released from dying cells are 
insufficient to activate CD8+ T cells alone, and decoupling 
NF-κB signaling from necroptosis reduces the efficiency 
of  initiating immune responses. MLKL expression in 
tumors significantly boosts T cell immunity against tumor 
neoantigens, leading to a marked increase in antitumor 
activity.[160,161] Recent studies have shown that the activation 
of  the ZBP1-MLKL pathway can regulate the release of  
mitochondrial DNA following radiotherapy, significantly 
boosting the anti-tumor immune response, and offering a 
new therapeutic strategy to counteract radiation therapy 
resistance.[162] Notably, a study demonstrated that in a 
mouse tumor model lacking DAMP receptor expression, 
fibroblasts undergoing necroptosis still suppressed tumor 
growth. This suggests that fibroblasts within the TME 
can contribute to immune responses through necroptosis, 
independent of  DAMP release mediated by MLKL-
dependent cell lysis (Figure 2).[154] 

Pyroptosis in anti-tumor immunity
Pyroptosis is an autonomous form of  PCD that triggers 
inflammatory responses, characterized by the progressive 
swelling and eventual rupture of  the cell membrane, leading 
to the release of  cellular contents and the activation of  
immune responses. This inflammatory mechanism plays 
a crucial role in various diseases and is pivotal in cancer 
immunotherapy. In 2020, Judy Lieberman and colleagues 

reported that granzyme B (GZMB) from natural killer 
(NK) cells could directly cleave GSDME, activating 
pyroptosis in cancer cells, further stimulating antitumor 
immune responses, and inhibiting tumor growth.[163] 
Upon activation, GSDM proteins perforate the cell 
membrane, causing pyroptosis and releasing numerous 
cytokines and danger signal molecules, which activate the 
immune system and provoke inflammatory responses. 
Even a minor proportion of  tumor cells undergoing 
pyroptosis can significantly modulate the tumor immune 
microenvironment, activating potent T cell-mediated 
antitumor immune responses that reduce tumor size.[164] 

Pyroptosis is closely associated with inflammatory 
responses, with dying cells releasing IL-1 family cytokines 
and HMGB1. IL-1β and IL-18, both members of  the 
IL-1 family, are major pro-inflammatory cytokines 
released through Caspase-1 activation during immune 
cell pyroptosis. IL-1β is known to inhibit mesenchymal-
epithelial transition (MET) in tumor cells, enhance T cell 
antigen recognition, and promote the proliferation of  
antigen-specific CD8+ T lymphocytes.[165–167] IL-18 enhances 
the ability of  T cells stimulated by anti-CD3 to produce 
IFN-γ, which exerts antitumor effects by inhibiting the 
secretion of  immunosuppressive cytokines by regulatory T 
cells (Tregs) and triggering the activation and proliferation 
of  CD8+ T lymphocytes, inducing the production of  
GZMB, activating apoptotic proteins, and degrading anti-
apoptotic proteins to eliminate cancer cells.[168–170] Besides 
IL-1β and IL-18, HMGB1 interacts with TLR4 to activate 
macrophages and secrete tumor necrosis factor, facilitating 
innate immune responses. HMGB1 also participates in 
the migration of  mature DCs, inducing cytotoxic T-cell 
infiltration and MHC-II upregulation in DCs, thereby 
enhancing antitumor activity.[171–173] Furthermore, the release 
of  IL-6 from pyroptotic cells contributes to adaptive 
responses by increasing cell migration, differentiation, 
and CD8+ T cell antibody production, inhibiting Treg 
differentiation, and preventing macrophage death.[174] These 
inflammatory cytokines largely exert their antitumor effects 
by influencing cytotoxic lymphocytes or modifying the 
tumor microenvironment to mobilize a stronger immune 
response. 

