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ABSTRACT

In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell
death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity.
Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the
tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression
and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis,
pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death
modalities. We then discuss how these processes activate antigen-presenting cells, facilitate
the cross-priming of CD8* T cells, and trigger anti-tumor immune responses, highlighting the
complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore,
we summarize potential drugs and nanoparticles that can induce or inhibit these emerging
RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing
challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review
enhances our understanding of the molecular mechanisms and biological impacts of RCD-
based therapies, providing new perspectives and strategies for cancer treatment.
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INTRODUCTION a crucial role in organism growth and
development, as well as in maintaining internal
homeostasis by eliminating infected, damaged,
or self-destructing cells.l”! Dysregulated
of RCD can contribute to the onset and
progression of cancers.I"”l Resistance to cell
death is one of the hallmarks of tumors
and a key mechanism of tumor resistance

to therapy." Targeting RCD has been shown

Regulated cell death (RCD), also known as
Programmed Cell Death (PCD), involves
cell death regulated by specific signaling
pathways.l'”l Various forms of RCD
have been identified, including apoptosis,
necroptosis, pyroptosis, ferroptosis, and
cuproptosis.**’l These processes play
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to not only directly destroy tumor cells but also enhance the
organism’s anti-tumor immunity, presenting promising clinical
prospects for cancer therapy.®'!

The immune system is integral to preventing tumor
development, progression, and metastasis, as well as
modulating responses to treatment.!">"¥ It has been reported
that tumor cells undergoing RCD can release tumor-
associated antigens (TAAs), damage-associated molecular
patterns (IDAMPs), and pro-inflammatory cytokines, which
elicit secondary immunity and affect the tumor immune
microenvironment.[>'"1 These effects may enhance
immunostimulation or disrupt immunosuppression,
leading to T-cell activation, dendritic cell (DC) maturation,
proliferation, and tumor infiltration, potentially acting
synergistically with existing immunotherapies."'” RCD has
multiple effects on the immune response, RCD exerts
a suppressive effect on immune response. For instance,
during apoptosis, the activation of caspases leads to the
downregulation of proteins such as cyclic GMP-AMP
synthase (cGAS), MAVS, and interferon regulatory factor
3 (IRF3), which are essential for the activation of innate
immunity."! These studies suggest that a summary of
the relationship between RCD and tumor immunity is
necessary to provide precisely targeted guidance for tumor
immunotherapy.

Tumor cells evade immune surveillance by reducing their
immunogenicity and establishing immunosuppressive
networks. Immunotherapies, including immune
checkpoint blockade (ICB), chimeric antigen receptor
T (CART) cells, cytokine therapy, and dendritic
cell vaccines, are designed to stimulate anti-tumor
immune responses.””?! However, some patients exhibit
a limited response to immunotherapy. Several studies
have demonstrated that immunotherapies can have
synergistic effects when combined with radiotherapy and
chemotherapy.”*! Consequently, the combination of
immunotherapy with other treatment modalities is gaining
significant attention.”’?* Moreover, targeting RCD can
enhance the efficacy of immune checkpoint inhibitors
like anti-PD-1 antibodies, thereby improving anticancer
outcomes.” Given the immunomodulatory effects of
RCD, therapies that focus on RCD present a promising
strategy to synergistically enhance immunotherapy and
inhibit tumor development.”” " Therefore, it is highly
desirable to review the potential of targeting RCD to
synergize with anticancer immunity.

Currently, our understanding of the interactions among
various RCD pathways remains limited. Additionally, the
potential applications of these types of RCD in anticancer
immunity have yet to be thoroughly explored. This gap
presents a critical area for future research that could lead

to significant breakthroughs in cancer treatment strategies.
In this review, we first delineate the molecular mechanisms
of five different types of RCD, including apoptosis,
necroptosis, pyroptosis, ferroptosis, and the recently
discovered cuproptosis, along with their crosstalk. Next,
we discuss their role in the anti-tumor immune response.
We also summarized numerous clinically approved drugs
that can suppress tumors by inducing RCD and affecting
antitumor immunity. Finally, we discuss existing challenges
and future prospects for targeting RCD in anticancer
immunity.

CORE MOLECULAR MECHANISMS
OF DIFFERENT CELL DEATH

Apoptosis

Apoptosis, the earliest identified form of RCD,P? is
characterized by distinct morphologic features, including
cell shrinkage, chromatin condensation, and tight packaging
of organelles and cytoplasm.’ This process is mediated
by caspases, a family of cysteine-aspartic proteases that
cleave specific target proteins, leading to the formation
of apoptosome.P Eventually, apoptosomes are rapidly
phagocytosed by adjacent cells.’*

Mechanistically, apoptosis can be initiated via two main
pathways: the intrinsic and extrinsic pathways.”” The
intrinsic pathway, also known as the mitochondrial pathway,
is triggered by intracellular stressors such as DNA damage,
growth factor or nutrient deprivation, and endoplasmic
reticulum (ER) stress. ! Key processes of apoptosis are
subsequently activated, encompassing the induction of
mitochondrial outer membrane permeabilization (MOMP)
and the release of soluble proteins, such as Cytochrome
¢, through the pore formed in the mitochondrial outer
membrane.’’¥ MOMP is tightly regulated by the BCL-
2 family proteins, which include effector proteins (BAX
and BAK) , pro-apoptotic BH3-only proteins, and anti-
apoptotic proteins, such as BCL-2, BCL-X , BCL-W,
BCL-2-A1 and MCL1.P**l Cytochrome ¢, released
from the intermembrane space, binds and activates the
adaptor molecule apoptotic protease-activating factor 1
(APAF1).2 This activation leads to the oligometization
of APAF1 and the recruitment of pro-caspase 9, forming
a complex known as the apoptosome.[’! The activation
of caspase 9 then catalyzes the cleavage and activation
of executioner caspases 3 and 7, ultimately resulting in
apoptosis.

The extrinsic pathway also referred to as the death receptor
pathway, provides an alternative route for the activation of
caspases 3 and 7 through the mediation of caspase 8.1
Ligands such as Fasl, tumor necroptosis factor (TNF), or
TNF-related apoptosis-inducing ligand (TRAIL) bind to
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their corresponding receptors FasL, TNFR1/TNFR2, and
death receptor 4 (DR4)/DR5 on the plasma membrane
respectively.***! Upon ligand binding, adaptor molecules
FAS-associated via the death domain (FADD) and
TNFRSF1A-associated via the death domain (TRADD)
are recruited to the receptor complex.’? These adaptors
contain death domains that facilitate the recruitment of
pro-caspase 8 to the death-inducing signaling complex
(DISC), where caspase 8 is activated.’? The activation of
caspase 8 subsequently leads to the cleavage and activation
of caspase 3/7, ultimately triggering apoptosis (Figure
1A).5

Necroptosis

Necroptosis has been identified as an alternative form of
cell death to apoptosis, mediated by the engagement of
death domain receptors by their respective ligands.*>!
The morphologic characteristics of necroptosis include
cell swelling, ruptured plasma membrane, and loss of
cellular and organelle integrity. The passive leakage
of intracellular contents resulting from membrane
rupture ultimately leads to inflammation and immune
responses.”®

The necroptotic pathway can be initiated by activating
RIPK3 through various death domain receptors that recruit
their corresponding adaptor proteins. RIPK3 contains
a C-terminal RIP homotypic interaction motif (RHIM),
which is crucial for its activation and for mediating the
initiation of necroptosis.”” Upon binding of TNF to
TNFR1, complex I is formed, which includes TRADD,
FADD, RIPK1, TRAF, and cIAP1 and cIAP2. In cases
where caspase 8 activity is inhibited, RIPK1 binds to
RIPK3 through the shared RHIM, thereby facilitating the
recruitment of additional RIPK3 molecules to form an
initial RIPK1-RIPK3 heterodimeric complex.”>**6! This
concentration of RIPK3 not only promotes homodimeric
interactions among RIPK3 molecules but also activates
RIPK3 through autophosphorylation. Furthermore, TRIF-
dependent Toll-like receptors (TLR3 and Toll-like receptor
4 [TLR4]) can activate RIPK3 through RHIM-dependent
interactions.[*l Additionally, the interferon (IFN)-
independent expression of the DNA-dependent activator
of IFN regulatory factors, DAI (also known as ZBP1 or
DLM-1), contains an RHIM that can activate RIPK3.1!
Subsequently, activated RIPK3 phosphorylates mixed
lineage kinase domain-like protein (MLKL). Following
phosphorylation, oligomerized MLKL (pMLKL) forms
the “necrosome” complex, which then translocates to the
plasma membrane. [ This translocation increases plasma
membrane permeability, leading to membrane rupture
and the release of DAMPs.”! Consequently, necroprosis
occurs, triggering inflammatory and immune responses

(Figure 1B).

