Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity

Ziyu Guo $^{1,2,3,4,5\#}$, Yihuang Liu $^{1,2,3,4,5\#}$, Danyao Chen 6 , Yuming Sun 7 , Daishi Li 1,2,3,4,5 , Yu Meng 1,2,3,4,5 , Qian Zhou 1,2,3,4,5 , Furong Zeng 7 , Guangtong Deng 1,2,3,4,5 , Xiang Chen 1,2,3,4,5

¹Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; ²National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China;

³Furong Laboratory, Changsha 410008, Hunan Province, China;

⁴Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China;

⁵National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China;

⁶Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China;

⁷Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; ⁸Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China

ABSTRACT

In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.

Key words: apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, tumor microenvironment, anticancer immunity

*These authors contributed equally to this work.

Address for Correspondence:

Guangtong Deng and Xiang Chen, Department of Dermatology, Xiangya Hospital, Central South University; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology; Furong Laboratory; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China. Email: dengguangtong@outlook.com, https://orcid.org/0000-0002-4424-9727 (G. Deng): chenxiangck@126.com https://orcid.org/0000-0001-8187-636X (X. Chen).

Access this article online

Website:

www.intern-med.com

DOI:

10.1515/jtim-2025-0004

Open Access. © 2025 The author(s), published by De Gruyter on behalf of Scholar Media Publishing.
This work is licensed under the Creative Commons Attribution 4.0 International License.

INTRODUCTION

Regulated cell death (RCD), also known as Programmed Cell Death (PCD), involves cell death regulated by specific signaling pathways. [1–3] Various forms of RCD have been identified, including apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis. [2,4,5] These processes play

a crucial role in organism growth and development, as well as in maintaining internal homeostasis by eliminating infected, damaged, or self-destructing cells. [6] Dysregulated of RCD can contribute to the onset and progression of cancers. [1,7] Resistance to cell death is one of the hallmarks of tumors and a key mechanism of tumor resistance to therapy. [1] Targeting RCD has been shown

to not only directly destroy tumor cells but also enhance the organism's anti-tumor immunity, presenting promising clinical prospects for cancer therapy.^[8–11]

The immune system is integral to preventing tumor development, progression, and metastasis, as well as modulating responses to treatment. [12-14] It has been reported that tumor cells undergoing RCD can release tumorassociated antigens (TAAs), damage-associated molecular patterns (DAMPs), and pro-inflammatory cytokines, which elicit secondary immunity and affect the tumor immune microenvironment.[15-17] These effects may enhance immunostimulation or disrupt immunosuppression, leading to T-cell activation, dendritic cell (DC) maturation, proliferation, and tumor infiltration, potentially acting synergistically with existing immunotherapies. [18,19] RCD has multiple effects on the immune response, [5,20] RCD exerts a suppressive effect on immune response. For instance, during apoptosis, the activation of caspases leads to the downregulation of proteins such as cyclic GMP-AMP synthase (cGAS), MAVS, and interferon regulatory factor 3 (IRF3), which are essential for the activation of innate immunity.[21] These studies suggest that a summary of the relationship between RCD and tumor immunity is necessary to provide precisely targeted guidance for tumor immunotherapy.

Tumor cells evade immune surveillance by reducing their immunogenicity and establishing immunosuppressive networks. Immunotherapies, including immune checkpoint blockade (ICB), chimeric antigen receptor T (CART) cells, cytokine therapy, and dendritic cell vaccines, are designed to stimulate anti-tumor immune responses. [22-24] However, some patients exhibit a limited response to immunotherapy. Several studies have demonstrated that immunotherapies can have synergistic effects when combined with radiotherapy and chemotherapy. [25,26] Consequently, the combination of immunotherapy with other treatment modalities is gaining significant attention. [27,28] Moreover, targeting RCD can enhance the efficacy of immune checkpoint inhibitors like anti-PD-1 antibodies, thereby improving anticancer outcomes. [23] Given the immunomodulatory effects of RCD, therapies that focus on RCD present a promising strategy to synergistically enhance immunotherapy and inhibit tumor development.^[29-31] Therefore, it is highly desirable to review the potential of targeting RCD to synergize with anticancer immunity.

Currently, our understanding of the interactions among various RCD pathways remains limited. Additionally, the potential applications of these types of RCD in anticancer immunity have yet to be thoroughly explored. This gap presents a critical area for future research that could lead

to significant breakthroughs in cancer treatment strategies. In this review, we first delineate the molecular mechanisms of five different types of RCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, and the recently discovered cuproptosis, along with their crosstalk. Next, we discuss their role in the anti-tumor immune response. We also summarized numerous clinically approved drugs that can suppress tumors by inducing RCD and affecting antitumor immunity. Finally, we discuss existing challenges and future prospects for targeting RCD in anticancer immunity.

CORE MOLECULAR MECHANISMS OF DIFFERENT CELL DEATH

Apoptosis

Apoptosis, the earliest identified form of RCD,^[32] is characterized by distinct morphologic features, including cell shrinkage, chromatin condensation, and tight packaging of organelles and cytoplasm.^[33] This process is mediated by caspases, a family of cysteine-aspartic proteases that cleave specific target proteins, leading to the formation of apoptosome.^[34] Eventually, apoptosomes are rapidly phagocytosed by adjacent cells.^[34]

Mechanistically, apoptosis can be initiated via two main pathways: the intrinsic and extrinsic pathways. [35] The intrinsic pathway, also known as the mitochondrial pathway, is triggered by intracellular stressors such as DNA damage, growth factor or nutrient deprivation, and endoplasmic reticulum (ER) stress.[33,36] Key processes of apoptosis are subsequently activated, encompassing the induction of mitochondrial outer membrane permeabilization (MOMP) and the release of soluble proteins, such as Cytochrome c, through the pore formed in the mitochondrial outer membrane. [37,38] MOMP is tightly regulated by the BCL-2 family proteins, which include effector proteins (BAX and BAK), pro-apoptotic BH3-only proteins, and antiapoptotic proteins, such as BCL-2, BCL-X, BCL-W, BCL-2-A1 and MCL1.[39-41] Cytochrome c, released from the intermembrane space, binds and activates the adaptor molecule apoptotic protease-activating factor 1 (APAF1).[42] This activation leads to the oligomerization of APAF1 and the recruitment of pro-caspase 9, forming a complex known as the apoptosome. [43] The activation of caspase 9 then catalyzes the cleavage and activation of executioner caspases 3 and 7, ultimately resulting in apoptosis.[44-46]

The extrinsic pathway also referred to as the death receptor pathway, provides an alternative route for the activation of caspases 3 and 7 through the mediation of caspase 8.^[47] Ligands such as Fasl, tumor necroptosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) bind to

their corresponding receptors FasL, TNFR1/TNFR2, and death receptor 4 (DR4)/DR5 on the plasma membrane respectively. [48–51] Upon ligand binding, adaptor molecules FAS-associated *via* the death domain (FADD) and TNFRSF1A-associated via the death domain (TRADD) are recruited to the receptor complex. [52] These adaptors contain death domains that facilitate the recruitment of pro-caspase 8 to the death-inducing signaling complex (DISC), where caspase 8 is activated. [52] The activation of caspase 8 subsequently leads to the cleavage and activation of caspase 3/7, ultimately triggering apoptosis (Figure 1A). [53]

Necroptosis

Necroptosis has been identified as an alternative form of cell death to apoptosis, mediated by the engagement of death domain receptors by their respective ligands. [54,55] The morphologic characteristics of necroptosis include cell swelling, ruptured plasma membrane, and loss of cellular and organelle integrity. The passive leakage of intracellular contents resulting from membrane rupture ultimately leads to inflammation and immune responses. [56]

The necroptotic pathway can be initiated by activating RIPK3 through various death domain receptors that recruit their corresponding adaptor proteins. RIPK3 contains a C-terminal RIP homotypic interaction motif (RHIM), which is crucial for its activation and for mediating the initiation of necroptosis. [57] Upon binding of TNF to TNFR1, complex I is formed, which includes TRADD, FADD, RIPK1, TRAF, and cIAP1 and cIAP2. In cases where caspase 8 activity is inhibited, RIPK1 binds to RIPK3 through the shared RHIM, thereby facilitating the recruitment of additional RIPK3 molecules to form an initial RIPK1-RIPK3 heterodimeric complex. [55,58-61] This concentration of RIPK3 not only promotes homodimeric interactions among RIPK3 molecules but also activates RIPK3 through autophosphorylation. Furthermore, TRIFdependent Toll-like receptors (TLR3 and Toll-like receptor 4 [TLR4]) can activate RIPK3 through RHIM-dependent interactions. [62,63] Additionally, the interferon (IFN)independent expression of the DNA-dependent activator of IFN regulatory factors, DAI (also known as ZBP1 or DLM-1), contains an RHIM that can activate RIPK3.^[64] Subsequently, activated RIPK3 phosphorylates mixed lineage kinase domain-like protein (MLKL). Following phosphorylation, oligomerized MLKL (pMLKL) forms the "necrosome" complex, which then translocates to the plasma membrane. [65,66] This translocation increases plasma membrane permeability, leading to membrane rupture and the release of DAMPs.^[67] Consequently, necroprosis occurs, triggering inflammatory and immune responses (Figure 1B).

Pyroptosis

Proinflammatory PCD, first identified in macrophages following pathogen infection, was termed pyroptosis in 2001 by Brad T. Cookson and his colleagues. [68] Pyroptosis is characterized by cell swelling, lysis, and the release of many proinflammatory factors. [69,70] Additionally, pyroptosis involves DNA damage and chromatin condensation, features that are reminiscent of apoptosis. [71] Pyroptosis is executed by inflammasome-activated gasdermin (GSDM), a member of a large family of proteins known for their novel membrane pore-forming activity. [72,73] Mechanistically, GSDMs are cleaved by caspases, which liberate the poreforming domain (PFD) from the repressor domain, resulting in the formation of pores in the cell membrane. [74,75]

Current research has confirmed that the activation of pyroptosis can occur through multiple pathways. [5,69] Pyroptosis resulting from cleavage of GSDMD by caspase 1, 4, 5, and-11, is one of the main approaches. [76,77] Pathogens-associated molecular patterns (PAMPS) and DAMPs initiate the activation of NLRP3 inflammasome, which then recruits and activates caspase 1.[78] The cleavage of GSDMD by caspase 1 leads to the formation of pores in the plasma membrane and the release of IL-1 β and IL-18, resulting in pyroptosis through the canonical pathway.^[79] Moreover, caspase 11 in mice and caspase 4/5 in humans can directly bind lipopolysaccharide (LPS) in response to LPS exposure, leading to GSDMD cleavage and subsequent pyroptosis via a non-canonical pathway. [80–82] Furthermore, ESCRT-dependent membrane repair mechanisms can inhibit pyroptosis downstream of GSDMD activation. [83]

Multiple studies are discovering that other GSDMs also form cytotoxic pores and implicate GSDMs in various pathways of pyroptosis. [84] Notably, in instances where the canonical NLRP3 pathway is inhibited, pyroptosis can still be induced in macrophages through the cleavage of GSDME by caspase 3.[85,86] Specifically, the cleavage of GSDMC by caspase 8 following TNFa treatment can also induce pyroptosis. [87] Additionally, pyroptosis may be triggered by the cleavage of GSDMB by GZMA from cytotoxic lymphocytes. [88,89] Additionally, the streptococcal pyrogenic exotoxin B (SpeB), a protease virulence factor secreted by the major human pathogen group A Streptococcus (GAS), cleaves GSDMA and triggers pyroptosis.[90,91] These findings suggest that the gasdermin family likely serves as pivotal effectors of pyroptosis (Figure 1C).[92,93]

Ferroptosis

Ferroptosis is an iron-dependent form of cell death characterized by lipid peroxidation in the plasma membrane.^[7,94–96] Morphologically, it is marked by reduced mitochondrial volume, fractured mitochondrial outer