The GSDM protein family is central to pyroptosis and 
functions as tumor suppressor genes.[175] GSDMB triggers 
pyroptosis either through its own cleavage or by inducing 
the cleavage of  GSDMD. On one hand, IFN-γ secreted 
by NK cells or CD8+ T lymphocytes can upregulate the 
expression of  GSDMB in esophageal and colorectal 
adenocarcinoma cells. Subsequently, GSDMB is cleaved by 
granzyme A, triggering pyroptosis and facilitating tumor 
clearance. On the other hand, GSDMB can also engage 
in the non-canonical pathway of  pyroptosis by enhancing 
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Caspase-4 activity and the cleavage of  GSDMD.[88,176] Studies 
have shown that even with intact Caspase-1, shRNA 
knockdown of  GSDMD in mouse bone marrow-derived 
macrophages inhibits pyroptosis and downregulates IL-
1β levels.[77] Additionally, the amount of  GSDMD in 
cytotoxic T lymphocytes (CTLs) correlates positively 
with their cytotoxic response against lung cancer cells. 
In activated CTL OT-1 cells, upregulation of  GSDMD 
aligns with CD8A, GZMB, and IFNG, markers of  CD8+ 
T lymphocytes.[177] CD8+ T cells, by secreting GZMA 
and GZMB, cleave GSDMB/D/E, thereby inducing 
pyroptosis in cancer cells.[29,178] Furthermore, CTL-induced 
pyroptosis is mediated by Caspase-4. Consequently, in 
the non-small cell lung cancer cell line H1299, shRNA-
mediated silencing of  Caspase-4 diminishes CTL activation 
and GSDMD-induced pyroptosis. Beyond lung cancer, 
downregulation of  GSDMD correlates with reduced 
cytolysis in the ovalbumin-expressing Lewis lung cancer 
cell line 3LL-OVA.[177] Increased expression of  GSDME 
enhances phagocytosis of  tumor cells by tumor-associated 
macrophages (TAM) and augments the quantity and 
functionality of  NK cells and CD8+ T lymphocytes within 
the tumor milieu.[163] Notably, CD8+ T cells facilitate the 
delivery of  ribonuclease A (RNase A) and GZMB into 
tumor cells, which activates the caspase-3 and GSDME 
pathways, leading to enhanced CD8+ T cell-mediated 
immunotherapy.[179] Therefore, addressing how to mitigate 
the negative effects and harness the tumor-suppressive 

potential of  dual-function proteins like GSDMD presents 
a pressing challenge (Figure 3). 

Ferroptosis in anti-tumor immunity
Ferroptosis in tumor cells can reshape the tumor immune 
microenvironment, and conversely, immune cells can 
induce ferroptosis in tumor cells, thereby exerting an anti-
tumor effect. There is a complex interplay between ferroptosis 
in tumor cells and immune cells. Research by Efimova et al. 
found that the agent RSL3 enhances the proliferation, 
activation, and immune efficacy of  murine dendritic cells in a 
time-dependent manner, primarily associated with ATP and 
HMGB1 released by tumor cells.[180] In the early stages of  
ferroptosis, however, tumor cells inhibit DC’s maturation 
and antigen-presenting function.[181] Photodynamic therapy 
(PDT)-induced ferroptosis also promotes the release of  
HMGB1 and ATP from tumor cells.[180] 

GPX4, an intracellular enzyme regulating phospholipid 
peroxidation, not only supports the survival and 
proliferation of  CD4+ and CD8+ T cells but also acts as a 
regulator of  ferroptosis, protecting activated Tregs from 
ferroptosis and playing a crucial role in suppressing anti-
tumor immunity.[182,183] Studies have shown that CD8+ T 
cells activated by PD-L1 immunotherapy secrete IFN-γ, 
which downregulates the expression of  the SLC3A2 and 
SLC7A11 subunits of  system Xc-, reducing cystine uptake 
in bladder cancer cells, increasing lipid peroxidation levels, 

Figure 2: Necroptosis in Tumor Immunity. The immunogenicity of necroptosis largely depends on the synergistic action of RIPK1 activation and NF-κB signaling. 
Tumor cells undergoing necroptosis release DAMPs (such as TNF and the IL-1 family), which activate dendritic cells (DCs), leading to the maturation and 
activation of CD8+ T cells and enhancing their tumor-killing function. Tumor cells promote anti-tumor responses by releasing IL-1α, which stimulates DCs to 
produce IL-12. Additionally, fibroblasts within the tumor microenvironment can contribute to the immune response through necroptosis, independent of MLKL-
dependent cytolysis-mediated DAMP release.
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and sensitizing these cells to ferroptosis.[184] Additionally, 
IFN-γ released by CD8+ T cells, in conjunction with 
polyunsaturated fatty acid arachidonic acid in the tumor 
microenvironment, activates ACSL4, altering lipid 
composition and inducing immunogenic ferroptosis in 
tumor cells.[185] Multiple studies on targeted ferroptosis 
combined with ICB therapy also demonstrate that inducing 
tumor cell ferroptosis, when combined with anti-PD-1 
antibody therapy, exhibits strong anti-tumor effects.[186] 

CD36 is a fatty acid transport receptor that mediates 
the recognition and transmembrane transport of  fatty 
acids. Significantly elevated levels of  CD36 expression 
are observed on the surfaces of  tumor-infiltrating Tregs 
and CD8+ T cells. Tumor-infiltrating CD8+ T cells intake 
fatty acids in a CD36-dependent manner, leading to the 
accumulation of  lipid peroxides within the cells and 
promoting ferroptosis in these cells.[187] Administering 
a CD36 monoclonal antibody to melanoma-bearing 
mice reduces tumor-infiltrating Tregs and increases 
infiltrating CD8+ T cells, thereby significantly inhibiting 
tumor growth.[188] Thus, targeting CD36 can reshape the 
composition and function of  T cells in the TME through 
the ferroptosis pathway. 