Pyroptosis

Proinflammatory PCD, first identified in macrophages
following pathogen infection, was termed pyroptosis in
2001 by Brad T. Cookson and his colleagues.!®® Pyroptosis
is characterized by cell swelling, lysis, and the release of
many proinflammatory factors.”""! Additionally, pyroptosis
involves DNA damage and chromatin condensation,
features that are reminiscent of apoptosis.”"! Pyroptosis is
executed by inflammasome-activated gasdermin (GSDM),
a member of a large family of proteins known for their
novel membrane pore-forming activity.">" Mechanistically,
GSDMs are cleaved by caspases, which liberate the pore-
forming domain (PFD) from the repressor domain, resulting
in the formation of pores in the cell membrane.["!

Current research has confirmed that the activation of
pytoptosis can occur through multiple pathways.>%)
Pyroptosis resulting from cleavage of GSDMD by
caspase 1,4, 5,and-11, is one of the main approaches."”
Pathogens-associated molecular patterns (PAMPS) and
DAMPs initiate the activation of NLRP3 inflammasome,
which then recruits and activates caspase 1.7 The cleavage
of GSDMD by caspase 1 leads to the formation of pores in
the plasma membrane and the release of IL-1f3 and I1.-18,
resulting in pyroptosis through the canonical pathway.!
Moreovert, caspase 11 in mice and caspase 4/5 in humans
can directly bind lipopolysaccharide (LPS) in response to
LPS exposure, leading to GSDMD cleavage and subsequent
pytoptosis via a non-canonical pathway.***? Furthermore,
ESCRT-dependent membrane repair mechanisms can
inhibit pyroptosis downstream of GSDMD activation.*”!

Multiple studies ate discovering that other GSDMs also
form cytotoxic pores and implicate GSDMs in various
pathways of pyroptosis.*¥ Notably, in instances where
the canonical NLRP3 pathway is inhibited, pyroptosis
can still be induced in macrophages through the cleavage
of GSDME by caspase 3.5 Specifically, the cleavage
of GSDMC by caspase 8 following TNFa treatment can
also induce pyroptosis.”! Additionally, pyroptosis may be
triggered by the cleavage of GSDMB by GZMA from
cytotoxic lymphocytes.® ¥ Additionally, the streptococcal
pyrogenic exotoxin B (SpeB), a protease virulence
factor secreted by the major human pathogen group
A Streptococcus (GAS), cleaves GSDMA and triggers
pyroptosis.””! These findings suggest that the gasdermin
family likely serves as pivotal effectors of pyroptosis
(Figure 1C).0>%!

Ferroptosis

Ferroptosis is an iron-dependent form of cell death
characterized by lipid peroxidation in the plasma
membrane.?*? Morphologically, it is marked by reduced
mitochondrial volume, fractured mitochondrial outer
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Figure 1: Molecular mechanisms and crosstalk among five cell death modalities: Apoptosis, Necroptosis, Pyroptesis, Ferroptosis, and Cuproptosis. (A)
Apoptosis is a programmed form of cell death executed by activating intrinsic (mitochondrial pathway) and extrinsic (death receptor pathway) signaling
pathways. These pathways ultimately activate caspases, enzymes that degrade key proteins within the cell, leading to orderly cellular disassembly and
death. (B) Necroptosis is a controlled form of necrosis, considered an alternative to apoptosis, particularly when apoptotic pathways are inhibited. It is
facilitated by activating specific signaling proteins, such as RIPK1, RIPK3, and MLKL, promoting cell membrane rupture and subsequent leakage of cellular
contents. (C) Pyroptosis is a form of cell death dependent on inflammasomes and caspases (such as Caspase-1, Caspase-4, Caspase-5, Caspase-11). This
form of death involves gaseous swelling, ultimately leading to cell membrane rupture and the release of inflammatory mediators like IL-1(3 and IL-18.(D)
Ferroptosis is a form of cell death driven by iron-dependent oxidative stress. Its hallmark is the accumulation of lipid peroxidation within the cell, primarily
caused by uncontrolled iron-catalyzed reactions, leading to the loss of cell membrane integrity. (E) Cuproptosis is a form of cell death induced by copper.
Copper ions directly interact with multiple mitochondrial fatty acid dehydrogenases, leading to protein aggregation and inactivation, thereby impairing
mitochondrial function, and resulting in cell death. Caspase-6 plays a critical crosstalk role in PANoptosis, mutually activating with caspase-3/7 and
cleaving downstream caspase-8 to promote apoptosis. It also facilitates apoptosis by cleaving RIPK1 and promotes necroptosis through interaction with
RIPK3. Additionally, caspase-6 triggers the activation of the NLRP3 inflammasome mediated by ZBP1, regulating pyroptosis. Caspase-8 directly cleaves
GSDMD to induce pyroptotic cell death, while caspase-9 promotes extrinsic apoptosis. GSDMD acts as an executor of multiple cell death pathways;
ROS are implicated in triggering both ferroptesis and pyroptosis; Iron overload, a critical driver of ferroptesis, facilitates the opening of the mitochondrial
permeability transition pore (MPTP), intensifying RIP1 phosphorylation and leading to necroptosis.
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membranes, diminished mitochondrial cristae, and a normal-
size nucleus without chromatin condensation.”” Under normal
physiological conditions, a delicate balance among iron,
ROS, and lipids is crucial for cellular function. However,
disruption of this balance leads to lipid peroxidation that
surpasses the capacity of internal antioxidants, ultimately
resulting in ferroptosis.”*1%

A key aspect of ferroptosis is that free polyunsaturated
fatty acids must be esterified to membrane phospholipids
to induce lethality upon peroxidation.!""" Acyl-CoA
synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3)
are the main enzymes involved in the biosynthesis and
esterification of polyunsaturated fatty acid phospholipids
(PUFA-PLs), respectively.l” Iron serves as a cofactor for
the lipoxygenase (LOX) family or NADPH-cytochrome
P450 reductase (POR), facilitating enzymatic lipid
peroxidation.!""”" Furthermore, Fe**, as an unstable
form of iron, can participate in Fenton and Fenton-like
reactions, catalyzing the formation of free radicals that
contribute to non-enzymatic lipid peroxidation.!'?>!%!
Enhanced iron uptake through the transferrin receptor
(TFRC) promotes ferroptosis.l'”! Additionally, the
degradation of the intracellular iron exporter SLC40A1/
ferroportin-1 enhances susceptibility to ferroptosis iz
vitro.""1%% Nuclear receptor coactivator 4 (NCOA4)-
induced ferritin autophagy, also known as ferritinophagy,
selectively degrades ferritin, elevating intracellular
iron levels and accelerating lipid peroxidation, thereby
promoting ferroptosis.!""!