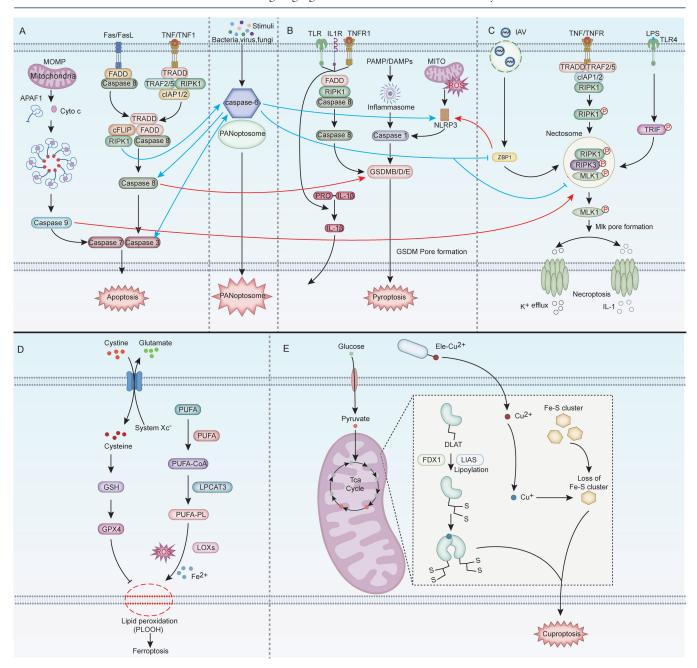


Figure 1: Molecular mechanisms and crosstalk among five cell death modalities: Apoptosis, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. (A) Apoptosis is a programmed form of cell death executed by activating intrinsic (mitochondrial pathway) and extrinsic (death receptor pathway) signaling pathways. These pathways ultimately activate caspases, enzymes that degrade key proteins within the cell, leading to orderly cellular disassembly and death. (B) Necroptosis is a controlled form of necrosis, considered an alternative to apoptosis, particularly when apoptotic pathways are inhibited. It is facilitated by activating specific signaling proteins, such as RIPK1, RIPK3, and MLKL, promoting cell membrane rupture and subsequent leakage of cellular contents. (C) Pyroptosis is a form of cell death dependent on inflammasomes and caspases (such as Caspase-1, Caspase-4, Caspase-5, Caspase-11). This form of death involves gaseous swelling, ultimately leading to cell membrane rupture and the release of inflammatory mediators like IL-1β and IL-18.(D) Ferroptosis is a form of cell death driven by iron-dependent oxidative stress. Its hallmark is the accumulation of lipid peroxidation within the cell, primarily caused by uncontrolled iron-catalyzed reactions, leading to the loss of cell membrane integrity. (E) Cuproptosis is a form of cell death induced by copper. Copper ions directly interact with multiple mitochondrial fatty acid dehydrogenases, leading to protein aggregation and inactivation, thereby impairing mitochondrial function, and resulting in cell death. Caspase-6 plays a critical crosstalk role in PANoptosis, mutually activating with caspase-3/7 and cleaving downstream caspase-8 to promote apoptosis. It also facilitates apoptosis by cleaving RIPK1 and promotes necroptosis through interaction with RIPK3. Additionally, caspase-6 triggers the activation of the NLRP3 inflammasome mediated by ZBP1, regulating pyroptosis. Caspase-8 directly cleaves GSDMD to induce pyroptotic cell death, while caspase-9 promotes extrinsic apoptosis. GSDMD acts as an executor of multiple cell death pathways; ROS are implicated in triggering both ferroptosis and pyroptosis; Iron overload, a critical driver of ferroptosis, facilitates the opening of the mitochondrial permeability transition pore (MPTP), intensifying RIP1 phosphorylation and leading to necroptosis.

membranes, diminished mitochondrial cristae, and a normalsize nucleus without chromatin condensation.^[97] Under normal physiological conditions, a delicate balance among iron, ROS, and lipids is crucial for cellular function. However, disruption of this balance leads to lipid peroxidation that surpasses the capacity of internal antioxidants, ultimately resulting in ferroptosis.^[98–100]

A key aspect of ferroptosis is that free polyunsaturated fatty acids must be esterified to membrane phospholipids to induce lethality upon peroxidation. [101] Acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) are the main enzymes involved in the biosynthesis and esterification of polyunsaturated fatty acid phospholipids (PUFA-PLs), respectively. [7] Iron serves as a cofactor for the lipoxygenase (LOX) family or NADPH-cytochrome P450 reductase (POR), facilitating enzymatic lipid peroxidation.[102-104] Furthermore, Fe2+, as an unstable form of iron, can participate in Fenton and Fenton-like reactions, catalyzing the formation of free radicals that contribute to non-enzymatic lipid peroxidation.[105,106] Enhanced iron uptake through the transferrin receptor (TFRC) promotes ferroptosis. [107] Additionally, the degradation of the intracellular iron exporter SLC40A1/ ferroportin-1 enhances susceptibility to ferroptosis in vitro.[108,109] Nuclear receptor coactivator 4 (NCOA4)induced ferritin autophagy, also known as ferritinophagy, selectively degrades ferritin, elevating intracellular iron levels and accelerating lipid peroxidation, thereby promoting ferroptosis.[110]

Glutathione (GSH), a component of the cellular antioxidative system, is essential in eliminating excessive ROS.[111] Inhibition of the cystine-glutamate antiporter system Xc- leads to GSH depletion and inactivation of the glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4). GPX4, which depends on GSH as a reducing cofactor, functions to prevent ferroptosis.[112,113] The GSH-GPX4 axis is currently regarded as the most important mechanism for resisting ferroptosis. Additionally, three alternative mechanisms exist that resist ferroptosis independently of GPX4. Ferroptosis suppressor protein 1 (FSP1) mitigates ferroptosis mediated by ubiquinone.[114] Furthermore, the enzyme dihydroorotate dehydrogenase (DHODH) reduces CoQ to CoQH2 in the mitochondrial inner membrane, thereby alleviating ferroptosis, particularly in cases of mitochondrial GPX4 deficiency. [108] Recent evidence also indicates that the enzyme MBOAT1/2 inhibits ferroptosis by selectively increasing cellular levels of PE-MUFA while reducing cellular levels of PE-PUFA. This anti-ferroptosis pathway operates independently of GPX4 or FSP (Figure 1D).[115]

Cuproptosis

Cuproptosis, a term introduced by Peter Tsvetkov and colleagues in 2022, describeds a newly discovered form of RCD that relies on the accumulation of intracellular copper. ^[116] Unlike other forms of RCD, which are typically characterized by distinctive morphological changes, the morphological features of cells undergoing cuproptosis remain undefined, necessitating further research. ^[117]

Copper is a trace element essential to various signaling pathways and tumor-related pathophysiology within the human body. [118] The cytotoxicity of the copper ionophores is attributed to the accumulation of intracellular copper rather than the carrier itself.[116] For a long time, the mechanism by which elesclomol, a copper ionophore, transports excess copper ions into cells to induce cell death has been a subject of controversy, with many researchers categorizing this process as apoptosis.[119,120] However, recent studies have established cuproptosis as a distinct, non-apoptotic form of cell death that is closely associated with mitochondrial respiration and the lipoic acid (LA) pathway. Mechanistically, elesclomol facilitates the transport of Cu (II) into mitochondria, directly targeting the mitochondrial enzyme ferredoxin 1 (FDX1), which reduces Cu(I) to the more toxic Cu(I). Subsequently, Cu(I)binds immediately to lipoylated DLAT, a component of the tricarboxylic acid (TCA) cycle, promoting the oligomerization of lipovlated DLAT and destabilizing ironsulfur (Fe-S) cluster proteins. This destabilization leads to proteotoxic stress and ultimately results in cell death.^[116]

As a novel type of RCD, our understanding of cuproptosis is still limited. Nonetheless, existing research suggests that targeting cuproptosis could represent a potentially effective treatment strategy for eliminating tumors. Further investigations are crucial to fully elucidate the mechanisms and cellular morphology associated with cuproptosis, as well as to identify specific inducers and inhibitors of this cell death pathway (Figure 1E).

Crosstalk among components of RCD

RCD pathways do not appear to be isolated signaling cascades. Evidence indicates that pathways regulating different RCD patterns exhibit crosstalk at various levels.^[5] For example, the pathways of apoptosis, necroptosis, and pyroptosis (collectively referred to as PANoptosis) can transform into one another under certain conditions.^[121] Research has revealed that caspase-6 plays a crosstalk role in the mechanistic pathway among PANoptosis.^[121] In apoptosis, caspase-3 activates caspase-6, which subsequently cleaves downstream caspase-8, underscoring its critical role in this process.^[122] Additionally, caspase-6 can be activated by caspase-3/7 and can reciprocally activate these caspases during apoptosis, thereby establishing itself as both an

initiator and executor within the apoptotic pathway.[123,124] Caspase-6 also plays a dual role in regulating necroptosis. It has been reported to promote apoptosis by cleaving RIPK1, which in turn inhibits necroptosis by suppressing the production of inflammatory cytokines. [125] Conversely, caspase-6 can promote necroptosis through its interaction with RIPK3, facilitating the binding of RIPK3 and ZBP1.[126] Furthermore, caspase 6 promotes ZBP1-mediated activation of NLRP3 inflammasome, which mediates pyroptosis. [121,126-131] Notably, the caspase family plays a significant role in the regulation of various cell death.[132] In particular conditions, caspase-8, traditionally viewed as an apoptosis initiator, can directly cleave GSDMD to induce pyroptosis.[133,134] Similarly, caspase-9, which is involved in the initiation of extrinsic apoptosis, is essential for necroptosis and regulates the formation of the necrosome.[135]

Studies have demonstrated that GSDMD serves as an executioner for multiple cell death pathways.^[136,137] In Lrrk2G2019S macrophages, mitochondrial ROS guides GSDMD to mitochondria following inflammasome activation, where mitochondrial GSDMD (mito-GSDMD) converts cell death from pyroptosis to necroptosis.[138] ROS are implicated in triggering both ferroptosis and pyroptosis.[139] Elevated levels of ROS also promote the activation of the NLRP3 inflammasome, leading to pyroptosis.[140,141] Furthermore, inducers of ferroptosis have been found to cause ER stress and enhance the expression of the pro-apoptotic molecule PUMA without triggering apoptosis. [142] Iron overload, a key driver of ferroptosis, facilitates the opening of the mitochondrial permeability transition pore (MPTP), which exacerbates RIP1 phosphorylation and leads to necroptosis. [143] Additionally, ferroptosis inducers, such as sorafenib and erastin have been shown to promote cuproptosis by inhibiting system Xc-, thereby downregulating intracellular GSH synthesis, as GSH acts as a copper chelator.[144] Recent findings also indicate that copper-driven cascade can trigger the maturation of dendritic cells and initiate intense T cellmediated pyroptosis, [145] highlighting the role of copper in pyroptosis (Figure 1). However, whether copper-dependent cuproptosis is associated with ferroptosis, pyroptosis and other RCD still needs further investigations.

THE ROLE OF RCD IN CANCER IMMUNE RESPONSE

Apoptosis in anti-tumor immunity

Cell death modalities are classified based on their immunogenic potential into non-immunogenic types, such as apoptosis, and immunogenic types, such as necroptosis, pyroptosis, ferroptosis, and cuproptosis. Unlike other forms of cell death, apoptotic cells typically cleared rapidly by phagocytes are traditionally considered incapable of activating innate immunity and instead possess anti-inflammatory properties, a phenomenon referred to as "innate immune tolerance", crucial for normal physiological processes within the organism. [146] Previous studies have shown that during apoptosis, mitochondrial DNA (mtDNA) and cytochrome c are released into the cytoplasm, where the mtDNA robustly activates the cGAS-stimulator of interferon genes (STING) pathway, leading to IFN-I production and inflammatory responses. In 2014, publications from the teams of Richard Flavell and Benjamin Kile concurrently highlighted the pivotal role of apoptotic caspases in maintaining this innate immune silence. [147,148] Subsequent research by Jiang Z and colleagues demonstrated that activated CASP3/6/7 can effectively block mtDNA-induced cGAS-STING activation by cleaving cGAS and IRF3, thereby preventing IFN-I production and inflammatory responses.^[21] Additionally, cleavage of MAVS and IRF3 thoroughly blocks RIG-I-MAVS mediated innate immune activation. These findings elucidate how apoptosis ensures the critical aspect of "innate immune silence". Caspases have also been shown to indirectly inactivate DAMPs, such as HMGB1.[149] Blocking caspases in conjunction with MOMP can activate NF-κB and induce a mitochondrial DNA-mediated TFN-I response, thus triggering a robust ICD.[147,150] Consistently, caspase inhibition has been shown to induce anti-tumor activity and lead to tumor regression.