The ovarian tumor domain-containing protein 1 (OTUD1) 

is involved in the deubiquitination of  iron-responsive 
element-binding protein 2 (IREB2), stabilizing IREB2 to 
enhance iron transport mediated by transferrin receptor 1 
(TFR1). This process increases the production of  reactive 
oxygen species, promoting ferroptosis in colorectal cancer 
cells. Furthermore, colorectal cancer cells overexpressing 
OTUD1 facilitate the release of  DAMPs, attracting tumor-
reactive T cells and thus limiting the progression of  colon 
cancer.[189] Therefore, high expression of  OTUD1 promotes 
ferroptosis in colon cancer cells via the OTUD1-IREB2-
TFR1 signaling axis, while also enhancing the cytotoxic 
effects of  T cells.[189] Consequently, ferroptosis plays a 
significant role in T cell-mediated antitumor immunity, 
impacting the efficacy of  immunotherapies. 

Macrophage phenotypes and functions are influenced by 
their surrounding microenvironment. M1 macrophages 
express high levels of  inducible nitric oxide synthase 
(iNOS) and produce significant amounts of  NO, which 
inhibits lipid peroxidation and resists ferroptosis. In 
contrast, M2 macrophages are susceptible to ferroptosis 
inducers and can transition to the M1 phenotype via 
ferroptotic pathways, reshaping the tumor immune 
microenvironment and enhancing the efficacy of  anti-
PD-1 immunotherapy in hepatocellular carcinoma.[190] 
The use of  ferroptosis inducers, such as erastin, sorafenib, 

Figure 3: Pyroptosis in Tumor Immunity. Cells undergoing pyroptosis release IL-1 family cytokines (IL-1β and IL-18) and HMGB1, which further trigger the 
activation and proliferation of CD8+ T lymphocytes. IL-1β inhibits tumor cell mesenchymal-epithelial transition (MET), enhances T cell antigen recognition, 
and promotes specific CD8+ T lymphocyte proliferation; IL-18 enhances the ability of anti-CD3 stimulated T cells to produce IFN-γ, by inhibiting the secretion 
of immunosuppressive cytokines from Treg cells, and triggers the activation and proliferation of CD8+ T lymphocytes, inducing GZMB production, activating 
caspases, and degrading anti-apoptotic proteins to eliminate cancer cells. HMGB1 interacts with Toll-like receptor 4 (TLR4), activating macrophages and 
promoting the secretion of tumor necrosis factor to enhance the innate immune response. The release of IL-6 facilitates the adaptive immune response by 
increasing cell migration, differentiation, and CD8+ T cell antibody production, inhibiting Treg cell differentiation, and preventing macrophage apoptosis. CD8+ 
T cells induce tumor cell pyroptosis by secreting GZMA and GZMB, which cleave GSDMB/D/E.
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and RSL3, promotes the release of  HMGB1 from tumor 
cells in an autophagy-dependent manner. This interaction 
with the receptor for advanced glycation end-products 
(RAGE) induces M1 polarization of  macrophages and 
the release of  TNF, which stimulates inflammation and 
immune responses.[191] However, tumor cells undergoing 
ferroptosis can release proteins coded by the K-RasG12D 
gene, which are taken up by macrophages through the 
RAGE pathway, promoting M2 polarization via a STAT3-
dependent fatty acid oxidation pathway.[192] Balancing the 
dosage of  ferroptosis inducers to maximize tumor cell 
killing while minimizing M2 polarization of  macrophages 
is a critical issue that needs to be addressed. 

Similar to other immune cells, the sensitivity of  neutrophils 
to ferroptosis is influenced by the expression of  GPX4. 
Pathologically activated neutrophils-myeloid-derived 
suppressor cells (PMN-MDSCs) exhibit immunosuppressive 
functions. Downregulation of  GPX4 promotes ferroptosis 
in PMN-MDSCs. Compared to PMN-MDSCs isolated 
from bone marrow and spleen, tumor-associated PMN-
MDSCs are more susceptible to ferroptosis, which can 
mediate immunosuppression following their ferroptotic 
death.[193] Neutrophils can also induce ferroptosis in 
tumor cells. Although multiple studies indicate that 
tumor-associated neutrophils (TANs) can facilitate tumor 
progression, in glioblastoma, TANs transfer granules 

containing myeloperoxidase to tumor cells. This transfer 
leads to the accumulation of  lipid peroxides dependent 
on iron ions within the tumor cells, thereby inducing 
ferroptosis (Figure 4).[194] 