Glutathione (GSH), a component of the cellular
antioxidative system, is essential in eliminating excessive
ROS.M" Inhibition of the cystine-glutamate antiporter
system Xc- leads to GSH depletion and inactivation
of the glutathione-dependent lipid hydroperoxidase
glutathione peroxidase 4 (GPX4). GPX4, which depends
on GSH as a reducing cofactor, functions to prevent
ferroptosis."'*!'"l The GSH-GPX4 axis is currently
regarded as the most important mechanism for resisting
ferroptosis. Additionally, three alternative mechanisms
exist that resist ferroptosis independently of GPX4.
Ferroptosis suppressor protein 1 (FSP1) mitigates
ferroptosis mediated by ubiquinone."* Furthermore,
the enzyme dihydroorotate dehydrogenase (DHODH)
reduces CoQ to CoQH2 in the mitochondrial inner
membrane, thereby alleviating ferroptosis, particularly
in cases of mitochondrial GPX4 deficiency.'"”® Recent
evidence also indicates that the enzyme MBOAT1/2
inhibits ferroptosis by selectively increasing cellular levels
of PE-MUFA while reducing cellular levels of PE-PUFA.
This anti-ferroptosis pathway operates independently of
GPX4 or FSP (Figure 1D).I'"™!

Cuproptosis

Cuproptosis, a term introduced by Peter Tsvetkov and
colleagues in 2022, describeds a newly discovered form
of RCD that relies on the accumulation of intracellular
copper.""! Unlike other forms of RCD, which are typically
characterized by distinctive morphological changes, the
morphological features of cells undergoing cuproptosis
remain undefined, necessitating further research.!'”

Copper is a trace element essential to various signaling
pathways and tumor-related pathophysiology within the
human body.""¥ The cytotoxicity of the copper ionophores
is attributed to the accumulation of intracellular copper
rather than the carrier itself.l''”) For a long time, the
mechanism by which elesclomol, a copper ionophore,
transports excess copper ions into cells to induce cell death
has been a subject of controversy, with many researchers
categorizing this process as apoptosis.''”'*! However,
recent studies have established cuproptosis as a distinct,
non-apoptotic form of cell death that is closely associated
with mitochondrial respiration and the lipoic acid (LA)
pathway. Mechanistically, elesclomol facilitates the transport
of Cu (II) into mitochondria, directly targeting the
mitochondrial enzyme ferredoxin 1 (FDX1), which reduces
Cu (II) to the more toxic Cu () . Subsequently, Cu (1)
binds immediately to lipoylated DLAT, a component
of the tricarboxylic acid (TCA) cycle, promoting the
oligomerization of lipoylated DLAT and destabilizing iron-
sulfur (Fe-S) cluster proteins. This destabilization leads to
proteotoxic stress and ultimately results in cell death.!')

As a novel type of RCD, our understanding of cuproptosis
is still limited. Nonetheless, existing research suggests
that targeting cuproptosis could represent a potentially
effective treatment strategy for eliminating tumors. Further
investigations are crucial to fully elucidate the mechanisms
and cellular morphology associated with cuproptosis, as
well as to identify specific inducers and inhibitors of this
cell death pathway (Figure 1E).

Crosstalk among components of RCD

RCD pathways do not appear to be isolated signaling cascades.
Evidence indicates that pathways regulating different RCD
patterns exhibit crosstalk at vatious levels.”! For example,
the pathways of apoptosis, necroptosis, and pyroptosis
(collectively referred to as PANoptosis) can transform
into one another under certain conditions."*!! Research
has revealed that caspase-6 plays a crosstalk role in the
mechanistic pathway among PANoptosis."*!! In apoptosis,
caspase-3 activates caspase-6, which subsequently cleaves
downstream caspase-8, underscoring its critical role in
this process.'” Additionally, caspase-6 can be activated
by caspase-3/7 and can reciprocally activate these caspases
during apoptosis, thereby establishing itself as both an
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initiator and executor within the apoptotic pathway.!*>!*!

Caspase-06 also plays a dual role in regulating necroptosis.
It has been reported to promote apoptosis by cleaving
RIPK1, which in turn inhibits necroptosis by suppressing
the production of inflammatory cytokines.'”! Conversely,
caspase-6 can promote necroptosis through its
interaction with RIPKS3, facilitating the binding of
RIPK3 and ZBP1.["*! Furthermore, caspase 6 promotes
ZBP1-mediated activation of NLRP3 inflammasome,
which mediates pyroptosis.*"'*"*!l Notably, the caspase
family plays a significant role in the regulation of
various cell death.™ In particular conditions, caspase-8,
traditionally viewed as an apoptosis initiator, can directly
cleave GSDMD to induce pyroptosis.['*>** Similarly,
caspase-9, which is involved in the initiation of extrinsic
apoptosis, is essential for necroptosis and regulates the
formation of the necrosome.*!

Studies have demonstrated that GSDMD serves as an
executioner for multiple cell death pathways.!’*"7 In
Lrrk2G2019S macrophages, mitochondrial ROS guides
GSDMD to mitochondria following inflammasome
activation, where mitochondrial GSDMD (mito-GSDMD)
converts cell death from pyroptosis to necroptosis.!'**!
ROS are implicated in triggering both ferroptosis and
pyroptosis.’? Elevated levels of ROS also promote
the activation of the NLRP3 inflammasome, leading to
pyroptosis."***! Furthermore, inducers of ferroptosis have
been found to cause ER stress and enhance the expression
of the pro-apoptotic molecule PUMA without triggering
apoptosis.'*? Iron ovetload, a key dtiver of ferroptosis,
facilitates the opening of the mitochondrial permeability
transition pore (MPTP) , which exacerbates RIP1
phosphorylation and leads to necroptosis.'*! Additionally,
ferroptosis inducers, such as sorafenib and erastin have
been shown to promote cuproptosis by inhibiting system
Xc-, thereby downregulating intracellular GSH synthesis,
as GSH acts as a copper chelator."* Recent findings
also indicate that copper-driven cascade can trigger the
maturation of dendritic cells and initiate intense T cell-
mediated pyroptosis,'*! highlighting the role of copper in
pyroptosis (Figure 1). However, whether copper-dependent
cuproptosis is associated with ferroptosis, pyroptosis and
other RCD still needs further investigations.

THE ROLE OF RCD IN CANCER
IMMUNE RESPONSE

Apoptosis in anti-tumor immunity

Cell death modalities are classified based on their
immunogenic potential into non-immunogenic types,
such as apoptosis, and immunogenic types, such as
necroptosis, pyroptosis, ferroptosis, and cuproptosis.
Unlike other forms of cell death, apoptotic cells typically

cleared rapidly by phagocytes are traditionally considered
incapable of activating innate immunity and instead possess
anti-inflammatory properties, a phenomenon referred
to as “innate immune tolerance”, crucial for normal
physiological processes within the organism."*! Previous
studies have shown that during apoptosis, mitochondrial
DNA (mtDNA) and cytochrome c are released into the
cytoplasm, where the mtDNA robustly activates the
cGAS-stimulator of interferon genes (STING) pathway,
leading to IFN-I production and inflammatory responses.
In 2014, publications from the teams of Richard Flavell
and Benjamin Kile concurrently highlighted the pivotal role
of apoptotic caspases in maintaining this innate immune
silence."*"1*l Subsequent research by Jiang Z and colleagues
demonstrated that activated CASP3/6/7 can effectively
block mtDNA-induced cGAS-STING activation by
cleaving ¢cGAS and IRF3, thereby preventing IFN-I
production and inflammatory responses.”!! Additionally,
cleavage of MAVS and IRF3 thoroughly blocks RIG-I-
MAVS mediated innate immune activation. These findings
elucidate how apoptosis ensures the critical aspect of
“innate immune silence”. Caspases have also been shown
to indirectly inactivate DAMPs, such as HMGB1.!'"
Blocking caspases in conjunction with MOMP can activate
NF-kB and induce a mitochondrial DNA-mediated TEN-1
response, thus triggering a robust ICD.["""*" Consistently,
caspase inhibition has been shown to induce anti-tumor
activity and lead to tumor regression.