However, under specific conditions, apoptotic cells can exhibit immunogenic properties. For example, certain anti-tumor therapies, including chemotherapeutic drugs, gamma-irradiation, or photodynamic therapy, can induce a specific form of apoptosis with immunostimulatory or adjuvant-like properties, termed immunogenic apoptosis (IA).[151] The stimulatory effects of chemotherapeutic drugs and ionizing radiation may mobilize pattern recognition receptors (PRRs) such as cGAS. [17,151] In such cases, increased mitochondrial membrane permeability following therapy can activate the cGAS-stimulator of the IFN genes pathway, leading to the release of mitochondrial DNA.^[19] Additionally, during cancer therapy, the phagocytic capacity of phagocytes may be overwhelmed by a large number of dying cells. This can lead to secondary necrosis of apoptotic cells, subsequent release of DAMPs into the microenvironment, and thereby provoking inflammation and immune responses.[152]

Necroptosis in anti-tumor immunity

Necroptosis plays a crucial role in stimulating tumor immunogenicity and enhancing anti-tumor immunity.^[153] This form of cell death not only triggers the activation and assembly of death-inducing proteins but also stimulates the transcription of danger signals, which are

subsequently released into the tissue microenvironment upon cell dissolution. The DAMPs released by tumor cells undergoing necroptosis activate DCs, leading to the maturation and activation of CD8+ T cells, thereby enhancing their tumor-killing function.^[154] The immunogenicity of necroptosis largely depends on the synergistic action of RIPK1 activation and NF-κB signal transduction. [155] The activation of RIPK1 and RIPK3 not only contributes to the transcriptional induction of DAMPs, which is then dissolved and released through MLKL-mediated cell rupture, but also triggers NF-κB and IFN signaling pathways.[155-157] As the release of intracellular DAMPs promotes inflammation, necroptosis is also considered an inflammatory form of cell death. For instance, in cervical cancer cells, tumor cells undergoing necroptosis release IL-1α, a necessary precursor for DCs' production of IL-12, which is essential for antitumor responses. [158] Similarly, the release of IL-1 α and the activation of DCs are strictly dependent on RIPK3 expression in tumor cells. The NF-κB signaling pathway induces the production of cytokines such as TNF, immuneinducing factors like CC chemokine ligand 2 (CCL2), CXC chemokine ligands 1/8/9 (CXCL1/8/9), and members of the IL-6 and IL-1 families, and IFN-1.[159] Additionally, research by Yatim et al. underscores the necessity of NF-κB in initiating immune responses and its interplay with the TME during necroptosis. [155] In necroptosis, the inflammatory mediators released from dying cells are insufficient to activate CD8⁺ T cells alone, and decoupling NF-κB signaling from necroptosis reduces the efficiency of initiating immune responses. MLKL expression in tumors significantly boosts T cell immunity against tumor neoantigens, leading to a marked increase in antitumor activity.[160,161] Recent studies have shown that the activation of the ZBP1-MLKL pathway can regulate the release of mitochondrial DNA following radiotherapy, significantly boosting the anti-tumor immune response, and offering a new therapeutic strategy to counteract radiation therapy resistance.^[162] Notably, a study demonstrated that in a mouse tumor model lacking DAMP receptor expression, fibroblasts undergoing necroptosis still suppressed tumor growth. This suggests that fibroblasts within the TME can contribute to immune responses through necroptosis, independent of DAMP release mediated by MLKLdependent cell lysis (Figure 2).^[154]

Pyroptosis in anti-tumor immunity

Pyroptosis is an autonomous form of PCD that triggers inflammatory responses, characterized by the progressive swelling and eventual rupture of the cell membrane, leading to the release of cellular contents and the activation of immune responses. This inflammatory mechanism plays a crucial role in various diseases and is pivotal in cancer immunotherapy. In 2020, Judy Lieberman and colleagues

reported that granzyme B (GZMB) from natural killer (NK) cells could directly cleave GSDME, activating pyroptosis in cancer cells, further stimulating antitumor immune responses, and inhibiting tumor growth. [163] Upon activation, GSDM proteins perforate the cell membrane, causing pyroptosis and releasing numerous cytokines and danger signal molecules, which activate the immune system and provoke inflammatory responses. Even a minor proportion of tumor cells undergoing pyroptosis can significantly modulate the tumor immune microenvironment, activating potent T cell-mediated antitumor immune responses that reduce tumor size. [164]

Pyroptosis is closely associated with inflammatory responses, with dying cells releasing IL-1 family cytokines and HMGB1. IL-1β and IL-18, both members of the IL-1 family, are major pro-inflammatory cytokines released through Caspase-1 activation during immune cell pyroptosis. IL-1β is known to inhibit mesenchymalepithelial transition (MET) in tumor cells, enhance T cell antigen recognition, and promote the proliferation of antigen-specific CD8+T lymphocytes.[165-167] IL-18 enhances the ability of T cells stimulated by anti-CD3 to produce IFN-γ, which exerts antitumor effects by inhibiting the secretion of immunosuppressive cytokines by regulatory T cells (Tregs) and triggering the activation and proliferation of CD8+ T lymphocytes, inducing the production of GZMB, activating apoptotic proteins, and degrading antiapoptotic proteins to eliminate cancer cells.[168-170] Besides IL-1β and IL-18, HMGB1 interacts with TLR4 to activate macrophages and secrete tumor necrosis factor, facilitating innate immune responses. HMGB1 also participates in the migration of mature DCs, inducing cytotoxic T-cell infiltration and MHC-II upregulation in DCs, thereby enhancing antitumor activity. [171–173] Furthermore, the release of IL-6 from pyroptotic cells contributes to adaptive responses by increasing cell migration, differentiation, and CD8+ T cell antibody production, inhibiting Treg differentiation, and preventing macrophage death.[174] These inflammatory cytokines largely exert their antitumor effects by influencing cytotoxic lymphocytes or modifying the tumor microenvironment to mobilize a stronger immune response.

The GSDM protein family is central to pyroptosis and functions as tumor suppressor genes. GSDMB triggers pyroptosis either through its own cleavage or by inducing the cleavage of GSDMD. On one hand, IFN-γ secreted by NK cells or CD8+ T lymphocytes can upregulate the expression of GSDMB in esophageal and colorectal adenocarcinoma cells. Subsequently, GSDMB is cleaved by granzyme A, triggering pyroptosis and facilitating tumor clearance. On the other hand, GSDMB can also engage in the non-canonical pathway of pyroptosis by enhancing

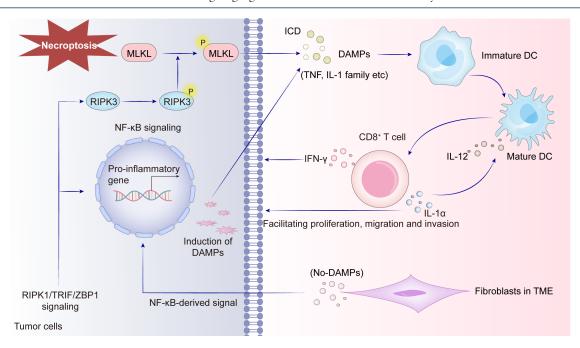


Figure 2: Necroptosis in Tumor Immunity. The immunogenicity of necroptosis largely depends on the synergistic action of RIPK1 activation and NF- κ B signaling. Tumor cells undergoing necroptosis release DAMPs (such as TNF and the IL-1 family), which activate dendritic cells (DCs), leading to the maturation and activation of CD8+ T cells and enhancing their tumor-killing function. Tumor cells promote anti-tumor responses by releasing IL-1 α , which stimulates DCs to produce IL-12. Additionally, fibroblasts within the tumor microenvironment can contribute to the immune response through necroptosis, independent of MLKL-dependent cytolysis-mediated DAMP release.

Caspase-4 activity and the cleavage of GSDMD.[88,176] Studies have shown that even with intact Caspase-1, shRNA knockdown of GSDMD in mouse bone marrow-derived macrophages inhibits pyroptosis and downregulates IL-1β levels.^[77] Additionally, the amount of GSDMD in cytotoxic T lymphocytes (CTLs) correlates positively with their cytotoxic response against lung cancer cells. In activated CTL OT-1 cells, upregulation of GSDMD aligns with CD8A, GZMB, and IFNG, markers of CD8+ T lymphocytes.^[177] CD8⁺ T cells, by secreting GZMA and GZMB, cleave GSDMB/D/E, thereby inducing pyroptosis in cancer cells. [29,178] Furthermore, CTL-induced pyroptosis is mediated by Caspase-4. Consequently, in the non-small cell lung cancer cell line H1299, shRNAmediated silencing of Caspase-4 diminishes CTL activation and GSDMD-induced pyroptosis. Beyond lung cancer, downregulation of GSDMD correlates with reduced cytolysis in the ovalbumin-expressing Lewis lung cancer cell line 3LL-OVA.[177] Increased expression of GSDME enhances phagocytosis of tumor cells by tumor-associated macrophages (TAM) and augments the quantity and functionality of NK cells and CD8+ T lymphocytes within the tumor milieu.^[163] Notably, CD8⁺ T cells facilitate the delivery of ribonuclease A (RNase A) and GZMB into tumor cells, which activates the caspase-3 and GSDME pathways, leading to enhanced CD8+ T cell-mediated immunotherapy. [179] Therefore, addressing how to mitigate the negative effects and harness the tumor-suppressive

potential of dual-function proteins like GSDMD presents a pressing challenge (Figure 3).

Ferroptosis in anti-tumor immunity

Ferroptosis in tumor cells can reshape the tumor immune microenvironment, and conversely, immune cells can induce ferroptosis in tumor cells, thereby exerting an antitumor effect. There is a complex interplay between ferroptosis in tumor cells and immune cells. Research by Efimova *et al.* found that the agent RSL3 enhances the proliferation, activation, and immune efficacy of murine dendritic cells in a time-dependent manner, primarily associated with ATP and HMGB1 released by tumor cells. [180] In the early stages of ferroptosis, however, tumor cells inhibit DC's maturation and antigen-presenting function. [181] Photodynamic therapy (PDT)-induced ferroptosis also promotes the release of HMGB1 and ATP from tumor cells. [180]

GPX4, an intracellular enzyme regulating phospholipid peroxidation, not only supports the survival and proliferation of CD4⁺ and CD8⁺ T cells but also acts as a regulator of ferroptosis, protecting activated Tregs from ferroptosis and playing a crucial role in suppressing antitumor immunity. Studies have shown that CD8⁺ T cells activated by PD-L1 immunotherapy secrete IFN-γ, which downregulates the expression of the SLC3A2 and SLC7A11 subunits of system Xc-, reducing cystine uptake in bladder cancer cells, increasing lipid peroxidation levels,

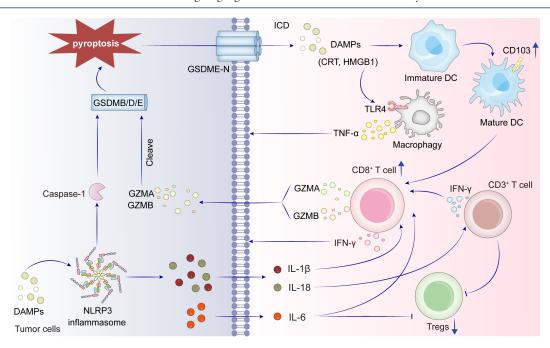


Figure 3: Pyroptosis in Tumor Immunity. Cells undergoing pyroptosis release IL-1 family cytokines (IL-1 β and IL-18) and HMGB1, which further trigger the activation and proliferation of CD8+ T lymphocytes. IL-1 β inhibits tumor cell mesenchymal-epithelial transition (MET), enhances T cell antigen recognition, and promotes specific CD8+ T lymphocyte proliferation; IL-18 enhances the ability of anti-CD3 stimulated T cells to produce IFN- γ , by inhibiting the secretion of immunosuppressive cytokines from Treg cells, and triggers the activation and proliferation of CD8+ T lymphocytes, inducing GZMB production, activating caspases, and degrading anti-apoptotic proteins to eliminate cancer cells. HMGB1 interacts with Toll-like receptor 4 (TLR4), activating macrophages and promoting the secretion of tumor necrosis factor to enhance the innate immune response. The release of IL-6 facilitates the adaptive immune response by increasing cell migration, differentiation, and CD8+ T cell antibody production, inhibiting Treg cell differentiation, and preventing macrophage apoptosis. CD8+ T cells induce tumor cell pyroptosis by secreting GZMA and GZMB, which cleave GSDMB/D/E.

and sensitizing these cells to ferroptosis.^[184] Additionally, IFN-γ released by CD8⁺ T cells, in conjunction with polyunsaturated fatty acid arachidonic acid in the tumor microenvironment, activates ACSL4, altering lipid composition and inducing immunogenic ferroptosis in tumor cells.^[185] Multiple studies on targeted ferroptosis combined with ICB therapy also demonstrate that inducing tumor cell ferroptosis, when combined with anti-PD-1 antibody therapy, exhibits strong anti-tumor effects.^[186]

CD36 is a fatty acid transport receptor that mediates the recognition and transmembrane transport of fatty acids. Significantly elevated levels of CD36 expression are observed on the surfaces of tumor-infiltrating Tregs and CD8⁺ T cells. Tumor-infiltrating CD8⁺ T cells intake fatty acids in a CD36-dependent manner, leading to the accumulation of lipid peroxides within the cells and promoting ferroptosis in these cells. [187] Administering a CD36 monoclonal antibody to melanoma-bearing mice reduces tumor-infiltrating Tregs and increases infiltrating CD8⁺ T cells, thereby significantly inhibiting tumor growth. [188] Thus, targeting CD36 can reshape the composition and function of T cells in the TME through the ferroptosis pathway.