Cuproptosis in anti-tumor immunity
Cuproptosis has been identified as a potent trigger for 
ICD. Recent studies have elucidated the role of  cuproptosis 
in eliciting immune responses within the TME. During 
cuproptosis, the damage to tumor cell membranes results 
in the release of  various DAMPs such as ATP, HMGB1, 
and calreticulin (CRT). These molecules enhance the 
maturation of  DCs and activation of  CD8+ effector T 
cells, ultimately triggering a sustained anti-tumor immune 
response.[195–198] 

Cuproptosis has been demonstrated to reshape tumor 
immunity within the microenvironment of  clear cell renal 
cell carcinoma (ccRCC) by activating the tumor antigen 
presentation process through the cGAS-STING signaling 
pathway.[199] The cGAS-STING pathway plays a pivotal 
role in innate immune signaling, engaging DNA to trigger 
various immune responses. This includes the upregulation 
of  IFN, pro-inflammatory cytokines, and chemokines 
through IRF3 and NF-κB, enhancing the cytolytic activity 
of  NK cells and fostering the expansion of  cytotoxic CD8+ 
T cells.[200] In DCs co-cultured with cuproptosis inducers 

Figure 4: Ferroptosis in Tumor Immunity. Ferroptosis enhances the release of HMGB1 and ATP from tumor cells, boosting proliferation, activation, and 
immunogenicity of dendritic cells (DCs). Activated CD8+ T cells secrete IFN-γ, which downregulates the expression of system Xc- subunits SLC3A2 and SLC7A11 
in cancer cells, increases lipid peroxidation, and heightens sensitivity to ferroptosis. Increased expression of CD36 on tumor-infiltrating CD8+ T cells promotes 
fatty acid uptake via a CD36-dependent pathway, leading to accumulation of intracellular lipid peroxides and promoting ferroptosis. Ferroptotic tumor cells 
induce M1 polarization of macrophages, releasing TNF to enhance inflammation and immune response. Tumor-associated neutrophils (TANs) transfer granules 
containing peroxidases to tumor cells, causing accumulation of iron-dependent lipid peroxides and inducing ferroptosis.
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(Elesclomol and CuCl2), the cGAS-STING activity 
increased in a dose-dependent manner, with increased 
intracellular cGMP activity, and elevated levels of  IL-2, 
TNF-α, IFN-γ, and CXCL10/11 in the culture supernatant. 
In tumor-bearing mice, combining cuproptosis inducers 
with anti-PD-1 therapy synergistically enhances the levels 
of  circulating CD45+CD8+ T cells.[199] 

Copper levels within tumors influence the expression 
of  PD-L1 in tumor cells and regulate immune evasion 
triggered by PD-L1.[201] Conversely, copper chelators, 
such as DC or TEPA, attenuate the phosphorylation of  
STAT3 and EGFR, which leads to ubiquitin-mediated 
degradation of  PD-L1. Furthermore, copper chelators can 
also enhance the infiltration of  CD8+ T cells and NK cells, 
thereby inhibiting tumor growth.[201] Lysyl oxidase-like 4 
(LOXL4) is an amine oxidase that, in a copper-dependent 
manner, catalyzes the conversion of  amines, generating 
hydrogen peroxide (H2O2) and ammonia as byproducts. 
LOXL4 exerts immunosuppressive effects on macrophages 
predominantly through disrupting IFN-mediated signaling 
pathways and transcription-dependent activation of  

PD-L1. The action of  hydrogen peroxide scavengers or 
copper chelation through LOXL4 effectively eliminates 
IFN-induced PD-L1 expression (Figure 5). [202] 

It is noteworthy that the combination of  the copper ion 
carrier Disulfiram (DSF) with copper (DSF/Cu) has 
been demonstrated to exert robust anti-tumor effects. 
Treatment with DSF/Cu promotes the activation and 
maturation of  DCs, and when used in conjunction with 
CD47 blocking agents, further enhances DC maturation, 
subsequently increasing the cytotoxic activity of  CD8+ 
T cells. Mechanistically, DSF/Cu facilitates the nuclear 
accumulation and aggregation of  Nuclear Protein 
Localization protein 4 (NPL4), thereby inhibiting the 
ubiquitin-proteasome system and inducing ER stress.[203] 
The inhibition of  NPL4 induced ICD-associated damage-
associated molecular patterns. 

RCD and pro-tumor immunity
Based on the aforementioned studies, necroptosis, 
pyroptosis, ferroptosis, and cuproptosis have been 
shown to enhance immune responses against tumors. 