However, under specific conditions, apoptotic cells can
exhibit immunogenic properties. For example, certain
anti-tumor therapies, including chemotherapeutic drugs,
gamma-irradiation, or photodynamic therapy, can induce
a specific form of apoptosis with immunostimulatory or
adjuvant-like properties, termed immunogenic apoptosis
(IA).'The stimulatory effects of chemotherapeutic drugs
and ionizing radiation may mobilize pattern recognition
receptors (PRRs) such as cGAS.'""! In such cases,
increased mitochondrial membrane permeability following
therapy can activate the cGAS-stimulator of the IFN genes
pathway, leading to the release of mitochondrial DNA.!!
Additionally, during cancer therapy, the phagocytic capacity
of phagocytes may be overwhelmed by a large number
of dying cells. This can lead to secondary necrosis of
apoptotic cells, subsequent release of DAMPs into the
microenvironment, and thereby provoking inflammation
and immune responses.!'”?

Necroptosis in anti-tumor immunity

Necroptosis plays a crucial role in stimulating tumor
immunogenicity and enhancing anti-tumor immunity.!'*’!
This form of cell death not only triggers the activation
and assembly of death-inducing proteins but also
stimulates the transcription of danger signals, which are
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subsequently released into the tissue microenvironment
upon cell dissolution. The DAMPs released by tumor
cells undergoing necroptosis activate DCs, leading
to the maturation and activation of CD8" T cells,
thereby enhancing their tumor-killing function.>" The
immunogenicity of necroptosis largely depends on the
synergistic action of RIPK1 activation and NF-«kB signal
transduction.!”™ The activation of RIPK1 and RIPK3
not only contributes to the transcriptional induction of
DAMPs, which is then dissolved and released through
MLKL-mediated cell rupture, but also triggers NF-xB
and IFN signaling pathways.['”>" As the release of
intracellular DAMPs promotes inflammation, necroptosis
is also considered an inflammatory form of cell death. For
instance, in cervical cancer cells, tumor cells undergoing
necroptosis release IL-1a, a necessary precursor for
DCs’ production of IL.-12, which is essential for anti-
tumor responses.* Similatly, the release of IL-la and
the activation of DCs are strictly dependent on RIPK3
expression in tumor cells. The NF-xB signaling pathway
induces the production of cytokines such as TNE, immune-
inducing factors like CC chemokine ligand 2 (CCL2), CXC
chemokine ligands 1/8/9 (CXCL1/8/9), and members
of the I1.-6 and IL.-1 families, and IFN-1.1"*" Additionally,
research by Yatim e a/. underscores the necessity of
NF-xB in initiating immune responses and its interplay
with the TME during necroptosis.'”” In necroptosis, the
inflammatory mediators released from dying cells are
insufficient to activate CD8" T cells alone, and decoupling
NF-kB signaling from necroptosis reduces the efficiency
of initiating immune responses. MLKL expression in
tumors significantly boosts T cell immunity against tumor
neoantigens, leading to a marked increase in antitumor
activity."*"'*! Recent studies have shown that the activation
of the ZBP1-MLKL pathway can regulate the release of
mitochondrial DNA following radiotherapy, significantly
boosting the anti-tumor immune response, and offering a
new therapeutic strategy to counteract radiation therapy
resistance.'””) Notably, a study demonstrated that in a
mouse tumor model lacking DAMP receptor expression,
fibroblasts undergoing necroptosis still suppressed tumor
growth. This suggests that fibroblasts within the TME
can contribute to immune responses through necroptosis,
independent of DAMP release mediated by MLKL-
dependent cell lysis (Figure 2).1>4

Pyroptosis in anti-tumor immunity

Pyroptosis is an autonomous form of PCD that triggers
inflammatory responses, characterized by the progressive
swelling and eventual rupture of the cell membrane, leading
to the release of cellular contents and the activation of
immune responses. This inflammatory mechanism plays
a crucial role in various diseases and is pivotal in cancer
immunotherapy. In 2020, Judy Lieberman and colleagues

reported that granzyme B (GZMB) from natural killer
(NK) cells could directly cleave GSDME, activating
pyroptosis in cancer cells, further stimulating antitumor
immune responses, and inhibiting tumor growth.!'®’]
Upon activation, GSDM proteins perforate the cell
membrane, causing pyroptosis and releasing numerous
cytokines and danger signal molecules, which activate the
immune system and provoke inflammatory responses.
Even a minor proportion of tumor cells undergoing
pyroptosis can significantly modulate the tumor immune
microenvironment, activating potent T cell-mediated
antitumor immune responses that reduce tumor size.'*"

Pyroptosis is closely associated with inflammatory
responses, with dying cells releasing I1.-1 family cytokines
and HMGBI1. IL-1B and 11.-18, both members of the
IL-1 family, are major pro-inflammatory cytokines
released through Caspase-1 activation during immune
cell pyroptosis. IL-1f is known to inhibit mesenchymal-
epithelial transition (MET) in tumor cells, enhance T cell
antigen recognition, and promote the proliferation of
antigen-specific CD8* T lymphocytes."1I1.-18 enhances
the ability of T cells stimulated by anti-CD3 to produce
IFN-y, which exerts antitumor effects by inhibiting the
secretion of immunosuppressive cytokines by regulatory T
cells (Tregs) and triggering the activation and proliferation
of CD8" T lymphocytes, inducing the production of
GZMB, activating apoptotic proteins, and degrading anti-
apoptotic proteins to eliminate cancer cells.""™"" Besides
IL-1B and I1.-18, HMGBT1 interacts with TLR4 to activate
macrophages and secrete tumor necrosis factor, facilitating
innate immune responses. HMGB1 also participates in
the migration of mature DCs, inducing cytotoxic T-cell
infiltration and MHC-II upregulation in DCs, thereby
enhancing antitumor activity."”""'" Furthermore, the release
of IL-6 from pyroptotic cells contributes to adaptive
responses by increasing cell migration, differentiation,
and CD8" T cell antibody production, inhibiting Treg
differentiation, and preventing macrophage death.!” These
inflammatory cytokines largely exert their antitumor effects
by influencing cytotoxic lymphocytes or modifying the
tumor microenvironment to mobilize a stronger immune
response.

The GSDM protein family is central to pyroptosis and
functions as tumor suppressor genes.'” GSDMB triggers
pyroptosis either through its own cleavage or by inducing
the cleavage of GSDMD. On one hand, IFN-y secreted
by NK cells or CD8" T lymphocytes can upregulate the
expression of GSDMB in esophageal and colorectal
adenocarcinoma cells. Subsequently, GSDMB is cleaved by
granzyme A, triggering pyroptosis and facilitating tumor
clearance. On the other hand, GSDMB can also engage
in the non-canonical pathway of pyroptosis by enhancing
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Figure 2: Necroptosis in Tumor Immunity. The immunogenicity of necroptosis largely depends on the synergistic action of RIPK1 activation and NF-«B signaling.
Tumor cells undergoing necroptosis release DAMPs (such as TNF and the IL-1 family), which activate dendritic cells (DCs), leading to the maturation and
activation of CD8* T cells and enhancing their tumor-killing function. Tumor cells promote anti-tumor responses by releasing IL-1c, which stimulates DCs to
produce IL-12. Additionally, fibroblasts within the tumor microenvironment can contribute to the immune response through necroptosis, independent of NMLKL-

dependent cytolysis-mediated DAMP release.