The ovarian tumor domain-containing protein 1 (OTUD1)

is involved in the deubiquitination of iron-responsive element-binding protein 2 (IREB2), stabilizing IREB2 to enhance iron transport mediated by transferrin receptor 1 (TFR1). This process increases the production of reactive oxygen species, promoting ferroptosis in colorectal cancer cells. Furthermore, colorectal cancer cells overexpressing OTUD1 facilitate the release of DAMPs, attracting tumorreactive T cells and thus limiting the progression of colon cancer. [189] Therefore, high expression of OTUD1 promotes ferroptosis in colon cancer cells *via* the OTUD1-IREB2-TFR1 signaling axis, while also enhancing the cytotoxic effects of T cells. [189] Consequently, ferroptosis plays a significant role in T cell-mediated antitumor immunity, impacting the efficacy of immunotherapies.

Macrophage phenotypes and functions are influenced by their surrounding microenvironment. M1 macrophages express high levels of inducible nitric oxide synthase (iNOS) and produce significant amounts of NO, which inhibits lipid peroxidation and resists ferroptosis. In contrast, M2 macrophages are susceptible to ferroptosis inducers and can transition to the M1 phenotype *via* ferroptotic pathways, reshaping the tumor immune microenvironment and enhancing the efficacy of anti-PD-1 immunotherapy in hepatocellular carcinoma. [190] The use of ferroptosis inducers, such as erastin, sorafenib,

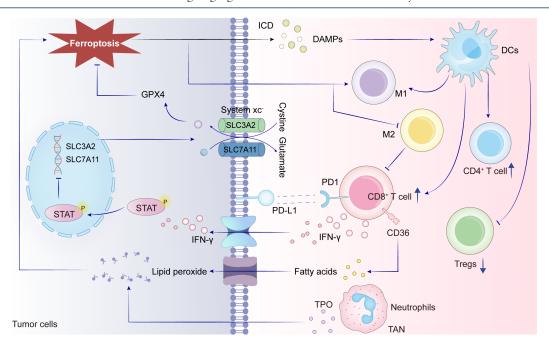


Figure 4: Ferroptosis in Tumor Immunity. Ferroptosis enhances the release of HMGB1 and ATP from tumor cells, boosting proliferation, activation, and immunogenicity of dendritic cells (DCs). Activated CD8+ T cells secrete IFN-γ, which downregulates the expression of system Xc- subunits SLC3A2 and SLC7A11 in cancer cells, increases lipid peroxidation, and heightens sensitivity to ferroptosis. Increased expression of CD36 on tumor-infiltrating CD8+ T cells promotes fatty acid uptake via a CD36-dependent pathway, leading to accumulation of intracellular lipid peroxides and promoting ferroptosis. Ferroptotic tumor cells induce M1 polarization of macrophages, releasing TNF to enhance inflammation and immune response. Tumor-associated neutrophils (TANs) transfer granules containing peroxidases to tumor cells, causing accumulation of iron-dependent lipid peroxides and inducing ferroptosis.

and RSL3, promotes the release of HMGB1 from tumor cells in an autophagy-dependent manner. This interaction with the receptor for advanced glycation end-products (RAGE) induces M1 polarization of macrophages and the release of TNF, which stimulates inflammation and immune responses. [191] However, tumor cells undergoing ferroptosis can release proteins coded by the K-RasG12D gene, which are taken up by macrophages through the RAGE pathway, promoting M2 polarization *via* a STAT3-dependent fatty acid oxidation pathway. [192] Balancing the dosage of ferroptosis inducers to maximize tumor cell killing while minimizing M2 polarization of macrophages is a critical issue that needs to be addressed.

Similar to other immune cells, the sensitivity of neutrophils to ferroptosis is influenced by the expression of GPX4. Pathologically activated neutrophils-myeloid-derived suppressor cells (PMN-MDSCs) exhibit immunosuppressive functions. Downregulation of GPX4 promotes ferroptosis in PMN-MDSCs. Compared to PMN-MDSCs isolated from bone marrow and spleen, tumor-associated PMN-MDSCs are more susceptible to ferroptosis, which can mediate immunosuppression following their ferroptotic death. [193] Neutrophils can also induce ferroptosis in tumor cells. Although multiple studies indicate that tumor-associated neutrophils (TANs) can facilitate tumor progression, in glioblastoma, TANs transfer granules

containing myeloperoxidase to tumor cells. This transfer leads to the accumulation of lipid peroxides dependent on iron ions within the tumor cells, thereby inducing ferroptosis (Figure 4). [194]

Cuproptosis in anti-tumor immunity

Cuproptosis has been identified as a potent trigger for ICD. Recent studies have elucidated the role of cuproptosis in eliciting immune responses within the TME. During cuproptosis, the damage to tumor cell membranes results in the release of various DAMPs such as ATP, HMGB1, and calreticulin (CRT). These molecules enhance the maturation of DCs and activation of CD8⁺ effector T cells, ultimately triggering a sustained anti-tumor immune response. [195–198]

Cuproptosis has been demonstrated to reshape tumor immunity within the microenvironment of clear cell renal cell carcinoma (ccRCC) by activating the tumor antigen presentation process through the cGAS-STING signaling pathway. ^[199] The cGAS-STING pathway plays a pivotal role in innate immune signaling, engaging DNA to trigger various immune responses. This includes the upregulation of IFN, pro-inflammatory cytokines, and chemokines through IRF3 and NF-kB, enhancing the cytolytic activity of NK cells and fostering the expansion of cytotoxic CD8+T cells. ^[200] In DCs co-cultured with cuproptosis inducers

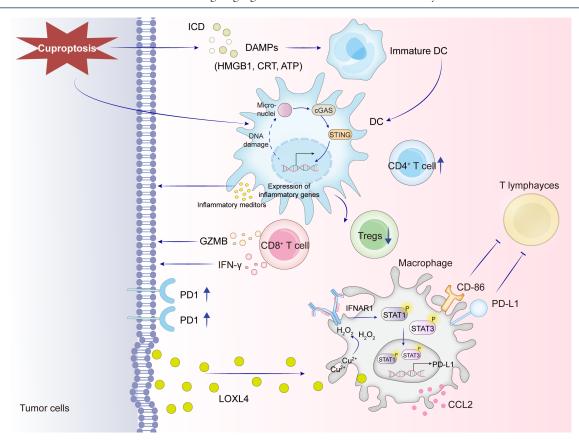


Figure 5: Cuproptosis in Tumor Immunity. Tumor cells undergoing cuproptosis release various DAMPs (such as ATP, HMGB1, and CRT), which promote the maturation of dendritic cells (DCs) and the activation of CD8+ effector T cells. Cuproptosis enhances antitumor immunity by modulating the cGAS-STING signaling pathway. This pathway is activated in dendritic cells by tumor cells experiencing cuproptosis, subsequently promoting the release of inflammatory mediators. Tumor cells also release lysyl oxidase-like 4 (LOXL4), which, when encountered by macrophages ex vivo, induces an immunosuppressive phenotype and activates the expression of programmed death-ligand 1 (PD-L1), further inhibiting the function of CD8+ T cells.

(Elesclomol and CuCl2), the cGAS-STING activity increased in a dose-dependent manner, with increased intracellular cGMP activity, and elevated levels of IL-2, TNF-α, IFN-γ, and CXCL10/11 in the culture supernatant. In tumor-bearing mice, combining cuproptosis inducers with anti-PD-1 therapy synergistically enhances the levels of circulating CD45⁺CD8⁺ T cells.^[199]

Copper levels within tumors influence the expression of PD-L1 in tumor cells and regulate immune evasion triggered by PD-L1.^[201] Conversely, copper chelators, such as DC or TEPA, attenuate the phosphorylation of STAT3 and EGFR, which leads to ubiquitin-mediated degradation of PD-L1. Furthermore, copper chelators can also enhance the infiltration of CD8⁺ T cells and NK cells, thereby inhibiting tumor growth.^[201] Lysyl oxidase-like 4 (LOXL4) is an amine oxidase that, in a copper-dependent manner, catalyzes the conversion of amines, generating hydrogen peroxide (H2O2) and ammonia as byproducts. LOXL4 exerts immunosuppressive effects on macrophages predominantly through disrupting IFN-mediated signaling pathways and transcription-dependent activation of

PD-L1. The action of hydrogen peroxide scavengers or copper chelation through LOXL4 effectively eliminates IFN-induced PD-L1 expression (Figure 5). [202]

It is noteworthy that the combination of the copper ion carrier Disulfiram (DSF) with copper (DSF/Cu) has been demonstrated to exert robust anti-tumor effects. Treatment with DSF/Cu promotes the activation and maturation of DCs, and when used in conjunction with CD47 blocking agents, further enhances DC maturation, subsequently increasing the cytotoxic activity of CD8⁺ T cells. Mechanistically, DSF/Cu facilitates the nuclear accumulation and aggregation of Nuclear Protein Localization protein 4 (NPL4), thereby inhibiting the ubiquitin-proteasome system and inducing ER stress.^[203] The inhibition of NPL4 induced ICD-associated damage-associated molecular patterns.

RCD and pro-tumor immunity

Based on the aforementioned studies, necroptosis, pyroptosis, ferroptosis, and cuproptosis have been shown to enhance immune responses against tumors.

However, research indicates that these forms of RCD also influence the survival, proliferation, differentiation, and activation of immunosuppressive cells, including Tregs, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Additionally, immune-promoting cells may also be negatively regulated by various forms of RCD. Furthermore, during ICD, the release of DAMPs not only stimulates anti-tumor immune responses but may also promote the development of inflammatory responses that favor tumor growth. For example, RIPK3-dependent necroptosis in pancreatic cancer cells enhances the expression of sin3A-associated protein 130 (SAP130) and the release of chemokines such as CXCL1 and CXCL5, [204,205] leading to the recruitment of immunosuppressive cells like MDSCs, fostering an immunosuppressive TME that facilitates cancer cell migration and invasion. Additionally, DAMPs released from cells undergoing pyroptosis recruit inflammatory cells and stimulate the release of regulatory cytokines, such as IL-18, IL-1β, and IL-10. [206-209] These cytokines contribute to angiogenesis, tumor cell proliferation, and metastasis, thereby promoting inflammation and tumor progression. [210,211] Additionally, iron-dependent cancer cells, in the absence of GPX4, activate the STING-dependent DNA sensing pathway in macrophages by releasing 8-hydroxyguanosine (8-OHG), [212] promoting the release of cytokines such as IL-6 and nitric oxide synthase 2 (NOS2), thereby fostering an inflammatory milieu conducive to pancreatic cancer. [212] As triggers of ferroptosis, ROS can also suppress immune responses by inhibiting the formation of TCR and MHC antigen complexes within T cells.[213,214] Therefore, these studies indicate that when employing RCD in targeted cancer therapies, we must also consider its potential effects on promoting tumor immunity. We recommend readers consult a recent comprehensive review for a detailed discussion of the pro-tumorigenic immune effects of RCD.[29]

ANTICANCER DRUGS TARGETING RCD

Cancer immunotherapy based on RCD represents a promising and continually evolving approach to cancer treatment. Tumor cells and other cells within the TME undergo apoptosis, pyroptosis, necroptosis, ferroptosis, and cuproptosis, which may contribute to enhanced antitumor immunity. Inducing ICD has been shown to be effective in many drugs approved for anticancer therapy. [215] This review encompasses FDA-approved anticancer drugs that target a range of newly identified mechanisms of cell death, which demonstrate considerable potential to enhance anti-tumor immunity (Table 1).