Figure 5: Cuproptosis in Tumor Immunity. Tumor cells undergoing cuproptosis release various DAMPs (such as ATP, HMGB1, and CRT), which promote the 
maturation of dendritic cells (DCs) and the activation of CD8+ effector T cells. Cuproptosis enhances antitumor immunity by modulating the cGAS-STING 
signaling pathway. This pathway is activated in dendritic cells by tumor cells experiencing cuproptosis, subsequently promoting the release of inflammatory 
mediators. Tumor cells also release lysyl oxidase-like 4 (LOXL4), which, when encountered by macrophages ex vivo, induces an immunosuppressive phenotype 
and activates the expression of programmed death-ligand 1 (PD-L1), further inhibiting the function of CD8+ T cells. 
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However, research indicates that these forms of  RCD 
also influence the survival, proliferation, differentiation, 
and activation of  immunosuppressive cells, including 
Tregs, M2 macrophages, and myeloid-derived suppressor 
cells (MDSCs). Additionally, immune-promoting cells 
may also be negatively regulated by various forms of  
RCD. Furthermore, during ICD, the release of  DAMPs 
not only stimulates anti-tumor immune responses but 
may also promote the development of  inflammatory 
responses that favor tumor growth. For example, 
RIPK3-dependent necroptosis in pancreatic cancer cells 
enhances the expression of  sin3A-associated protein 
130 (SAP130) and the release of  chemokines such as 
CXCL1 and CXCL5,[204,205] leading to the recruitment 
of  immunosuppressive cells like MDSCs, fostering an 
immunosuppressive TME that facilitates cancer cell 
migration and invasion. Additionally, DAMPs released from 
cells undergoing pyroptosis recruit inflammatory cells and 
stimulate the release of  regulatory cytokines, such as IL-
18, IL-1β, and IL-10.[206–209] These cytokines contribute to 
angiogenesis, tumor cell proliferation, and metastasis, thereby 
promoting inflammation and tumor progression.[210,211] 
Additionally, iron-dependent cancer cells, in the absence 
of  GPX4, activate the STING-dependent DNA sensing 
pathway in macrophages by releasing 8-hydroxyguanosine 
(8-OHG),[212] promoting the release of  cytokines such as 
IL-6 and nitric oxide synthase 2 (NOS2), thereby fostering 
an inflammatory milieu conducive to pancreatic cancer.[212] 
As triggers of  ferroptosis, ROS can also suppress immune 
responses by inhibiting the formation of  TCR and MHC 
antigen complexes within T cells.[213,214] Therefore, these 
studies indicate that when employing RCD in targeted cancer 
therapies, we must also consider its potential effects on 
promoting tumor immunity. We recommend readers consult 
a recent comprehensive review for a detailed discussion of  
the pro-tumorigenic immune effects of  RCD.[29]

ANTICANCER DRUGS TARGETING 
RCD

Cancer immunotherapy based on RCD represents a 
promising and continually evolving approach to cancer 
treatment. Tumor cells and other cells within the TME 
undergo apoptosis, pyroptosis, necroptosis, ferroptosis, and 
cuproptosis, which may contribute to enhanced antitumor 
immunity. Inducing ICD has been shown to be effective in 
many drugs approved for anticancer therapy.[215] This review 
encompasses FDA-approved anticancer drugs that target a 
range of  newly identified mechanisms of  cell death, which 
demonstrate considerable potential to enhance anti-tumor 
immunity (Table 1). 

Apoptosis is a highly regulated form of  cell death. The 
BCL-2 gene family plays a central role in regulating PCD 

by controlling pro-apoptotic and anti-apoptotic intracellular 
signaling pathways.[216] The selective inhibition of  specific 
anti-apoptotic BCL 2 family proteins has demonstrated 
efficacy as a treatment for cancer.[216] Recent studies have 
also found that the BCL-2 inhibitor venetoclax enhances 
CART cell immunotherapy.[217] Navitoclax, a second-
generation BH3 mimetic and dual antagonist of  BCL-2 and 
BCL-XL, exhibits synergistic effects when combined with 
the BAX activator BTSA1.2 in apoptosis-resistant cancer 
cells, xenografts, and patient-derived tumors.[218] The BCL2 
inhibitor venetoclax, either alone or in combination with 
PD-1 blockade, enhances DC antigen presentation and 
activation, thereby inhibiting tumor immune surveillance 
via DC-specific immune checkpoints.[219] Additionally, the 
DNA methyltransferase (DNMT) inhibitor decitabine 
has been found to induce mitochondrial alterations 
(such as Bak activation, loss of  transmembrane potential, 
and reactive oxygen species production) in p53 mutant 
leukemia T cells, thereby activating the intrinsic apoptotic 
pathway.[220] Furthermore, the level of  GSH and activity of  
GPX4 in MDS cells are decreased by decitabine, leading to 
ferroptosis caused by heightened ROS levels.[221] Moreover, 
decitabine enhances and sustains the anti-tumor potential 
of  CAR T cells through epigenetic reprogramming, 
synergizing with immunotherapy.[222] 