Caspase-4 activity and the cleavage of GSDMD.*"" Studies
have shown that even with intact Caspase-1, shRNA
knockdown of GSDMD in mouse bone marrow-derived
macrophages inhibits pyroptosis and downregulates 1L-
1B levels.' Additionally, the amount of GSDMD in
cytotoxic T lymphocytes (CTLs) correlates positively
with their cytotoxic response against lung cancer cells.
In activated CTL OT-1 cells, upregulation of GSDMD
aligns with CD8A, GZMB, and IFNG, markers of CD8"
T lymphocytes.'”? CD8" T cells, by secreting GZMA
and GZMB, cleave GSDMB/D/E, thereby inducing
pytroptosis in cancer cells.?'™ Furthermore, CTL-induced
pyroptosis is mediated by Caspase-4. Consequently, in
the non-small cell lung cancer cell line H1299, shRNA-
mediated silencing of Caspase-4 diminishes CTL activation
and GSDMD-induced pyroptosis. Beyond lung cancer,
downregulation of GSDMD correlates with reduced
cytolysis in the ovalbumin-expressing Lewis lung cancer
cell line 3LL-OVA.I"" Increased expression of GSDME
enhances phagocytosis of tumor cells by tumor-associated
macrophages (TAM) and augments the quantity and
functionality of NK cells and CD8* T lymphocytes within
the tumor milieu.'*”) Notably, CD8" T cells facilitate the
delivery of ribonuclease A (RNase A) and GZMB into
tumor cells, which activates the caspase-3 and GSDME
pathways, leading to enhanced CD8" T cell-mediated
immunotherapy."” Therefore, addressing how to mitigate
the negative effects and harness the tumor-suppressive

potential of dual-function proteins like GSDMD presents
a pressing challenge (Figure 3).

Ferroptosis in anti-tumor immunity

Ferroptosis in tumor cells can reshape the tumor immune
microenvironment, and conversely, immune cells can
induce ferroptosis in tumor cells, thereby exerting an anti-
tumor effect. There is a complex interplay between ferroptosis
in tumor cells and immune cells. Research by Efimova e /.
found that the agent RSL3 enhances the proliferation,
activation, and immune efficacy of murine dendritic cellsina
time-dependent manner, primarily associated with ATP and
HMGBI released by tumor cells."™ In the eatly stages of
ferroptosis, however, tumor cells inhibit DC’s maturation
and antigen-presenting function.®!! Photodynamic therapy
(PDT)-induced ferroptosis also promotes the release of
HMGB1 and ATP from tumor cells."*"!

GPX4, an intracellular enzyme regulating phospholipid
peroxidation, not only supports the survival and
proliferation of CD4" and CD8" T cells but also acts as a
regulator of ferroptosis, protecting activated Tregs from
ferroptosis and playing a crucial role in suppressing anti-
tumor immunity."**'*! Studies have shown that CD8" T
cells activated by PD-L1 immunotherapy secrete IFN-y,
which downregulates the expression of the SLC3A2 and
SLC7A11 subunits of system Xc-, reducing cystine uptake
in bladder cancer cells, increasing lipid peroxidation levels,
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Figure 3: Pyroptosis in Tumor Immunity. Cells undergoing pyroptosis release IL-1 family cytokines (IL-13 and 1L-18) and HMGB1, which further trigger the
activation and proliferation of CD8* T lymphocytes. IL-1 inhibits tumor cell mesenchymal-epithelial transition (MET), enhances T cell antigen recognition,
and promotes specific CD8* T lymphocyte proliferation; IL-18 enhances the ability of anti-CD3 stimulated T cells to produce IFN-y, by inhibiting the secretion
of immunosuppressive cytokines from Treg cells, and triggers the activation and proliferation of CD8* T lymphocytes, inducing GZMB production, activating
caspases, and degrading anti-apoptotic proteins to eliminate cancer cells. HMIGB1 interacts with Toll-like receptor 4 (TLR4), activating macrophages and
promoting the secretion of tumor necrosis factor to enhance the innate immune response. The release of IL-6 facilitates the adaptive immune response by
increasing cell migration, differentiation, and CD8* T cell antibody production, inhibiting Treg cell differentiation, and preventing macrophage apoptosis. CD8*
T cells induce tumor cell pyroptosis by secreting GZMA and GZMB, which cleave GSDVIB/D/E.

and sensitizing these cells to ferroptosis."® Additionally,
IFN-y released by CD8" T cells, in conjunction with
polyunsaturated fatty acid arachidonic acid in the tumor
microenvironment, activates ACSL4, altering lipid
composition and inducing immunogenic ferroptosis in
tumor cells."! Multiple studies on targeted ferroptosis
combined with ICB therapy also demonstrate that inducing
tumor cell ferroptosis, when combined with anti-PD-1
antibody therapy, exhibits strong anti-tumor effects.!"*"

CD36 is a fatty acid transport receptor that mediates
the recognition and transmembrane transport of fatty
acids. Significantly elevated levels of CD36 expression
are observed on the surfaces of tumor-infiltrating Tregs
and CD8" T cells. Tumort-infiltrating CD8" T cells intake
fatty acids in a CD36-dependent manner, leading to the
accumulation of lipid peroxides within the cells and
promoting ferroptosis in these cells.'" Administering
a CD36 monoclonal antibody to melanoma-bearing
mice reduces tumor-infiltrating Tregs and increases
infiltrating CD8" T cells, thereby significantly inhibiting
tumor growth.!"™ Thus, targeting CD36 can reshape the
composition and function of T cells in the TME through
the ferroptosis pathway.

The ovatian tumor domain-containing protein 1 (OTUD1)

is involved in the deubiquitination of iron-responsive
element-binding protein 2 (IREB2), stabilizing IREB2 to
enhance iron transport mediated by transferrin receptor 1
(TFR1). This process increases the production of reactive
oxygen species, promoting ferroptosis in colorectal cancer
cells. Furthermore, colorectal cancer cells overexpressing
OTUDI1 facilitate the release of DAMPs, attracting tumor-
reactive T cells and thus limiting the progression of colon
cancer."™ Therefore, high expression of OTUD1 promotes
ferroptosis in colon cancer cells 27z the OTUD1-IREB2-
TFR1 signaling axis, while also enhancing the cytotoxic
effects of T cells."™ Consequently, ferroptosis plays a
significant role in T cell-mediated antitumor immunity,
impacting the efficacy of immunotherapies.

Macrophage phenotypes and functions are influenced by
their surrounding microenvironment. M1 macrophages
express high levels of inducible nitric oxide synthase
(iNOS) and produce significant amounts of NO, which
inhibits lipid peroxidation and resists ferroptosis. In
contrast, M2 macrophages are susceptible to ferroptosis
inducers and can transition to the M1 phenotype via
ferroptotic pathways, reshaping the tumor immune
microenvironment and enhancing the efficacy of anti-
PD-1 immunotherapy in hepatocellular carcinoma.!'”
The use of ferroptosis inducers, such as erastin, sorafenib,
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containing peroxidases to tumor cells, causing accumulation of iron-dependent lipid peroxides and inducing ferroptosis.

and RSL3, promotes the release of HMGB1 from tumor
cells in an autophagy-dependent manner. This interaction
with the receptor for advanced glycation end-products
(RAGE) induces M1 polarization of macrophages and
the release of TNF, which stimulates inflammation and
immune responses.”! However, tumor cells undergoing
ferroptosis can release proteins coded by the K-RasG12D
gene, which are taken up by macrophages through the
RAGE pathway, promoting M2 polarization via a STAT3-
dependent fatty acid oxidation pathway."”” Balancing the
dosage of ferroptosis inducers to maximize tumor cell
killing while minimizing M2 polarization of macrophages
is a critical issue that needs to be addressed.