Apoptosis is a highly regulated form of cell death. The BCL-2 gene family plays a central role in regulating PCD

by controlling pro-apoptotic and anti-apoptotic intracellular signaling pathways. [216] The selective inhibition of specific anti-apoptotic BCL 2 family proteins has demonstrated efficacy as a treatment for cancer. [216] Recent studies have also found that the BCL-2 inhibitor venetoclax enhances CART cell immunotherapy. [217] Navitoclax, a secondgeneration BH3 mimetic and dual antagonist of BCL-2 and BCL-XL, exhibits synergistic effects when combined with the BAX activator BTSA1.2 in apoptosis-resistant cancer cells, xenografts, and patient-derived tumors. [218] The BCL2 inhibitor venetoclax, either alone or in combination with PD-1 blockade, enhances DC antigen presentation and activation, thereby inhibiting tumor immune surveillance via DC-specific immune checkpoints. [219] Additionally, the DNA methyltransferase (DNMT) inhibitor decitabine has been found to induce mitochondrial alterations (such as Bak activation, loss of transmembrane potential, and reactive oxygen species production) in p53 mutant leukemia T cells, thereby activating the intrinsic apoptotic pathway. [220] Furthermore, the level of GSH and activity of GPX4 in MDS cells are decreased by decitabine, leading to ferroptosis caused by heightened ROS levels.[221] Moreover, decitabine enhances and sustains the anti-tumor potential of CAR T cells through epigenetic reprogramming, synergizing with immunotherapy. [222]

The necroptosis found in infections and sterile inflammation also plays a huge role in cancer therapy. Fingolimod, the sphingosine analog FTY720, targets I2PP2A/ SET to inhibit lung tumor growth through RIPK1 kinase structural domain mediated PP2A activation and induce necroptosis.^[223] Notably, fingolimod has been found to limit the number of tumor-infiltrating lymphocytes (TILs) in solid tumors, thus potentially inhibiting antitumor immune responses.^[224] The novel pan-caspase inhibitor IDN-7314 promotes 5- fu-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB to inhibit tumor growth. [225] As a commonly used agent in colorectal cancer (CRC) treatment, it also has a good synergistic effect with PD-L1 monoclonal antibody. [226] Chloroquine (CQ) has been demonstrated to upregulate cellular endogenous RIPK3induced CRC necroptosis. [227] Studies have demonstrated that CQ blocks immune escape and improves the efficacy of antitumor immunotherapy. [228] Artesunate, a widely used antimalarial drug, induces necroptosis and ferroptosis in tumor cells.[229] Artesunate effectively reduces TAZ and PD-L1 expression in non-small cell lung cancer (NSCLC) promotes antitumor immunotherapy in NSCLC antitumor immunity and overcomes epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) resistance. [230]

Pyroptosis-based interventions combined with tumor immunotherapy can significantly improve cancer control. Simvastatin activates the NLRP3 inflammasome and

Table 1: Summary of clinically approved drugs that may induce ferroptosis, necroptosis, and pyroptosis in cancers and their effects on antitumor immunity

Drug Name	General Usage	Target	Effect on Tumor RCD	Effect on Antitumor Immunity
Navitoclax	Anticancer drug	BCL-2/BCL-XL	Apoptosis induction ^[269]	Enhanced antitumor immunity ^[219]
Venetoclax	Anticancer drug	BCL-2	Apoptosis induction ^[270]	Enhanced antitumor immunity ^[271]
LCL161	Anticancer drug	IAP	Apoptosis induction ^[272, 273]	Enhanced antitumor immunity ^[274]
Decitabine	Anticancer drug	GPX4	Apoptosis/Ferroptosis induction ^[221,275]	Enhanced antitumor immunity ^[222]
FTY720	Multiple sclerosis	RIPK1	Necroptosis induction[223]	Increased immune suppression ^[276,277]
Chloroquine (CQ)	Antimalarial drug	RIPK3	Necroptosis induction ^[227]	Enhanced antitumor immunity ^[228]
5-fluorouracil (5-FU)	Anticancer drug	TNF-α/RIPK3	Necroptosis/pyroptosis induction ^[225,278]	Enhanced antitumor immunity ^[279]
Sorafenib	Anticancer drug	System Xc-	Necroptosis/ferroptosis induction ^[280,281]	Increased immune suppression ^[282]
Artesunate	Antimalarial drug	ROS	Necroptosis/ferroptosis induction ^[283,284]	Increased immune suppression ^[230]
Resibufogenin	Heart failure drug	RIPK3, MLKL	Necroptosis/pyroptosis/ ferroptosis induction ^[285–287]	Unknown
Simvastatin	Hyperlipemia drug	Casepase1	Pyroptosis induction ^[231]	Enhanced antitumor immunity ^[232]
Doxorubicin	Anticancer drug	DFNA5	Pyroptosis induction ^[288]	Enhanced antitumor immunity ^[289]
Iron	Nutrient	Ferritin/GSDME	Pyroptosis induction ^[243]	Enhanced antitumor immunity ^[290]
Metformin	Anti-diabetes drug	GSDMD	Pyroptosis induction[240]	Enhanced antitumor immunity ^[241]
Drug Name	General Usage	Target	Effect on Tumor RCD	Effect on Antitumor Immunity
Docosahexaenoic acid (DHA)	Nutrient	GSDMD	Pyroptosis induction[291]	Enhanced antitumor immunity ^[258]
Paclitaxel (PTX)	Anticancer drug	GSDMD	Pyroptosis induction[278]	Enhanced antitumor immunity ^[292]
BRAF and MEK Inhibitor	Anticancer drug	GSDMD	Pyroptosis induction[173]	Enhanced antitumor immunity ^[173]
Cisplatin	Anticancer drug	GSH/GSDME	Pyroptosis induction[293]	Enhanced antitumor immunity ^[294]
Doxorubicin	Anticancer drug	GSH/GSDME	Pyroptosis induction[295]	Unknown
Anthocyanin	Nutrient	NLRP3	Pyroptosis induction ^[296]	Enhanced antitumor immunity ^[297]
Lapatinib	Anticancer drug	Ferritin	Ferroptosis induction[244]	Unknown
Neratinib	Anticancer drug	Ferritin	Ferroptosis induction[298]	Enhanced antitumor immunity ^[299]
Etoposide	Anticancer drug	GPX4	Ferroptosis induction[300]	Unknown
Dihydroartemisinin	Antimalarial drug	GPX4	Ferroptosis induction[301]	Enhanced antitumor immunity ^[302]
Apatinib	Anticancer drug	GPX4/System Xc-/Nrf2	Ferroptosis induction ^[247]	Enhanced antitumor immunity ^[303]
Trigonelline	Nutrient additive	Nrf2	Ferroptosis induction ^[283]	Enhanced antitumor immunity ^[304]
Sulfasalazine	Anti-inflammatory drug	System Xc-	Ferroptosis induction ^[281]	Unknown
Glutamate	Nutrient	System Xc-	Ferroptosis induction[94]	Increased immune suppression[305]
Sulfasalazine	Anti-inflammatory drug	System Xc-	Ferroptosis induction[306]	Synergistic immunotherapy ^[254]

Agent Name	Content	Effect on Tumor RCD	Cancer Type	Effects on Antitumor Immunity	References
NP@ESCu	Co-encapsulate elesclomol (ES) and Cu to form nanoparticles	Cuproptosis induction	Subcutaneous bladder cancer	Enhanced antitumor immune	[307]
LCP NPs	pH-responsive lipid-coated calcium phosphate nanoparticles co-loaded with Cu and DSF	Cuproptosis induction	Colon carcinoma	Enhanced antitumor immune	[308]
CuCHNCs	Peroxidase-like biomineralized copper (II) carbonate hydroxide nanocrystals inside single albumin nanocages	Cuproptosis induction	Triple-negative breast cancers	Enhanced antitumor immune	[309]
CuX-P	DSF/Cu ²⁺	Cuproptosis induction	Triple-negative breast cancers	Enhanced antitumor immune	[265]
CQG NPs	Self-destructive and multi- enzymatically active copper- quinoneGOx nanoparticles	Pyroptosis and cuproptosis induction	Triple-negative breast cancers	Enhanced antitumor immune	[197]

caspase-1, leading to GSDMD-dependent pyroptosis and inhibiting the proliferation and migration of NSCLC cells through typical pathways. [231] An individual intraosseous dose of simvastatin inhibited the development of breast cancer by activating CD8+ T cells and reducing the expression of PD-1, TIM3, and CTLA4. [232] The chemotherapeutic agent's doxorubicin, paclitaxel, and cisplatin-induced pyroptosis in particular cancer cells expressing GSDME. [86,233] It is noteworthy that cytoprotective mitochondrial autophagy, dependent on the ROS/HO-1/GPX4 axis, eased cisplatin-induced nephrotoxicity caused by ferroptosis in renal tubular epithelial cells.^[234] Furthermore, doxorubicin has been demonstrated to trigger ICD in hepatocellular carcinoma (HCC).[235] Paclitaxel promotes immune cell death in metastatic triple-negative breast cancer and modulates the tumor microenvironment. [236,237] Cisplatin increases the expression of PD-L1, enhancing immune checkpoint blockade therapy in non-small cell lung cancer. [238] Additionally, metformin activates the AMPK/SIRT1/ NF-κB pathway, inducing mitochondrial dysfunction and triggering caspase3 activation and GSDME-N production, leading to cellular pyroptosis that inhibits cancer cell proliferation. [239] Additionally, metformin targets the miR-497/PELP1 axis to induce GSDMD-dependent cell death in oesophageal squamous cell carcinoma. [240] Moreover, metformin enhances antitumor immunity by decreasing the stability and membrane localization of PD-L1.[241] Iron can participate in the Fenton reaction, generating ROS, which induces lipid peroxidation and leads to ferroptosis. [242] Additionally, iron initiates GSDME-dependent pyroptosis via the ROS signaling pathway. [243] Breast cancer cells experienced ferroptosis induced by tyrosine kinase inhibitors lapatinib and neratinib through the inhibition of ferritin transport. [244,245] Neratinib, in combination with histone deacetylase inhibitors (HDAC), has been found to enhance the effectiveness of anti-PD-1 therapy in vivo. [246]

Additionally, apatinib has been shown to induce ferroptosis through lipid peroxidation and to support immune recovery post-radical mastectomy. [247,248]

Ferroptosis in tumors can enhance cancer immunity and immunotherapy. Sorafenib is a widely used treatment for HCC and induces ferroptosis by reducing GSH synthesis through inhibiting system Xc-. [249,250] The use of the iron chelator, deferasirox, results in the transition from sorafenibinduced cell death to apoptosis and necroptosis. [251] Sorafenib is known to promote the secretion of IL-12 in TAM and the resultant apoptosis of cancer cells using sub-therapeutic doses, which combine with mCAR T cell production for antitumor effects. [252] Furthermore, sorafenib and sulphasalazine act synergistically to induce ferroptosis in HCC cells. [253] Sulphasalazine enhances antitumor immune responses when synergized with radiotherapy. [254] Altretamine, an ovarian cancer treatment commonly used, has been discovered to have a comparable effect to sulphasalazine by targeting GPX4 and inducing ferroptosis. [255] Etoposide, a phenolic antitumor medication, effectively exhausts GSH from myeloid leukemia cells resulting in ferroptosis. Further investigation is needed to understand the association between etoposide and tumor immunity. [256] Dihydroartemisinin (DHA), a drug used to treat malaria, reduces cancer cell viability and proliferation.^[5] DHA in combination with cisplatin induces ferroptosis and inhibits pancreatic ductal adenocarcinoma by promoting GPX4 degradation, ROS production, and NCOA4-mediated ferritin degradation. [257] DHA has been shown to decrease PD-L1 protein expression, thereby inhibiting immune escape from colorectal cancer cells.^[258] Statins have been shown to cause depletion of isopentenyl pyrophosphate, leading to GPX4 downregulation, similar to the mechanism of GPX4 inhibitors, which leads to ferroptosis. [259,260] In addition, statins play a role in the regulation of antitumor immune responses in tumors.[261]

Initially, it was believed that elesclomol triggered a rise in ROS within cancer cells, leading to apoptosis. Presently, it has been discovered that elesclomol acts as a copper ionophore to induce cuproptosis and synergizes with immune checkpoints to inhibit cancer. In recent investigations, tiny molecule compounds that target cuproptosis have shown significant potential for treating cancer. In Table 2, we present a summary of the nanocompounds that target cuproptosis mechanisms for synergistic immunotherapy and have been tested *in vivo* and/or *in vitro*, demonstrating promising results.

CONCLUSION AND PERSPECTIVES

Substantial research has focused on targeting various forms of RCD for cancer therapy, with tumor immunotherapy emerging as a field with significant potential. [1,5] However, ICIs remain ineffective for many cancer patients. Our findings indicate that RCD not only initiates an immune response but also enhances lymphocyte infiltration and improves tumor responses to immunotherapy. Thus, inducing RCD in tumor cells represents a promising strategy for cancer treatment.[8] The review synthesizes evidence on five RCD pathways and their links to antitumor immunity, discussing FDA-approved drugs that target RCD and their synergistic effects with tumor immune responses. Currently, there are no FDA-approved drugs specifically for cuproptosis. Nevertheless, several innovative small molecules and nanomaterials have demonstrated potential in inducing cuproptosis and enhancing antitumor immunity.[262-266]

In addition to the discovery of cuproptosis in 2022, a new type of cell death called disulfidptosis has been identified, indicating that our understanding of RCD is still evolving.[116,267] The development of drugs that target this novel form of cell death represents a valuable area of research. Designing drugs or small molecules that effectively target RCD to treat cancer while passing safety tests poses significant challenges. Our review suggests that screening FDAapproved drugs with these effects from established libraries and applying them to new disease contexts could be a promising direction. Furthermore, we have proposed that drugs such as fingolimod, which induces both necroptosis and ferroptosis by targeting RIPK1 and glutamate, [223,268] may increase immunosuppression, and suggest that studies of RCD-inducing drugs need to precisely identify their different effects on antitumor immunity.

In conclusion, our review suggests a new direction for tumor treatment. We advocate for the investigation of targeted cell death drugs, the exploration of their immune interactions with tumors, and the development of new mechanisms for cancer treatment using FDA-approved drugs, extending from classical RCD, such as apoptosis, to novel forms of cell death. Future studies utilizing animal models are encouraged to uncover additional outcomes. Furthermore, additional clinical trials are planned to investigate new cell death modulators in cancer patients.

Acknowledgements

None.