The necroptosis found in infections and sterile 
inflammation also plays a huge role in cancer therapy. 
Fingolimod, the sphingosine analog FTY720, targets 
I2PP2A/ SET to inhibit lung tumor growth through 
RIPK1 kinase structural domain mediated PP2A activation 
and induce necroptosis.[223] Notably, fingolimod has been 
found to limit the number of  tumor-infiltrating lymphocytes 
(TILs) in solid tumors, thus potentially inhibiting antitumor 
immune responses.[224] The novel pan-caspase inhibitor 
IDN-7314 promotes 5- fu-induced TNF-α-dependent 
necroptosis driven by RIP1 kinase and NF-κB to inhibit 
tumor growth.[225] As a commonly used agent in colorectal 
cancer (CRC) treatment, it also has a good synergistic effect 
with PD-L1 monoclonal antibody.[226] Chloroquine (CQ) has 
been demonstrated to upregulate cellular endogenous RIPK3-
induced CRC necroptosis.[227] Studies have demonstrated 
that CQ blocks immune escape and improves the efficacy 
of  antitumor immunotherapy.[228] Artesunate, a widely used 
antimalarial drug, induces necroptosis and ferroptosis in 
tumor cells.[229] Artesunate effectively reduces TAZ and 
PD-L1 expression in non-small cell lung cancer (NSCLC) 
promotes antitumor immunotherapy in NSCLC antitumor 
immunity and overcomes epidermal growth factor receptor 
tyrosine kinase inhibitors (EGFR-TKI) resistance.[230] 

Pyroptosis-based interventions combined with tumor 
immunotherapy can significantly improve cancer control. 
Simvastatin activates the NLRP3 inflammasome and 



Guo et al.: Targeting regulated cell death in anticancer immunity

22 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JAN-FEB 2025 / VOL 13 | ISSUE 1

Table 1: Summary of clinically approved drugs that may induce ferroptosis, necroptosis, and pyroptosis in cancers and their effects on 
antitumor immunity

Drug Name General Usage Target Effect on Tumor RCD Effect on Antitumor 
Immunity

Navitoclax Anticancer drug BCL-2/BCL-XL Apoptosis induction[269] Enhanced antitumor 
immunity[219]

Venetoclax Anticancer drug BCL-2 Apoptosis induction[270] Enhanced antitumor 
immunity[271]

LCL161 Anticancer drug IAP Apoptosis induction[272, 273] Enhanced antitumor 
immunity[274]

Decitabine Anticancer drug GPX4 Apoptosis/Ferroptosis 
induction[221,275]

Enhanced antitumor 
immunity[222]

FTY720 Multiple sclerosis RIPK1 Necroptosis induction[223] Increased immune 
suppression[276,277]

Chloroquine (CQ) Antimalarial drug RIPK3 Necroptosis induction[227] Enhanced antitumor 
immunity[228]

5-fluorouracil (5-FU) Anticancer drug TNF-α/RIPK3 Necroptosis/pyroptosis 
induction[225,278]

Enhanced antitumor 
immunity[279]

Sorafenib Anticancer drug System Xc- Necroptosis/ferroptosis 
induction[280,281]

Increased immune 
suppression[282]

Artesunate Antimalarial drug ROS Necroptosis/ferroptosis 
induction[283,284]

Increased immune 
suppression[230]

Resibufogenin Heart failure drug RIPK3, MLKL Necroptosis/pyroptosis/
ferroptosis induction[285–287] Unknown

Simvastatin Hyperlipemia drug Casepase1 Pyroptosis induction[231] Enhanced antitumor 
immunity[232]

Doxorubicin Anticancer drug DFNA5 Pyroptosis induction[288] Enhanced antitumor 
immunity[289]

Iron Nutrient Ferritin/GSDME Pyroptosis induction[243] Enhanced antitumor 
immunity[290]

Metformin Anti-diabetes drug GSDMD Pyroptosis induction[240] Enhanced antitumor 
immunity[241]

Drug Name General Usage Target Effect on Tumor RCD Effect on Antitumor 
Immunity

Docosahexaenoic acid 
(DHA) Nutrient GSDMD Pyroptosis induction[291] Enhanced antitumor 

immunity[258]

Paclitaxel (PTX) Anticancer drug GSDMD Pyroptosis induction[278] Enhanced antitumor 
immunity[292]

BRAF and MEK Inhibitor Anticancer drug GSDMD Pyroptosis induction[173] Enhanced antitumor 
immunity[173]

Cisplatin Anticancer drug GSH/GSDME Pyroptosis induction[293] Enhanced antitumor 
immunity[294]

Doxorubicin Anticancer drug GSH/GSDME Pyroptosis induction[295] Unknown

Anthocyanin Nutrient NLRP3 Pyroptosis induction[296] Enhanced antitumor 
immunity[297]