Similar to other immune cells, the sensitivity of neutrophils
to ferroptosis is influenced by the expression of GPX4.
Pathologically activated neutrophils-myeloid-derived
suppressor cells (PMN-MDSCs) exhibit immunosuppressive
functions. Downregulation of GPX4 promotes ferroptosis
in PMN-MDSCs. Compared to PMN-MDSCs isolated
from bone marrow and spleen, tumor-associated PMN-
MDSCs are more susceptible to ferroptosis, which can
mediate immunosuppression following their ferroptotic
death."” Neutrophils can also induce ferroptosis in
tumor cells. Although multiple studies indicate that
tumor-associated neutrophils (TANSs) can facilitate tumor
progression, in glioblastoma, TANs transfer granules

containing myeloperoxidase to tumor cells. This transfer
leads to the accumulation of lipid peroxides dependent
on iron ions within the tumor cells, thereby inducing
ferroptosis (Figure 4).'"4

Cuproptosis in anti-tumor immunity

Cuproptosis has been identified as a potent trigger for
ICD. Recent studies have elucidated the role of cuproptosis
in eliciting immune responses within the TME. During
cuproptosis, the damage to tumor cell membranes results
in the release of various DAMPs such as ATP, HMGBI1,
and calreticulin (CRT). These molecules enhance the
maturation of DCs and activation of CD8" effector T
cells, ultimately triggering a sustained anti-tumor immune
response.l'?> 1%

Cuproptosis has been demonstrated to reshape tumor
immunity within the microenvironment of clear cell renal
cell carcinoma (ccRCC) by activating the tumor antigen
presentation process through the cGAS-STING signaling
pathway."” The cGAS-STING pathway plays a pivotal
role in innate immune signaling, engaging DNA to trigger
various immune responses. This includes the upregulation
of IFN, pro-inflammatory cytokines, and chemokines
through IRF3 and NF-kB, enhancing the cytolytic activity
of NK cells and fostering the expansion of cytotoxic CD8"
T cells.”™ In DCs co-cultured with cuproptosis inducers
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Figure 5: Cuproptosis in Tumor Immunity. Tumor cells undergoing cuproptosis release various DAMPs (such as ATP, HMGB1, and CRT), which promote the
maturation of dendritic cells (DCs) and the activation of CD8* effector T cells. Cuproptosis enhances antitumor immunity by modulating the cGAS-STING
signaling pathway. This pathway is activated in dendritic cells by tumor cells experiencing cuproptosis, subsequently promoting the release of inflammatory
mediators. Tumor cells also release lysyl oxidase-like 4 (LOXL4), which, when encountered by macrophages ex vivo, induces an inmunosuppressive phenotype
and activates the expression of programmed death-ligand 1 (PD-L1), further inhibiting the function of CD8* T cells.

(Elesclomol and CuCl2), the cGAS-STING activity
increased in a dose-dependent manner, with increased
intracellular cGMP activity, and elevated levels of 11.-2,
TNF-a, IFN-y, and CXCL10/11 in the culture supernatant.
In tumor-bearing mice, combining cuproptosis inducers

with anti-PD-1 therapy synergistically enhances the levels
of circulating CD45°CD8"* T cells.!"””)

Copper levels within tumors influence the expression
of PD-L1 in tumor cells and regulate immune evasion
triggered by PD-L1.”°Y Conversely, copper chelators,
such as DC or TEPA, attenuate the phosphorylation of
STAT3 and EGFR, which leads to ubiquitin-mediated
degradation of PD-L1. Furthermore, copper chelators can
also enhance the infiltration of CD8" T cells and NK cells,
thereby inhibiting tumor growth.?! Lysyl oxidase-like 4
(LOXL4) is an amine oxidase that, in a copper-dependent
manner, catalyzes the conversion of amines, generating
hydrogen peroxide (H202) and ammonia as byproducts.
LOXI4 exerts immunosuppressive effects on macrophages
predominantly through disrupting IFN-mediated signaling
pathways and transcription-dependent activation of

PD-L1. The action of hydrogen peroxide scavengers or
copper chelation through LOXL4 effectively eliminates
IFN-induced PD-L1 expression (Figure 5). 2%

It is noteworthy that the combination of the copper ion
carrier Disulfiram (DSF) with copper (DSF/Cu) has
been demonstrated to exert robust anti-tumor effects.
Treatment with DSF/Cu promotes the activation and
maturation of DCs, and when used in conjunction with
CD47 blocking agents, further enhances DC maturation,
subsequently increasing the cytotoxic activity of CD8"
T cells. Mechanistically, DSF/Cu facilitates the nuclear
accumulation and aggregation of Nuclear Protein
Localization protein 4 (NPL4), thereby inhibiting the
ubiquitin-proteasome system and inducing ER stress.*”!
The inhibition of NPL4 induced ICD-associated damage-
associated molecular patterns.

RCD and pro-tumor immunity

Based on the aforementioned studies, necroptosis,
pyroptosis, ferroptosis, and cuproptosis have been
shown to enhance immune responses against tumors.
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However, research indicates that these forms of RCD
also influence the survival, proliferation, differentiation,
and activation of immunosuppressive cells, including
Tregs, M2 macrophages, and myeloid-derived suppressor
cells (MDSCs). Additionally, immune-promoting cells
may also be negatively regulated by various forms of
RCD. Furthermore, during ICD, the release of DAMPs
not only stimulates anti-tumor immune responses but
may also promote the development of inflammatory
responses that favor tumor growth. For example,
RIPK3-dependent necroptosis in pancreatic cancer cells
enhances the expression of sin3A-associated protein
130 (SAP130) and the release of chemokines such as
CXCL1 and CXCL5,P"*! leading to the recruitment
of immunosuppressive cells like MDSCs, fostering an
immunosuppressive TME that facilitates cancer cell
migration and invasion. Additionally, DAMPs released from
cells undergoing pyroptosis recruit inflammatory cells and
stimulate the release of regulatory cytokines, such as 1L-
18, I1.-1B, and 11.-10.2"*I These cytokines contribute to
angiogenesis, tumor cell proliferation, and metastasis, thereby
promoting inflammation and tumor progtression.**!!]
Additionally, iron-dependent cancer cells, in the absence
of GPX4, activate the STING-dependent DNA sensing
pathway in macrophages by releasing 8-hydroxyguanosine
(8-OHG),” promoting the release of cytokines such as
IL-6 and nitric oxide synthase 2 (NOS2), thereby fostering
an inflammatory milieu conducive to pancreatic cancer.*
As triggers of ferroptosis, ROS can also suppress immune
responses by inhibiting the formation of TCR and MHC
antigen complexes within T cells.?">*'"l Therefore, these
studies indicate that when employing RCD in targeted cancer
therapies, we must also consider its potential effects on
promoting tumor immunity. We recommend readers consult
a recent comprehensive review for a detailed discussion of
the pro-tumorigenic immune effects of RCD.!

ANTICANCER DRUGS TARGETING
RCD

Cancer immunotherapy based on RCD represents a
promising and continually evolving approach to cancer
treatment. Tumor cells and other cells within the TME
undergo apoptosis, pyroptosis, necroptosis, ferroptosis, and
cuproptosis, which may contribute to enhanced antitumor
immunity. Inducing ICD has been shown to be effective in
many drugs approved for anticancer therapy.*” This review
encompasses FDA-approved anticancer drugs that target a
range of newly identified mechanisms of cell death, which
demonstrate considerable potential to enhance anti-tumor
immunity (Table 1).

