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ABSTRACT
Background and Objectives: Prior studies have highlighted an escalating global burden of 
hepatocellular carcinoma (HCC). The Notch signaling pathway regulates the initiation and 
development of HCC and determines the HCC prognosis. Methods: The expression data 
of genes related to the Notch signaling pathway were acquired from public databases. To 
filter prognostic gene signatures and establish the risk model, the analyses of consensus 
clustering, least absolute shrinkage and selection operator (LASSO), and multivariate Cox 
were conducted. Subsequently, the risk stratification was optimized using a decision tree 
and nomogram. The immune landscapes were revealed utilizing the single-sample gene 
set enrichment analysis, and tumor immune dysfunction and exclusion score. Results: 
According to the mRNA expression profile of Notch signaling pathway-related genes, HCC 
patients were stratified to three clusters, which have different survival probability and immune 
infiltration characteristic. Subsequently, we developed a risk model based on five prognostic 
Notch signaling-related gene signatures (SPP1, SMG5, HMMR, PLOD2, and CFHR4). 
The model demonstrated an accurate estimation of overall survival, revealing alterations in 
immune status and immunotherapy sensitivity among HCC patients with different risk scores. 
Conclusions: This study constructed a Notch signaling pathway-related prognostic model, 
offering valuable insights for the assessment of immune characteristics and immunotherapy 
responses in HCC patients.
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INTRODUCTION

As per Global Cancer Statistics 2023, liver 
cancer ranks as the sixth most prevalent 
cancer, witnessing 900,000 new cases.[1] 
Additionally, it stands as the 3rd predominant 
cause of  worldwide cancer-related mortality, 
accounting for 830,000 annual fatalities.[2] 
Meanwhile, a persistent rise is observed 
in both the incidence and mortality rates 
of  liver cancer.[3,4] Of  all liver cancer 
cases, 80% are attributed to hepatocellular 
carcinoma (HCC). Most patients with 

HCC are diagnosed with tumors at an 
advanced stage, often accompanied by 
cirrhosis.[5,6] Therefore, only 20%–30% of  
patients qualify for surgical therapy, which is 
considered the optimal treatment modality 
for HCC.[7] Since 2017, immunotherapy 
has established itself  as a breakthrough 
therapeutic approach for advanced-stage 
HCC.[8] In 2020, an IMbrave150 phase Ⅲ trial 
reported that atezolizumab combined with 
bevacizumab as a first-line therapy exhibited 
more favorable clinical outcomes than those 
of  sorafenib therapy.[9,10] Moreover, the 



Shi et al.: Notch signaling pathway-related gene in HCC

554 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / NOV-DEC 2024 / VOL 12 | ISSUE 6

therapeutic efficacy of  tremelimumab plus durvalumab as 
a first-line treatment surpassed that of  sorafenib.[11] Despite 
advancements in systemic treatment strategies, accurate 
diagnostic and prognostic biomarkers for early-stage HCC 
remain elusive. Hence, it is pertinent to discover reliable 
biomarkers for the diagnosis and prognosis of  HCC.

The heterozygous deletion of  Notch was identified on 
the X chromosome of  Drosophila.[12] Notch receptor 
is a type of  heterodimeric cell membrane protein.[13] 

In humans, four Notch receptors have been identified: 
NOTCH1, NOTCH2, NOTCH3, and NOTCH4. These 
receptors interact with transmembrane ligands, including 
Delta-like (DLL1, DLL3, and DLL4) and Jagged/Serrate 
(JAG1 and JAG2) family proteins, on neighboring cells 
to transduce signals.[14] The activated Notch signaling 
pathway triggers the classical Notch target genes, encoding 
the HES, MYC, and P21 family members.[15] The Notch 
signaling pathway regulates organism development and 
homeostasis.[16] Notably, mutations in Notch signaling 
pathway-related proteins have been strongly associated 
with several conditions, such as familial congenital 
scoliosis and Alagille syndrome.[17–19] The aberrant Notch 
signaling activation may induce nonalcoholic fatty liver 
disease, while prolonged deficiency of  this pathway can 
lead to cartilaginous homeostasis imbalance and bone 
destruction.[20,21] Additionally, the dysregulation observed in 
the Notch signaling causes various pulmonary disorders.[22–25] 
Thus, Notch signaling dysregulation markedly promotes the 
onset and progression of  congenital or nongenetic diseases.