Lapatinib Anticancer drug Ferritin Ferroptosis induction[244] Unknown

Neratinib Anticancer drug Ferritin Ferroptosis induction[298] Enhanced antitumor 
immunity[299]

Etoposide Anticancer drug GPX4 Ferroptosis induction[300] Unknown

Dihydroartemisinin Antimalarial drug GPX4 Ferroptosis induction[301] Enhanced antitumor 
immunity[302]

Apatinib Anticancer drug GPX4/System Xc-/Nrf2 Ferroptosis induction[247] Enhanced antitumor 
immunity[303]

Trigonelline Nutrient additive Nrf2 Ferroptosis induction[283] Enhanced antitumor 
immunity[304]

Sulfasalazine Anti-inflammatory 
drug System Xc- Ferroptosis induction[281] Unknown

Glutamate Nutrient System Xc- Ferroptosis induction[94] Increased immune 
suppression[305]

Sulfasalazine Anti-inflammatory 
drug System Xc- Ferroptosis induction[306] Synergistic 

immunotherapy[254]
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caspase-1, leading to GSDMD-dependent pyroptosis and 
inhibiting the proliferation and migration of  NSCLC cells 
through typical pathways.[231] An individual intraosseous 
dose of  simvastatin inhibited the development of  
breast cancer by activating CD8+ T cells and reducing 
the expression of  PD-1, TIM3, and CTLA4.[232] The 
chemotherapeutic agent’s doxorubicin, paclitaxel, 
and cisplatin-induced pyroptosis in particular cancer 
cells expressing GSDME.[86,233] It is noteworthy that 
cytoprotective mitochondrial autophagy, dependent on 
the ROS/HO-1/GPX4 axis, eased cisplatin-induced 
nephrotoxicity caused by ferroptosis in renal tubular 
epithelial cells.[234] Furthermore, doxorubicin has been 
demonstrated to trigger ICD in hepatocellular carcinoma 
(HCC).[235] Paclitaxel promotes immune cell death in 
metastatic triple-negative breast cancer and modulates the 
tumor microenvironment.[236,237] Cisplatin increases the 
expression of  PD-L1, enhancing immune checkpoint 
blockade therapy in non-small cell lung cancer.[238] 
Additionally, metformin activates the AMPK/SIRT1/
NF-κB pathway, inducing mitochondrial dysfunction and 
triggering caspase3 activation and GSDME-N production, 
leading to cellular pyroptosis that inhibits cancer cell 
proliferation.[239] Additionally, metformin targets the miR-
497/PELP1 axis to induce GSDMD-dependent cell death 
in oesophageal squamous cell carcinoma.[240] Moreover, 
metformin enhances antitumor immunity by decreasing 
the stability and membrane localization of  PD-L1.[241] 
Iron can participate in the Fenton reaction, generating ROS, 
which induces lipid peroxidation and leads to ferroptosis.[242] 
Additionally, iron initiates GSDME-dependent pyroptosis 
via the ROS signaling pathway.[243] Breast cancer cells 
experienced ferroptosis induced by tyrosine kinase 
inhibitors lapatinib and neratinib through the inhibition 
of  ferritin transport.[244,245] Neratinib, in combination with 
histone deacetylase inhibitors (HDAC) , has been found to 
enhance the effectiveness of  anti-PD-1 therapy in vivo.[246] 

Additionally, apatinib has been shown to induce ferroptosis 
through lipid peroxidation and to support immune recovery 
post-radical mastectomy.[247,248]

Ferroptosis in tumors can enhance cancer immunity and 
immunotherapy. Sorafenib is a widely used treatment for 
HCC and induces ferroptosis by reducing GSH synthesis 
through inhibiting system Xc-.[249,250] The use of  the iron 
chelator, deferasirox, results in the transition from sorafenib-
induced cell death to apoptosis and necroptosis.[251] Sorafenib 
is known to promote the secretion of  IL-12 in TAM and 
the resultant apoptosis of  cancer cells using sub-therapeutic 
doses, which combine with mCAR T cell production 
for antitumor effects.[252] Furthermore, sorafenib and 
sulphasalazine act synergistically to induce ferroptosis in 
HCC cells.[253] Sulphasalazine enhances antitumor immune 
responses when synergized with radiotherapy.[254] Altretamine, 
an ovarian cancer treatment commonly used, has been 
discovered to have a comparable effect to sulphasalazine 
by targeting GPX4 and inducing ferroptosis.[255] Etoposide, 
a phenolic antitumor medication, effectively exhausts 
GSH from myeloid leukemia cells resulting in ferroptosis. 
Further investigation is needed to understand the 
association between etoposide and tumor immunity.[256] 
Dihydroartemisinin (DHA), a drug used to treat malaria, 
reduces cancer cell viability and proliferation.[5] DHA in 
combination with cisplatin induces ferroptosis and inhibits 
pancreatic ductal adenocarcinoma by promoting GPX4 
degradation, ROS production, and NCOA4-mediated 
ferritin degradation.[257] DHA has been shown to decrease 
PD-L1 protein expression, thereby inhibiting immune 
escape from colorectal cancer cells.[258] Statins have been 
shown to cause depletion of  isopentenyl pyrophosphate, 
leading to GPX4 downregulation, similar to the mechanism 
of  GPX4 inhibitors, which leads to ferroptosis.[259,260] In 
addition, statins play a role in the regulation of  antitumor 
immune responses in tumors.[261] 