Apoptosis is a highly regulated form of cell death. The
BCL-2 gene family plays a central role in regulating PCD

by controlling pro-apoptotic and anti-apoptotic intracellular
signaling pathways.”'! The selective inhibition of specific
anti-apoptotic BCL 2 family proteins has demonstrated
efficacy as a treatment for cancer.”'! Recent studies have
also found that the BCL-2 inhibitor venetoclax enhances
CART cell immunotherapy.”"” Navitoclax, a second-
generation BH3 mimetic and dual antagonist of BCL-2 and
BCL-XL, exhibits synergistic effects when combined with
the BAX activator BTSA1.2 in apoptosis-resistant cancer
cells, xenografts, and patient-detived tumors.*"® The BCL2
inhibitor venetoclax, either alone or in combination with
PD-1 blockade, enhances DC antigen presentation and
activation, thereby inhibiting tumor immune surveillance
via DC-specific immune checkpoints.”! Additionally, the
DNA methyltransferase (DNMT) inhibitor decitabine
has been found to induce mitochondrial alterations
(such as Bak activation, loss of transmembrane potential,
and reactive oxygen species production) in p53 mutant
leukemia T cells, thereby activating the intrinsic apoptotic
pathway.?! Furthermore, the level of GSH and activity of
GPX4 in MDS cells are decreased by decitabine, leading to
ferroptosis caused by heightened ROS levels.”! Moreover,
decitabine enhances and sustains the anti-tumor potential
of CAR T cells through epigenetic reprogramming,
synergizing with immunotherapy.**?

The necroptosis found in infections and sterile
inflammation also plays a huge role in cancer therapy.
Fingolimod, the sphingosine analog FTY720, targets
I2PP2A/ SET to inhibit lung tumor growth through
RIPK1 kinase structural domain mediated PP2A activation
and induce necroptosis.””! Notably, fingolimod has been
found to limit the number of tumor-infiltrating lymphocytes
(TILs) in solid tumors, thus potentially inhibiting antitumor
immune responses.”” The novel pan-caspase inhibitor
IDN-7314 promotes 5- fu-induced TNF-o-dependent
necroptosis driven by RIP1 kinase and NF-xB to inhibit
tumor growth.? As a commonly used agent in colorectal
cancer (CRC) treatment, it also has a good synergistic effect
with PD-L.1 monoclonal antibody.”*! Chloroquine (CQ) has
been demonstrated to upregulate cellular endogenous RIPK3-
induced CRC necroptosis.”” Studies have demonstrated
that CQ blocks immune escape and improves the efficacy
of antitumor immunotherapy.” Artesunate, a widely used
antimalarial drug, induces necroptosis and ferroptosis in
tumor cells.”! Artesunate effectively reduces TAZ and
PD-L1 expression in non-small cell lung cancer (NSCLC)
promotes antitumor immunotherapy in NSCLC antitumor
immunity and overcomes epidermal growth factor receptor
tyrosine kinase inhibitors (EGFR-TKI) resistance.*"!

Pyroptosis-based interventions combined with tumor
immunotherapy can significantly improve cancer control.
Simvastatin activates the NLRP3 inflaimmasome and

JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JAN-FEB 2025 / VOL 13 | ISSUE 1 21



Guo et al.: Targeting regulated cell death in anticancer immunity

Table 1: Summary of clinically approved drugs that may induce ferroptosis, necroptosis, and pyroptosis in cancers and their effects on

antitumor immunity

Effect on Antitumor

Drug Name General Usage Target Effect on Tumor RCD -
Immunity
Navitoclax Anticancer drug BCL-2/BCL-XL Apoptosis induction!?¢9! !Enhanged{;gtntumor
immunity
. L - 270] Enhanced antitumor
Venetoclax Anticancer drug BCL-2 Apoptosis induction - 271
immunity
. L . 1272, 273) Enhanced antitumor
LCL161 Anticancer drug IAP Apoptosis induction!?’* . a7
immunity
— . Apoptosis/Ferroptosis Enhanced antitumor
Decitabine Anticancer drug GPX4 inductioni21275 immunity222
FTY720 Multiple sclerosis  RIPK1 Necroptosis induction(?3! Increased immune
suppression!276.277]
Chloroquine (CQ) Antimalarial drug RIPK3 Necroptosis induction??”! !Enhanged{jgtntumor
immunity
. . Necroptosis/pyroptosis Enhanced antitumor
5-fluorouracil (5-FU) Anticancer drug TNF-a/RIPK3 inductioni225.:278) immunity27®
. . Necroptosis/ferroptosis Increased immune
Sorafenib Anticancer drug System Xc inductioni260.281 suppression'2%?!
. . Necroptosis/ferroptosis Increased immune
Artesunate Antimalarial drug ROS inductioni283.284 suppression!2%©
. . . Necroptosis/pyroptosis/
Resibufogenin Heart failure drug RIPK3, MLKL ferroptosis induction!25-2871 Unknown
. . . . - . Enhanced antitumor
[231]
Simvastatin Hyperlipemia drug Casepasel Pyroptosis induction immunity2%2
L . o - l2ss) Enhanced antitumor
Doxorubicin Anticancer drug DFNAS Pyroptosis induction . L oe
immunity!289
. " . 243 Enhanced antitumor
Iron Nutrient Ferritin/GSDME Pyroptosis induction . - 200]
immunity
Metformin Anti-diabetes drug  GSDMD Pyroptosis induction!?4°! .Enhanc.edmantltumor
immunity
Drug Name General Usage Target Effect on Tumor RCD Effect on Antitumor
Immunity
Docosahexaenoic acid . . o1 Enhanced antitumor
(DHA) Nutrient GSDMD Pyroptosis induction immunity!25®
Paclitaxel (PTX) Anticancer druig ~ GSDMD Pyroptosis induction!’® Enhanced antitumor
immunity
BRAF and MEK Inhibitor Anticancer drug GSDMD Pyroptosis induction!'”3! !Enhanged{j;]tntumor
immunity
Cisplatin Anticancer drug GSH/GSDME Pyroptosis induction!?®3 !Enhangedza:]tltumor
immunity!2°4
Doxorubicin Anticancer drug GSH/GSDME Pyroptosis induction!?°®! Unknown
Anthocyanin Nutrient NLRP3 Pyroptosis induction!2%¢! .Enhanc.edu;r]\tltumor
immunity
Lapatinib Anticancer drug Ferritin Ferroptosis induction!?44 Unknown
Neratinib Anticancer drug Ferritin Ferroptosis induction!?98! !Enhange(:l[zggtltumor
immunity
Etoposide Anticancer drug GPX4 Ferroptosis induction'®°® Unknown
Dihydroartemisinin Antimalarial drug GPX4 Ferroptosis induction!°" Enhanced antitumor

Apatinib
Trigonelline
Sulfasalazine
Glutamate

Sulfasalazine

Anticancer drug

Nutrient additive

Anti-inflammatory
drug

Nutrient

Anti-inflammatory
drug

GPX4/System Xc-/Nrf2
Nrf2

System Xc-

System Xc-

System Xc-

Ferroptosis induction!?4”
Ferroptosis induction!?83
Ferroptosis induction!?8"
Ferroptosis induction!®*

Ferroptosis induction!°®

immunity!30?
Enhanced antitumor
immunity!303!
Enhanced antitumor
immunity!304

Unknown

Increased immune
suppression!°%!
Synergistic
immunotherapy'?54
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Table 2: Summary of the nano compounds that target cuproptosis mechanisms for synergistic immunotherapy