Author Contributions

ZG and YL wrote the original draft and visualization and participated in conceptualization. DC, DL, YM, and QZ conceptualized, reviewed, and revised the manuscript, and participated in visualization. FZ, GD, and XC led validation and funding acquisition and participated in review and editing. YS, GD, and XC dominated supervision and project administration and participated in conceptualization.

Source of Funding

This work was supported by the National key research and development program (Grant Nos. 2022YFC2504700 to XC), National Natural Science Foundation of China (Grant Nos. 82272849 to GD), Natural Science Fund for Outstanding Youths in Hunan Province (2023JJ20093 to GD), Huxiang Youth Talent Program (Grant Nos. 2023RC3072 to GD, 2024RC3043 to FZ), and Postdoctoral Fellowship Program of CPSF (Grant Nos. GZB20240875 to QZ).

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors have stated that they have no conflicts of interest.

Use of Large Language Models, AI and Machine Learning Tools

None declared.

Data Availability Statement

No additional data is available.

REFERENCES

- Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022;7:286.
- Yuan J, Ofengeim D. A guide to cell death pathways. Nat Rev Mol Cell Biol 2024;25:379–395.
- Gong L, Huang D, Shi Y, Liang Z, Bu H. Regulated cell death in cancer: from pathogenesis to treatment. Chin Med J (Engl) 2023;136:653–665.
- Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell 2024 Jan 18;187:235-256.
- Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022;15:174.
- Kayagaki N, Webster JD, Newton K. Control of Cell Death in Health and Disease. Annu Rev Pathol 2024;19:157–180.
- Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024;9:55.
- Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, et al. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024;321:300–334.
- Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024;175:116667.
- Du S, Zeng F, Deng G. Tumor neutrophils ferroptosis: a targetable immunosuppressive mechanism for cancer immunotherapy. Signal Transduct Target Ther 2023;8:77.
- Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024;14:2815–2853.
- Oliveira G, Wu CJ. Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer 2023;23:295–316.
- Park J, Hsueh PC, Li Z, Ho PC. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity 2023;56:32–42.
- 14. Choi M, Shin J, Lee CE, Chung JY, Kim M, Yan X, *et al.* Immunogenic cell death in cancer immunotherapy. BMB Rep 2023;56:275–286.
- Jeong SD, Jung BK, Ahn HM, Lee D, Ha J, Noh I, et al. Immunogenic Cell Death Inducing Fluorinated Mitochondria-Disrupting Helical Polypeptide Synergizes with PD-L1 Immune Checkpoint Blockade. Adv Sci (Weinh) 2021;8:2001308.
- Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. Adv Sci (Weinh) 2023;10:e2207475.
- Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol 2020;14:2994–3006.
- Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023;161:114503.
- Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022;13:1017400.
- Gong C, Ji Q, Wu M, Tu Z, Lei K, Luo M, et al. Ferroptosis in tumor immunity and therapy. J Cell Mol Med 2022;26:5565–5579.
- Ning X, Wang Y, Jing M, Sha M, Lv M, Gao P, et al. Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Mol Cell 2019;74:19–31.
- Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020;70:86–104.
- Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024;57:e13644.
- Dagher OK, Schwab RD, Brookens SK, Posey AD Jr. Advances in cancer immunotherapies. Cell 2023;186:1814-1814.e1.

- Rodriguez-Ruiz ME, Sanmamed MF, Serrano-Mendioroz I, Melero I. Consolidating Radiotherapy with Immunotherapy. Clin Cancer Res 2021;27:5443–5445.
- Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020;17:725–741.
- Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, Tawbi HA. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov 2021;11:1368–1397.
- Monk BJ, Enomoto T, Kast WM, McCormack M, Tan DSP, Wu X, et al. Integration of immunotherapy into treatment of cervical cancer: Recent data and ongoing trials. Cancer Treat Rev 2022;106:102385.
- Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 2022;7:196.
- Ocansey DKW, Qian F, Cai P, Ocansey S, Amoah S, Qian Y, et al. Current evidence and therapeutic implication of PANoptosis in cancer. Theranostics 2024;14:640–661.
- Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol 2024;15:1390263.
- 32. Rich T, Watson CJ, Wyllie A. Apoptosis: the germs of death. Nat Cell Biol 1999:1:E69-E71.
- Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2022;434:167378.
- Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023;24:732–748.
- Li P, Dong XR, Zhang B, Zhang XT, Liu JZ, Ma DS, et al. Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl) 2021;134:2647–2655.
- Bao H, Peng A. The Green Tea Polyphenol(-)-epigallocatechin-3-gallate and its beneficial roles in chronic kidney disease. J Transl Int Med 2016;4:99–103.
- Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020;21:85–100.
- Wang P, Zhang N, Wu B, Wu S, Zhang Y, Sun Y. The Role of Mitochondria in Vascular Calcification. J Transl Int Med 2020;8:80-90.
- David R. Apoptosis: A lipid trigger of MOMP. Nat Rev Mol Cell Biol 2012;13:208–209.
- Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019;20:175–193.
- Ullrich E, Vogler M, von Metzler I. Mitochondrial apoptosis: facilitator of NK cell-mediated immunotherapy. Signal Transduct Target Ther 2022:7:291.
- 42. Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018;25:1194–1208.
- Shiozaki EN, Chai J, Shi Y. Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci U S A 2002;99:4197–4202.
- Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Threedimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423–432.
- Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.
- 46. Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem 2004;73:87-106.
- Lossi L. The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022;479:357–384.
- A Transitional Cell Population Is Enriched in Aggressive Human Medulloblastoma. Cancer Discov 2023;13:256.
- 49. Poulaki V, Mitsiades CS, Mitsiades N. The role of Fas and FasL as mediators of anticancer chemotherapy. Drug Resist Updat 2001;4:233–242.

- Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020;6:989–1001.
- Van Antwerp DJ, Martin SJ, Verma IM, Green DR. Inhibition of TNFinduced apoptosis by NF-kappa B. Trends Cell Biol 1998;8:107–111.
- Iordanov MS, Kirsch JD, Ryabinina OP, Wong J, Spitz PN, Korcheva VB, et al. Recruitment of TRADD, FADD, and caspase 8 to double-stranded RNA-triggered death inducing signaling complexes (dsRNA-DISCs). Apoptosis 2005;10:167–176.
- Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019;50:1352–1364.
- Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1:112–119.
- Yan J, Wan P, Choksi S, Liu ZG. Necroptosis and tumor progression. Trends Cancer 2022;8:21–27.
- Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021;18:1106–1121.
- 57. Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010;7:302–313.
- Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009;325:332–336.
- Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 2016;536:215–218.
- He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100–1111.
- Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008;4:313–321.
- Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 2013;288:31268–31279.
- Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest 2019;129:2293–2304.
- Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 2012;11:290–297.
- Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 2012;109:5322–5327.
- Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012;148:213-227.
- Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ 2021;28:1757–1772.
- 68. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol 2001;9:113–114.
- Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 2020;13:110.
- Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022;19:971–992.
- Nössing C, Ryan KM. 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'. Br J Cancer 2023;128:426–431.
- Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasomeactivated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016;535:153–158.
- 73. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 2017;42:245–254.

- Xia S, Hollingsworth LR 4th, Wu H. Mechanism and Regulation of Gasdermin-Mediated Cell Death. Cold Spring Harb Perspect Biol 2020:12:a036400.
- Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, et al. Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell 2020;180:941–955.
- Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosismediated in cancer cell death. Chem Biol Interact 2020;323:109052.
- Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GS-DMD by inflammatory caspases determines pyroptotic cell death. Nature 2015;526:660–665.
- Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022;87:101182.
- Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci Immunol 2021;6:eabj3859.
- Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526:666–671.
- Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015;6:8761.
- 82. Huang X, Feng Y, Xiong G, Whyte S, Duan J, Yang Y, *et al.* Caspase-11, a specific sensor for intracellular lipopolysaccharide recognition, mediates the non-canonical inflammatory pathway of pyroptosis. Cell Biosci 2019:9:31.
- 83. Rühl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 2018;362:956–960.
- 84. Aglietti RA, Dueber EC. Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions. Trends Immunol 2017;38:261–271.
- 85. Zeng CY, Li CG, Shu JX, Xu LH, Ouyang DY, Mai FY, *et al.* ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages. Apoptosis 2019;24:703-717.
- Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017;547:99–103.
- 87. Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, *et al.* PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol 2020;22:1264–1275.
- Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020;368:eaaz7548.
- 89. Zhong X, Zeng H, Zhou Z, Su Y, Cheng H, Hou Y, *et al.* Structural mechanisms for regulation of GSDMB pore-forming activity. Nature 2023;616:598–605.
- LaRock DL, Johnson AF, Wilde S, Sands JS, Monteiro MP, LaRock CN. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 2022;605:527–531.
- 91. Deng W, Bai Y, Deng F, Pan Y, Mei S, Zheng Z, *et al.* Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 2022;602:496–502.
- 92. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021;6:128.
- Vandenabeele P, Bultynck G, Savvides SN. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2023;24:312–333.
- Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149:1060-72.
- 95. Lai W, Wang B, Huang R, Zhang C, Fu P, Ma L. Ferroptosis in organ

- fibrosis: From mechanisms to the rapeutic medicines. J Transl Int Med 2024;12:22–34.
- Le J, Meng Y, Wang Y, Li D, Zeng F, Xiong Y, et al. Molecular and therapeutic landscape of ferroptosis in skin diseases. Chin Med J (Engl) 2024;137:1777–1789.
- Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017;171:273–285.
- Qiu Y, Cao Y, Cao W, Jia Y, Lu N. The Application of Ferroptosis in Diseases. Pharmacol Res 2020;159:104919.
- Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019;35:830–849.
- 100. Liu Y, Liu Y, Ye S, Feng H, Ma L. A new ferroptosis-related signature model including messenger RNAs and long non-coding RNAs predicts the prognosis of gastric cancer patients. J Transl Int Med 2023;11:145– 155.
- Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 2022;82:2215–2227.
- Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 2015;1851:308–330.
- 103. Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, et al. Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids Catalyzed by the Oxidoreductases POR and CYB5R1. Mol Cell 2021;81:355–369.
- 104. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 2016;113:E4966–E4975.
- Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014;10:9–17.
- 106. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014;2014:360438.
- 107. Yi L, Hu Y, Wu Z, Li Y, Kong M, Kang Z, et al. TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1. Cell Death Dis 2022;13:592.
- 108. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, *et al.* DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021;593:586–590.
- 109. Xu P, Ge FH, Li WX, Xu Z, Wang XL, Shen JL, et al. MicroRNA-147a Targets SLC40A1 to Induce Ferroptosis in Human Glioblastoma. Anal Cell Pathol (Amst) 2022;2022:2843990.
- 110. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res 2016;26:1021–1032.
- Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants (Basel) 2018;7:62.
- 112. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014;156:317-331.
- Luan Y, Huang E, Huang J, Yang Z, Zhou Z, Liu Y, et al. Serum myoglobin modulates kidney injury via inducing ferroptosis after exertional heatstroke. J Transl Int Med 2023;11:178–188.
- 114. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019;575:693-698.
- Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023;186:2748–2764.
- Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022;375:1254–1261.
- 117. Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023;22:46.
- Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022;7:378.