Table 2: Summary of the nano compounds that target cuproptosis mechanisms for synergistic immunotherapy

Agent Name Content Effect on Tumor 
RCD

Cancer Type Effects on Antitumor 
Immunity References

NP@ESCu Co-encapsulate elesclomol  (ES) 
and Cu to form nanoparticles

Cuproptosis 
induction

Subcutaneous 
bladder cancer

Enhanced antitumor 
immune [307]

LCP NPs
pH-responsive lipid-coated calcium 
phosphate nanoparticles co-loaded 
with Cu and DSF

Cuproptosis 
induction Colon carcinoma Enhanced antitumor 

immune [308]

CuCHNCs

Peroxidase-like biomineralized 
copper (II) carbonate hydroxide 
nanocrystals inside single albumin 
nanocages 

Cuproptosis 
induction

Triple-negative 
breast cancers

Enhanced antitumor 
immune [309]

CuX-P DSF/Cu2+ Cuproptosis 
induction

Triple-negative 
breast cancers

Enhanced antitumor 
immune [265]

CQG NPs
Self-destructive and multi-
enzymatically active copper-
quinoneGOx nanoparticles

Pyroptosis and 
cuproptosis 
induction

Triple-negative 
breast cancers

Enhanced antitumor 
immune [197]
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Initially, it was believed that elesclomol triggered a 
rise in ROS within cancer cells, leading to apoptosis. 
Presently, it has been discovered that elesclomol acts 
as a copper ionophore to induce cuproptosis and 
synergizes with immune checkpoints to inhibit cancer. 
In recent investigations, tiny molecule compounds that 
target cuproptosis have shown significant potential for 
treating cancer. In Table 2, we present a summary of  the 
nanocompounds that target cuproptosis mechanisms for 
synergistic immunotherapy and have been tested in vivo 
and/or in vitro, demonstrating promising results. 

CONCLUSION AND PERSPECTIVES

Substantial research has focused on targeting various forms 
of  RCD for cancer therapy, with tumor immunotherapy 
emerging as a field with significant potential.[1,5] However, 
ICIs remain ineffective for many cancer patients. Our 
findings indicate that RCD not only initiates an immune 
response but also enhances lymphocyte infiltration and 
improves tumor responses to immunotherapy. Thus, 
inducing RCD in tumor cells represents a promising 
strategy for cancer treatment.[8] The review synthesizes 
evidence on five RCD pathways and their links to 
antitumor immunity, discussing FDA-approved drugs 
that target RCD and their synergistic effects with tumor 
immune responses. Currently, there are no FDA-approved 
drugs specifically for cuproptosis. Nevertheless, several 
innovative small molecules and nanomaterials have 
demonstrated potential in inducing cuproptosis and 
enhancing antitumor immunity.[262–266] 

In addition to the discovery of  cuproptosis in 2022, a new type 
of  cell death called disulfidptosis has been identified, indicating 
that our understanding of  RCD is still evolving.[116,267] The 
development of  drugs that target this novel form of  cell 
death represents a valuable area of  research. Designing 
drugs or small molecules that effectively target RCD to 
treat cancer while passing safety tests poses significant 
challenges. Our review suggests that screening FDA-
approved drugs with these effects from established libraries 
and applying them to new disease contexts could be a 
promising direction. Furthermore, we have proposed that 
drugs such as fingolimod, which induces both necroptosis 
and ferroptosis by targeting RIPK1 and glutamate,[223,268] 
may increase immunosuppression, and suggest that studies 
of  RCD-inducing drugs need to precisely identify their 
different effects on antitumor immunity. 

In conclusion, our review suggests a new direction for 
tumor treatment. We advocate for the investigation of  
targeted cell death drugs, the exploration of  their immune 
interactions with tumors, and the development of  new 
mechanisms for cancer treatment using FDA-approved 

drugs, extending from classical RCD, such as apoptosis, to 
novel forms of  cell death. Future studies utilizing animal 
models are encouraged to uncover additional outcomes. 
Furthermore, additional clinical trials are planned to 
investigate new cell death modulators in cancer patients. 
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