Effect on Tumor

Cancer Type Effects on Antitumor

Agent Name Content RCD Immunity References
NP@ESCu Co-encapsulate elesclom_ol (ES) _Cupro;_)tosus Subcutaneous _Enhanced antitumor [307]
and Cu to form nanoparticles induction bladder cancer immune
pH-responsive lipid-coated calcium . .
LCP NPs phosphate nanoparticles co-loaded .Cuprog.)toms Colon carcinoma !Enhanced antitumor [308]
. induction immune
with Cu and DSF
Peroxidase-like biomineralized
CuCHNCs copper (Il) cafbo_nate.hydromde _ _Cupro;_)t03|s Triple-negative _Enhanced antitumor [309]
nanocrystals inside single albumin  induction breast cancers immune
nanocages
CuX-P DSF/Cu?+ _Cuproptoms Triple-negative !Enhanced antitumor [265]
induction breast cancers immune
Self-destructive and multi- Pyroptosis and . . .
CQG NPs enzymatically active copper- cuproptosis Triple-negative Enhanced antitumor [197]

quinoneGOx nanoparticles induction

breast cancers immune

caspase-1, leading to GSDMD-dependent pyroptosis and
inhibiting the proliferation and migration of NSCLC cells
through typical pathways.”"! An individual intraosseous
dose of simvastatin inhibited the development of
breast cancer by activating CD8" T cells and reducing
the expression of PD-1, TIM3, and CTLA4.*? The
chemotherapeutic agent’s doxorubicin, paclitaxel,
and cisplatin-induced pyroptosis in particular cancer
cells expressing GSDME.F“* Tt is noteworthy that
cytoprotective mitochondrial autophagy, dependent on
the ROS/HO-1/GPX4 axis, eased cisplatin-induced
nephrotoxicity caused by ferroptosis in renal tubular
epithelial cells.? Furthermore, doxorubicin has been
demonstrated to trigger ICD in hepatocellular carcinoma
(HCC).?! Paclitaxel promotes immune cell death in
metastatic triple-negative breast cancer and modulates the
tumor microenvironment.**" Cisplatin increases the
expression of PD-L1, enhancing immune checkpoint
blockade therapy in non-small cell lung cancer.*’¥
Additionally, metformin activates the AMPK/SIRT1/
NF-kB pathway, inducing mitochondrial dysfunction and
triggering caspase3 activation and GSDME-N production,
leading to cellular pyroptosis that inhibits cancer cell
proliferation.” Additionally, metformin targets the miR-
497/PELP1 axis to induce GSDMD-dependent cell death
in oesophageal squamous cell carcinoma.?*! Moreover,
metformin enhances antitumor immunity by decreasing
the stability and membrane localization of PD-L1.**!
Iron can participate in the Fenton reaction, generating ROS,
which induces lipid peroxidation and leads to ferroptosis.*?
Additionally, iron initiates GSDME-dependent pyroptosis
via the ROS signaling pathway.”* Breast cancer cells
experienced ferroptosis induced by tyrosine kinase
inhibitors lapatinib and neratinib through the inhibition
of ferritin transport.*****I Neratinib, in combination with
histone deacetylase inhibitors (HDAC) , has been found to
enhance the effectiveness of anti-PD-1 therapy 2 vivo.**!

Additionally, apatinib has been shown to induce ferroptosis
¥>ap p
through lipid peroxidation and to support immune recovery
post-radical mastectomy.**"**)

Ferroptosis in tumors can enhance cancer immunity and
immunotherapy. Sorafenib is a widely used treatment for
HCC and induces ferroptosis by reducing GSH synthesis
through inhibiting system Xc-.?**" The use of the iron
chelator, deferasirox, results in the transition from sorafenib-
induced cell death to apoptosis and necroptosis.*! Sorafenib
is known to promote the secretion of IL.-12 in TAM and
the resultant apoptosis of cancer cells using sub-therapeutic
doses, which combine with mCAR T cell production
for antitumor effects.*® Furthermore, sorafenib and
sulphasalazine act synergistically to induce ferroptosis in
HCC cells.” Sulphasalazine enhances antitumor immune
responses when synetgized with radiotherapy. ¥ Altretamine,
an ovarian cancer treatment commonly used, has been
discovered to have a comparable effect to sulphasalazine
by tatgeting GPX4 and inducing ferroptosis.””! Etoposide,
a phenolic antitumor medication, effectively exhausts
GSH from myeloid leukemia cells resulting in ferroptosis.
Further investigation is needed to understand the
association between etoposide and tumor immunity.**
Dihydroartemisinin (DHA), a drug used to treat malaria,
reduces cancer cell viability and proliferation.’! DHA in
combination with cisplatin induces ferroptosis and inhibits
pancreatic ductal adenocarcinoma by promoting GPX4
degradation, ROS production, and NCOA4-mediated
ferritin degradation.” DHA has been shown to decrease
PD-L1 protein expression, thereby inhibiting immune
escape from colorectal cancer cells. Statins have been
shown to cause depletion of isopentenyl pyrophosphate,
leading to GPX4 downregulation, similar to the mechanism
of GPX4 inhibitors, which leads to ferroptosis.”**"l In
addition, statins play a role in the regulation of antitumor
immune responses in tumors.*"!
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Initially, it was believed that elesclomol triggered a
rise in ROS within cancer cells, leading to apoptosis.
Presently, it has been discovered that elesclomol acts
as a copper ionophore to induce cuproptosis and
synergizes with immune checkpoints to inhibit cancer.
In recent investigations, tiny molecule compounds that
target cuproptosis have shown significant potential for
treating cancer. In Table 2, we present a summary of the
nanocompounds that target cuproptosis mechanisms for
synergistic immunotherapy and have been tested 7z vivo
and/ot in vitro, demonstrating promising results.

CONCLUSION AND PERSPECTIVES

Substantial research has focused on targeting vatious forms
of RCD for cancer therapy, with tumor immunotherapy
emerging as a field with significant potential.'”l However,
ICIs remain ineffective for many cancer patients. Our
findings indicate that RCD not only initiates an immune
response but also enhances lymphocyte infiltration and
improves tumor responses to immunotherapy. Thus,
inducing RCD in tumor cells represents a promising
strategy for cancer treatment.”! The review synthesizes
evidence on five RCD pathways and their links to
antitumor immunity, discussing FDA-approved drugs
that target RCD and their synergistic effects with tumor
immune responses. Currently, there are no FDA-approved
drugs specifically for cuproptosis. Nevertheless, several
innovative small molecules and nanomaterials have
demonstrated potential in inducing cuproptosis and
enhancing antitumor immunity.*>-2%!

In addition to the discovery of cuproptosis in 2022, a new type
of cell death called disulfidptosis has been identified, indicating
that our understanding of RCD is still evolving."'***" The
development of drugs that target this novel form of cell
death represents a valuable area of research. Designing
drugs or small molecules that effectively target RCD to
treat cancer while passing safety tests poses significant
challenges. Our review suggests that screening FDA-
approved drugs with these effects from established libraries
and applying them to new disease contexts could be a
promising direction. Furthermore, we have proposed that
drugs such as fingolimod, which induces both necroptosis
and ferroptosis by targeting RIPK1 and glutamate, %!
may increase immunosuppression, and suggest that studies
of RCD-inducing drugs need to precisely identify their
different effects on antitumor immunity.

In conclusion, our review suggests a new direction for
tumor treatment. We advocate for the investigation of
targeted cell death drugs, the exploration of their immune
interactions with tumors, and the development of new
mechanisms for cancer treatment using FDA-approved

drugs, extending from classical RCD, such as apoptosis, to
novel forms of cell death. Future studies utilizing animal
models are encouraged to uncover additional outcomes.
Furthermore, additional clinical trials are planned to
investigate new cell death modulators in cancer patients.
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