- Hasinoff BB, Wu X, Yadav AA, Patel D, Zhang H, Wang DS, et al. Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochem Pharmacol 2015;93:266–276.
- 120. Lee JH, Cho YS, Jung KH, Park JW, Lee KH. Genipin enhances the antitumor effect of elesclomol in A549 lung cancer cells by blocking uncoupling protein-2 and stimulating reactive oxygen species production. Oncol Lett 2020;20:374.
- Qi L, Wang L, Jin M, Jiang M, Li L, Li Y. Caspase-6 is a key regulator of cross-talk signal way in PANoptosis in cancer. Immunology 2023;169:245–259.
- 122. Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol 2015;7:a006080.
- 123. Inoue S, Browne G, Melino G, Cohen GM. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ 2009;16:1053–1061.
- 124. Allsopp TE, McLuckie J, Kerr LE, Macleod M, Sharkey J, Kelly JS. Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death Differ 2000;7:984–993.
- 125. van Raam BJ, Ehrnhoefer DE, Hayden MR, Salvesen GS. Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death Differ 2013;20:86–96.
- 126. Zheng M, Karki R, Vogel P, Kanneganti TD. Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense. Cell 2020;181:674–687.
- Lin Q, Li S, Jiang N, Jin H, Shao X, Zhu X, et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 2021;17:2975–2990.
- Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol 2021;18:2114–2127.
- 129. Gupta U, Ghosh S, Wallace CT, Shang P, Xin Y, Nair AP, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy 2023;19:92–111.
- Zheng M, Kanneganti TD. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev 2020;297:26–38.
- 131. Nie ZY, Yao M, Yang Z, Yang L, Liu XJ, Yu J, et al. De-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses CML cell apoptosis and contributes to Imatinib resistance. J Exp Clin Cancer Res 2020;39:17.
- Bibo-Verdugo B, Salvesen GS. Caspase mechanisms in the regulation of inflammation. Mol Aspects Med 2022;88:101085.
- 133. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, *et al.* Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 2018;362:1064–1069.
- 134. Hughes SA, Lin M, Weir A, Huang B, Xiong L, Chua NK, et al. Caspase-8-driven apoptotic and pyroptotic crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP) deficiency. EMBO J 2023;42:e110468.
- 135. Molnár T, Pallagi P, Tél B, Király R, Csoma E, Jenei V, et al. Caspase-9 acts as a regulator of necroptotic cell death. FEBS J 2021;288:6476–6491.
- 136. Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 2018;3:eaar6689.
- Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 2019;26:99–114.
- 138. Weindel CG, Martinez EL, Zhao X, Mabry CJ, Bell SL, Vail KJ, et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 2022;185:3214–3231.
- Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol 2022;13:1039241.
- 140. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular

- activation and regulation to the rapeutics. Nat Rev Immunol 2019;19:477–489
- 141. Cao Z, Qin H, Huang Y, Zhao Y, Chen Z, Hu J, *et al.* Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered 2022;13:4810–4820.
- 142. Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ. Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol Cancer Res 2018;16:1073–1076.
- 143. Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. Oxid Med Cell Longev 2021;2021:9991001.
- 144. Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, *et al.* Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res 2023;42:142.
- 145. Zhang Y, Jia Q, Li J, Wang J, Liang K, Xue X, et al. Copper-Bacteriochlorin Nanosheet as a Specific Pyroptosis Inducer for Robust Tumor Immunotherapy. Adv Mater 2023;35:e2305073.
- Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012;12:860–875.
- 147. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014;159:1549–1562.
- 148. Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014;159:1563–1577.
- 149. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA. Induction of immunological tolerance by apoptotic cells requires caspasedependent oxidation of high-mobility group box-1 protein. Immunity 2008;29:21–32.
- 150. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, *et al.* Mitochondrial permeabilization engages NF-кВ-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol 2017;19:1116–1129.
- Vandenabeele P, Vandecasteele K, Bachert C, Krysko O, Krysko DV. Immunogenic Apoptotic Cell Death and Anticancer Immunity. Adv Exp Med Biol 2016;930:133–149.
- 152. Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023;9:381–396.
- Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. Annu Rev Pathol 2017;12:103–130.
- 154. Snyder AG, Hubbard NW, Messmer MN, Kofman SB, Hagan CE, Orozco SL, et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci Immunol 2019;4:eaaw2004.
- 155. Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, *et al.* RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015;350:328–334.
- 156. Hwang SM, Ha YJ, Koo GB, Noh HJ, Lee AY, Kim BJ, et al. LCK-Mediated RIPK3 Activation Controls Double-Positive Thymocyte Proliferation and Restrains Thymic Lymphoma by Regulating the PP2A-ERK Axis. Adv Sci (Weinh) 2022;9:e2204522.
- 157. Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep 2016;15:274–287.
- 158. Schmidt SV, Seibert S, Walch-Rückheim B, Vicinus B, Kamionka EM, Pahne-Zeppenfeld J, *et al.* RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation. Oncotarget 2015;6:8635–8647.
- 159. Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J 2016;283:2599– 2615
- 160. Van Hoecke L, Riederer S, Saelens X, Sutter G, Rojas JJ. Recombinant viruses delivering the necroptosis mediator MLKL induce a potent

- antitumor immunity in mice. Oncoimmunology 2020;9:1802968.
- 161. Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 2017;17:262–275.
- 162. Yang Y, Wu M, Cao D, Yang C, Jin J, Wu L, et al. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Sci Adv 2021;7:eabf6290.
- Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020;579:415–420.
- 164. Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 2020:579:421–426.
- 165. Castaño Z, San Juan BP, Spiegel A, Pant A, DeCristo MJ, Laszewski T, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol 2018;20:1084–1097.
- 166. Joosten LA, Netea MG, Dinarello CA. Interleukin-1β in innate inflammation, autophagy and immunity. Semin Immunol 2013;25:416–424.
- 167. Zhivaki D, Borriello F, Chow OA, Doran B, Fleming I, Theisen DJ, et al. Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Rep 2020;33:108381.
- 168. Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev 2016;31:73–81.
- 169. Zhao Q, Tong L, He N, Feng G, Leng L, Sun W, et al. IFN-γ mediates graft-versus-breast cancer effects via enhancing cytotoxic T lymphocyte activity. Exp Ther Med 2014;8:347–354.
- 170. Senju H, Kumagai A, Nakamura Y, Yamaguchi H, Nakatomi K, Fukami S, et al. Effect of IL-18 on the Expansion and Phenotype of Human Natural Killer Cells: Application to Cancer Immunotherapy. Int J Biol Sci 2018;14:331–340.
- 171. Werthmöller N, Frey B, Wunderlich R, Fietkau R, Gaipl US. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 2015;6:e1761.
- 172. Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 2010;107:11942–11947.
- 173. Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Field CO, *et al.*Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov 2020;10:254–269.
- 174. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6:a016295.
- 175. Saeki N, Kuwahara Y, Sasaki H, Satoh H, Shiroishi T. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome 2000;11:718–724.
- Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol 2019;11:496–508.
- 177. Xi G, Gao J, Wan B, Zhan P, Xu W, Lv T, *et al.* GSDMD is required for effector CD8+ T cell responses to lung cancer cells. Int Immunopharmacol 2019:74:105713.
- 178. Huang H, Weng Y, Tian W, Lin X, Chen J, Luo L. Molecular mechanisms of pyroptosis and its role in anti-tumor immunity. Int J Biol Sci 2023;19:4166–4180.
- 179. Zhou Z, Yang R, Dong J, Di Y, Yang Y, Huang Y, *et al.* Pore forming-mediated intracellular protein delivery for enhanced cancer immunotherapy. Sci Adv 2022;8:eabq4659.
- 180. Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 2020;8:e001369.

- 181. Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, *et al.* Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun 2022;13:3676.
- 182. Yao Y, Chen Z, Zhang H, Chen C, Zeng M, Yunis J, *et al.* Selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol 2021;22:1127–1139.
- 183. Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 2021;35:109235.
- 184. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019;569:270–274.
- Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 2022;40:365–378.
- 186. Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab 2023;35:84–100.
- 187. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021;33:1001–1012.
- 188. Wang H, Franco F, Tsui YC, Xie X, Trefny MP, Zappasodi R, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol 2020;21:298–308.
- 189. Song J, Liu T, Yin Y, Zhao W, Lin Z, Yin Y, et al. The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Rep 2021;22:e51162.
- 190. Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol 2022;56:102463.
- 191. Wang J, Li R, Peng Z, Hu B, Rao X, Li J. [Corrigendum] HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-κB signaling pathways. Int J Mol Med 2020;45:1628.
- 192. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020;16:2069–2083.
- 193. Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, *et al.* Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 2022;612:338–346.
- 194. Yee PP, Wei Y, Kim SY, Lu T, Chih SY, Lawson C, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun 2020;11:5424.
- 195. Jin XK, Liang JL, Zhang SM, Huang QX, Zhang SK, Liu CJ, et al. Orchestrated copper-based nanoreactor for remodeling tumor microenvironment to amplify cuproptosis-mediated anti-tumor immunity in colorectal cancer. Materials Today 2023;68:108–124.
- 196. Chen R, Zou J, Kang R, Tang D. The redox protein HMGB1 in cell death and cancer. Antioxid Redox Signal 2023. Epub ahead of print.
- 197. Qiao L, Zhu G, Jiang T, Qian Y, Sun Q, Zhao G, et al. Self-Destructive Copper Carriers Induce Pyroptosis and Cuproptosis for Efficient Tumor Immunotherapy Against Dormant and Recurrent Tumors. Adv Mater 2024;36:e2308241.
- 198. Huang QX, Liang JL, Chen QW, Jin XK, Niu MT, Dong CY, et al. Metalorganic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma. Nano Today 2023;51:101911.
- 199. Jiang A, Luo P, Chen M, Fang Y, Liu B, Wu Z, et al. A new thinking: deciphering the aberrance and clinical implication of copper-death signatures in clear cell renal cell carcinoma. Cell Biosci 2022;12:209.

- 200. Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in cancer biotherapy. Mol Cancer 2020;19:136.
- Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Res 2020;80:4129–4144.
- 202. Tan HY, Wang N, Zhang C, Chan YT, Yuen MF, Feng Y. Lysyl Oxidase-Like 4 Fosters an Immunosuppressive Microenvironment During Hepatocarcinogenesis. Hepatology 2021;73:2326–2341.
- 203. Gao X, Huang H, Pan C, Mei Z, Yin S, Zhou L, et al. Disulfiram/Copper Induces Immunogenic Cell Death and Enhances CD47 Blockade in Hepatocellular Carcinoma. Cancers (Basel) 2022;14:4715.
- 204. Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 2016;532:245–249.
- Ando Y, Ohuchida K, Otsubo Y, Kibe S, Takesue S, Abe T, et al. Necroptosis in pancreatic cancer promotes cancer cell migration and invasion by release of CXCL5. PLoS One 2020;15:e0228015.
- Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/ pyroptosis activation and their role in diabetic retinopathy. Front Immunol 2023;14:1151185.
- Shi X, Sun Q, Hou Y, Zeng H, Cao Y, Dong M, et al. Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature 2023;624:442–450.
- Elias EE, Lyons B, Muruve DA. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol 2023;19:337–350.
- 209. Wu J, Wang P, Xie X, Yang X, Tang S, Zhao J, et al. Gasdermin D silencing alleviates airway inflammation and remodeling in an ovalbumin-induced asthmatic mouse model. Cell Death Dis 2024;15:400.
- Sunyoung Park, Soyoung Cheon, Daeho Cho. The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol 2007;4:329–335.
- Zhao X, Zhang C, Hua M, Wang R, Zhong C, Yu J, et al. NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma. Oncotarget 2017;8:108571–108583.
- Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 2020;11:6339.
- Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2019;39:517–560.
- 214. Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, et al. Roles of reactive oxygen species in inflammation and cancer. MedComm (2020) 2024;5:e519.
- Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013;24:319–333.
- Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 2017;16:273–284.
- 217. Lee YG, Guruprasad P, Ghilardi G, Pajarillo R, Sauter CT, Patel R, et al. Modulation of BCL-2 in Both T Cells and Tumor Cells to Enhance Chimeric Antigen Receptor T-cell Immunotherapy against Cancer. Cancer Discov 2022;12:2372–2391.
- 218. Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, *et al.* Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun 2022;13:1199.
- Zhao L, Liu P, Mao M, Zhang S, Bigenwald C, Dutertre CA, et al. BCL2
 Inhibition Reveals a Dendritic Cell-Specific Immune Checkpoint That
 Controls Tumor Immunosurveillance. Cancer Discov 2023;13:2448–
 2469.
- 220. Ruiz-Magaña MJ, Rodríguez-Vargas JM, Morales JC, Saldivia MA, Schulze-Osthoff K, Ruiz-Ruiz C. The DNA methyltransferase inhibitors zebularine and decitabine induce mitochondria-mediated apoptosis and DNA damage in p53 mutant leukemic T cells. Int J Cancer 2012;130:1195–1207.
- 221. Lv Q, Niu H, Yue L, Liu J, Yang L, Liu C, et al. Abnormal Ferroptosis in

- Myelodysplastic Syndrome. Front Oncol 2020;10:1656.
- 222. Wang Y, Tong C, Dai H, Wu Z, Han X, Guo Y, et al. Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun 2021;12:409.
- 223. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med 2013;5:105–121.
- Hasan Ali O, Berner F, Ackermann CJ, Ring SS, Moulin A, Müller J, et al.
 Fingolimod and tumor-infiltrating lymphocytes in checkpoint-inhibitor
 treated cancer patients. Cancer Immunol Immunother 2021;70:563–568.
- 225. Oliver Metzig M, Fuchs D, Tagscherer KE, Gröne HJ, Schirmacher P, Roth W. Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene 2016;35:3399–3409.
- Guo J, Yu Z, Das M, Huang L. Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS Nano 2020;14:5075– 5089
- 227. Hou X, Yang C, Zhang L, Hu T, Sun D, Cao H, et al. Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials 2017;124:195–210.
- Dong Q, Han D, Li B, Yang Y, Ren L, Xiao T, et al. Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. Int J Biol Macromol 2023;240:124342.
- 229. Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017;46:65–83.
- 230. Cao D, Chen D, Xia JN, Wang WY, Zhu GY, Chen LW, et al. Artesunate promoted anti-tumor immunity and overcame EGFR-TKI resistance in non-small-cell lung cancer by enhancing oncogenic TAZ degradation. Biomed Pharmacother 2022;155:113705.
- 231. Wang F, Liu W, Ning J, Wang J, Lang Y, Jin X, et al. Simvastatin Suppresses Proliferation and Migration in Non-small Cell Lung Cancer via Pyroptosis. Int J Biol Sci 2018;14:406–417.
- 232. Yuan W, Ren X, Zhu J, Huang J, Zhang W, Zhang C, *et al.* Single-intra-osseous simvastatin injection suppresses cancers via activating CD8+ T cells. Biomed Pharmacother 2022;155:113665.
- 233. Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis 2019;24:312–325.
- Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, et al. Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/ HO-1/GPX4 axis. Int J Biol Sci 2023;19:1192–1210.
- 235. Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma. ACS Nano 2020;14:4816–4828.
- 236. Hu Q, Shang L, Wang M, Tu K, Hu M, Yu Y, et al. Co-Delivery of Paclitaxel and Interleukin-12 Regulating Tumor Microenvironment for Cancer Immunochemotherapy. Adv Healthc Mater 2020;9:e1901858.
- Qiu X, Qu Y, Guo B, Zheng H, Meng F, Zhong Z. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J Control Release 2022;341:498–510.
- 238. Fournel L, Wu Z, Stadler N, Damotte D, Lococo F, Boulle G, *et al.* Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 2019;464:5–14.
- 239. Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/ SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle 2020;19:1089–1104.
- 240. Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/ PELP1 axis. Cancer Lett 2019;450:22–31.

- 241. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell 2018;71:606–620.
- 242. Shenghang Wang, Jie Luo, Zhihao Zhang, Dandan Dong, Ying Shen, Yanwen Fang, et al. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy. Am J Cancer Res 2018;8:1933–1946.
- Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 2018;28:1171–1185.
- 244. Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 2016;7:e2307.
- 245. Nagpal A, Redvers RP, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res 2019;21:94.
- 246. Booth L, Roberts JL, Poklepovic A, Avogadri-Connors F, Cutler RE, Lalani AS, et al. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo. Oncotarget 2017;8:90262–90277.
- Zhao L, Peng Y, He S, Li R, Wang Z, Huang J, et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer 2021;24:642–654.
- 248. Lin S, Zang M. Effects of Apatinib Mesylate Monotherapy on the Incidence of Adverse Reactions and Immune Function in Patients with Breast Cancer after Radical Mastectomy. Evid Based Complement Alternat Med 2022;2022:4022282.
- Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 2020;51:102610.
- 250. Houessinon A, François C, Sauzay C, Louandre C, Mongelard G, Godin C, et al. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer 2016;15:38.
- 251. Jomen W, Ohtake T, Akita T, Suto D, Yagi H, Osawa Y, et al. Iron chelator deferasirox inhibits NF-κB activity in hepatoma cells and changes sorafenib-induced programmed cell deaths. Biomed Pharmacother 2022;153:113363.
- 252. Wu X, Luo H, Shi B, Di S, Sun R, Su J, et al. Combined Antitumor Effects of Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma. Mol Ther 2019;27:1483–1494.
- 253. Wang K, Zhang Z, Tsai HI, Liu Y, Gao J, Wang M, *et al.* Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ 2021;28:1222–1236.
- 254. Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discov 2019;9:1673–1685.
- 255. Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A, Nicoletti P, et al. Elucidating Compound Mechanism of Action by Network Perturbation Analysis. Cell 2015;162:441–451.
- Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017;13:81–90.
- 257. Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, et al. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 2021;12:705.
- 258. Fadaee M, Abbasi H, Maralbashi S, Baradaran B, Shanehbandi D, Dinevari MF, et al. Docosahexaenoic acid may inhibit immune evasion of colorectal cancer cells through targeting immune checkpoint and immunomodulator genes and their controlling microRNAs. Biofactors 2022;48:1137–1144.
- Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells

- on a lipid peroxidase pathway. Nature 2017;547:453-457.
- Chen JJ, Galluzzi L. Fighting Resilient Cancers with Iron. Trends Cell Biol 2018;28:77–78.
- Pisanti S, Picardi P, Ciaglia E, D'Alessandro A, Bifulco M. Novel prospects of statins as therapeutic agents in cancer. Pharmacol Res 2014;88:84–98.
- 262. Huang Y, Liu X, Zhu J, Chen Z, Yu L, Huang X, et al. Enzyme Core Spherical Nucleic Acid That Enables Enhanced Cuproptosis and Antitumor Immune Response through Alleviating Tumor Hypoxia. J Am Chem Soc 2024;146:13805–13816.
- Lu X, Chen X, Lin C, Yi Y, Zhao S, Zhu B, et al. Elesclomol Loaded Copper Oxide Nanoplatform Triggers Cuproptosis to Enhance Antitumor Immunotherapy. Adv Sci (Weinh) 2024;11:e2309984.
- Li Y, Liu J, Chen Y, Weichselbaum RR, Lin W. Nanoparticles Synergize Ferroptosis and Cuproptosis to Potentiate Cancer Immunotherapy. Adv Sci (Weinh) 2024;11:e2310309.
- Liu T, Zhou Z, Zhang M, Lang P, Li J, Liu Z, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor. J Control Release 2023;362:502–512.
- Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024;321:211–227.
- Liu X, Zhuang L, Gan B. Disulfidptosis: disulfide stress-induced cell death. Trends Cell Biol 2024;34:327–337.
- Zhong Y, Tian F, Ma H, Wang H, Yang W, Liu Z, et al. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells. Life Sci 2020;260:118077.
- 269. Skwarska A, Konopleva M. BCL-xL Targeting to Induce Apoptosis and to Eliminate Chemotherapy-Induced Senescent Tumor Cells: From Navitoclax to Platelet-Sparing BCL-xL PROTACs. Cancer Res 2023;83:3501–3503.
- Schiffer CA. Promoting Apoptosis with Venetoclax A Benefit for Older Patients with AML. N Engl J Med 2020;383:677–679.
- 271. Lee JB, Khan DH, Hurren R, et al. Lee JB, Khan DH, Hurren R, et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood 2021;138(3):234–245. Blood 2023;141:1495.
- 272. Infante JR, Dees EC, Olszanski AJ, Dhuria SV, Sen S, Cameron S, et al. Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J Clin Oncol 2014;32:3103–3110.
- 273. Bardia A, Parton M, Kümmel S, Estévez LG, Huang CS, Cortés J, et al. Paclitaxel With Inhibitor of Apoptosis Antagonist, LCL161, for Localized Triple-Negative Breast Cancer, Prospectively Stratified by Gene Signature in a Biomarker-Driven Neoadjuvant Trial. J Clin Oncol 2018; JCO2017748392.
- 274. Chesi M, Mirza NN, Garbitt VM, Sharik ME, Dueck AC, Asmann YW, et al. IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat Med 2016;22:1411–1420.
- Luo J, Mu J, Zhang M, Zhao B, Liu L. SPAG6-silencing enhances decitabine-induced apoptosis and demethylation of PTEN in SKM-1 cells and in a xenograft mouse model. Leuk Lymphoma 2021;62:2242–2252.
- 276. Fransen MF, Schoonderwoerd M, Knopf P, Camps MG, Hawinkels LJ, Kneilling M, et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 2018;3:e124507.
- Marcus A, Waks T, Eshhar Z. Redirected tumor-specific allogeneic T cells for universal treatment of cancer. Blood 2011;118:975–983.
- 278. Gielecińska A, Kciuk M, Yahya EB, Ainane T, Mujwar S, Kontek R. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim Biophys Acta Rev Cancer 2023;1878:189024.
- 279. Cunningham TJ, Tabacchi M, Eliane JP, Tuchayi SM, Manivasagam S, Mirzaalian H, et al. Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. J Clin Invest 2017;127:106–116.
- Saber S, Hasan AM, Mohammed OA, Saleh LA, Hashish AA, Alamri MMS, et al. Ganetespib (STA-9090) augments sorafenib efficacy via

- necroptosis induction in hepatocellular carcinoma: Implications from preclinical data for a novel therapeutic approach. Biomed Pharmacother 2023;164:114918.
- Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 2021;18:280–296.
- 282. Wang X, Hu R, Song Z, Zhao H, Pan Z, Feng Y, et al. Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022;547:215880.
- Roh JL, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 2017;11:254–262.
- 284. Button RW, Lin F, Ercolano E, Vincent JH, Hu B, Hanemann CO, et al. Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis 2014;5:e1466.
- Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, et al. Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med 2018;16:201.
- 286. Yin H, Liu YG, Li F, Wang LQ, Zha JH, Xia YC, *et al.* Resibufogenin suppresses growth and metastasis through inducing caspase-1-dependent pyroptosis via ROS-mediated NF-κB suppression in non-small cell lung cancer. Anat Rec (Hoboken) 2021;304:302–312.
- 287. Shen LD, Qi WH, Bai JJ, Zuo CY, Bai DL, Gao WD, et al. Resibufogenin inhibited colorectal cancer cell growth and tumorigenesis through triggering ferroptosis and ROS production mediated by GPX4 inactivation. Anat Rec (Hoboken) 2021;304:313–322.
- 288. Zhang Z, Zhang H, Li D, Zhou X, Qin Q, Zhang Q. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med 2021;25:8159–8168.
- 289. Wang C, Zhang R, He J, Yu L, Li X, Zhang J, et al. Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nat Commun 2023;14:3877.
- Roemhild K, von Maltzahn F, Weiskirchen R, Knüchel R, von Stillfried S, Lammers T. Iron metabolism: pathophysiology and pharmacology. Trends Pharmacol Sci 2021;42:640–656.
- Calbay O, Padia R, Akter M, Sun L, Li B, Qian N, et al. ASC/inflammasome-independent pyroptosis in ovarian cancer cells through translational augmentation of caspase-1. iScience 2023;26:108408.
- 292. Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY, Li CL, et al. Targeting ATA-D3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res 2023;33:215–228.
- 293. Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, et al. Cisplatin Induces Pyroptosis via Activation of MEG3/NLRP3/caspase-1/GSDMD Pathway in Triple-Negative Breast Cancer. Int J Biol Sci 2021;17:2606–2621.
- 294. Lv J, Wei Y, Yin JH, Chen YP, Zhou GQ, Wei C, et al. The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat Med 2023;29:1424–1436.
- Shen X, Wang H, Weng C, Jiang H, Chen J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis 2021;12:186.
- 296. Yue E, Tuguzbaeva G, Chen X, Qin Y, Li A, Sun X, et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine 2019;56:286–294.
- Wang L, Jiang G, Jing N, Liu X, Li Q, Liang W, et al. Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota. Food Funct 2020;11:3180–3190.
- 298. Park SY, Jeong KJ, Poire A, Zhang D, Tsang YH, Blucher AS, et al. Irreversible HER2 inhibitors overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified luminal breast cancer. Cell Death Dis 2023;14:532.
- Harding JJ, Piha-Paul SA, Shah RH, Murphy JJ, Cleary JM, Shapiro GI, et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract cancers. Nat Commun 2023;14:630.

- 300. Monteleone L, Speciale A, Valenti GE, Traverso N, Ravera S, Garbarino O, et al. PKCα Inhibition as a Strategy to Sensitize Neuroblastoma Stem Cells to Etoposide by Stimulating Ferroptosis. Antioxidants (Basel) 2021;10:691.
- 301. Grignano E, Cantero-Aguilar L, Tuerdi Z, Chabane T, Vazquez R, Johnson N, et al. Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: links to iron metabolism and metallothionein. Cell Death Discov 2023;9:97.
- 302. Xiao X, Li Y, Wang Y, Zhang Y, Chen J, Liu W, et al. Dihydroartemisinin inhibits Lewis Lung carcinoma progression by inducing macrophages M1 polarization via AKT/mTOR pathway. Int Immunopharmacol 2022;103:108427.
- 303. Yuan L, Jia GD, Lv XF, Xie SY, Guo SS, Lin DF, et al. Camrelizumab combined with apatinib in patients with first-line platinum-resistant or PD-1 inhibitor resistant recurrent/metastatic nasopharyngeal carcinoma: a single-arm, phase 2 trial. Nat Commun 2023;14:4893.
- Liu M, Li YJ, Zhu YX, Sun Y, Wang GF. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. Mol Plant Pathol 2021;22:564–579.
- 305. Morikawa N, Tachibana M, Ago Y, Goda H, Sakurai F, Mizuguchi H. LY341495, an mGluR2/3 Antagonist, Regulates the Immunosuppressive Function of Myeloid-Derived Suppressor Cells and Inhibits Melanoma

- Tumor Growth. Biol Pharm Bull 2018;41:1866-1869.
- 306. Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 2001;15:1633–1640.
- 307. Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy. Adv Mater 2023;35:e2212267.
- Li Q, Chao Y, Liu B, Xiao Z, Yang Z, Wu Y, et al. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials 2022;291:121880.
- 309. Li T, Zhang Y, Zhu J, Zhang F, Xu A, Zhou T, et al. A pH-Activatable Copper-Biomineralized Proenzyme for Synergistic Chemodynamic/ Chemo-Immunotherapy against Aggressive Cancers. Adv Mater 2023;35:e2210201.

How to cite this article: Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, *et al.* Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Intern Med 2025; 13: 10-32.