The Notch signaling pathway exerts an effect on the onset 
and progression of  HCC. The gain and loss of  the function 
of  Notch may contribute to the HCC tumorigenesis. For 
example, the overexpression of  endogenous NOTCH1 
may inhibit the signal transduction of  β-catenin, promoting 
the epithelial-to-mesenchymal transition and enhancing 
the invasive and migratory ability of  HCC. Ankur Sharma 
et al. reported the upregulation of  NOTCH2, DLL4, and 
HES1 in HCC samples.[26] Sarah Luiken et al. revealed that 
the Notch target gene HES5 exerts tumor-suppressive 
effects by inhibiting HES1 and downregulating the 
pro-proliferative MYC target genes, such as ODC1 and 
LDHA.[27] In contrast, HES5 promoted oncogenesis by 
disrupting the formation of  AKT-dependent liver cancer. 
Previous studies have reported that the downstream 
signaling mediators of  Notch (DLL4 and JAG1) and the 
JAG1/NOTCH2 signaling pathway inhibit the progression 
of  HCC.[28]

In this study, Notch signaling pathway-related genes 
were comprehensively examined using bioinformatic 
analysis to identify significant prognostic genes for HCC. 
Next, a prognostic model was established on the basis 

of  the mRNA expression levels of  genes related to the 
Notch signaling pathway. This model aims to facilitate 
the development of  clinical treatment and prognostic 
assessment strategies for HCC patients.

MATERIALS AND METHODS

Data selection and processing
The Cancer Genome Atlas (TCGA) database was searched 
to acquire the genomic mutation atlas, raw mRNA 
expression profiles, and related clinical information about 
liver hepatic cellular carcinoma (LIHC) (n = 421). In 
addition, the clinical records and the RNA sequencing 
(RNA-seq) data of  203 individuals with HCC were retrieved 
by the HCC Database 18 (HCCDB18) dataset.[29] The Gene 
Expression Omnibus (GEO) database was utilized to 
retrieve the GSE14520 and GSE76427 datasets, comprising 
clinical survival information and high-throughput mRNA 
expression information. Additionally, 47 genes related 
to the Notch signaling pathway were extracted from the 
Molecular Signatures Database (MSigDB).[30] A list of  these 
47 genes is shown in Table S1 (supplementary materials).

Exclusion criteria was applied to remove samples lacking 
mRNA expression profiles and clinical data. Subsequently, 
the Ensembl ID was matched to the gene symbol, and the 
mean value of  gene expression was employed for further 
analysis.

Consensus clustering
The “ConsensusClusterPlus” package was employed 
to identify the clusters of  HCC samples with 15 Notch 
signaling pathway-related genes significantly associated with 
prognosis. The consensus cumulative distribution function 
(CDF) curve was plotted, and the optimal clustering 
number was assessed on the basis of  the delta area plot. 
When the CDF reaches a proximate ultimate value, the 
clustering classification results gain the highest credibility, 
with the corresponding k value indicating the optimum 
value of  k. The delta area plot illustrates the relative change 
in the area under the CDF curve at “k” and “k–1”. Principal 
component analysis (PCA) was performed to further verify 
the rationality of  the identified clusters. The heatmaps 
were utilized to assess the correlation between the gene 
expression levels and the prognosis of  HCC patients.

Differentially expressed gene analysis and 
functional enrichment assessment
Differential expression analysis of  the mRNA expression 
profile was performed to identify differentially expressed 
genes (DEGs) between HCC and adjacent control samples 
from TCGA. The analysis was performed utilizing the R 
package “limma” based on the following criteria: false 
discovery rate (FDR) < 0.05; |log2 (fold-change (FC))| > 
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log2(1.5). Volcano plots were utilized to display the DEGs 
between two clusters. In these plots, red dots represented 
upregulated DEGs, blue indicated downregulated, and 
gray dots represented non-significant DEGs. Next, a Venn 
diagram was used to screen overlapping DEGs among 
different clusters with the R package “VennDiagrams.” 
Additionally, the DEGs underwent Gene Ontology (GO) 
analyses to determine the most significantly enriched 
biological functions in terms of  biological process, cellular 
component, and molecular function via WebGestaltR 
(V0.4.4). To identify the enriched pathways, the DEGs 
underwent Kyoto Encyclopedia of  Genes and Genomes 
(KEGG) analysis.[31]

Construction of the risk model
Univariate Cox analysis was carried out to identify the 
prognostic DEGs. The least absolute shrinkage and 
selection operator (LASSO) analysis, facilitated by the 
R package “glmnet”, was employed to narrow down 
the number of  genes in the final model.[32] The optimal 
coefficient (λ) was 0.0561. Furthermore, the genes 
identified through LASSO underwent multivariate Cox 
analysis for the identification of  the final set of  prognosis 
related genes. The formula for the risk score calculation is:

risk score = Σβi × Expi,

where i indicates prognostic genes, Expi indicates the 
mRNA expression level of  gene i, and β indicates the 
regression coefficient of  corresponding genes. The 
surv_cutpoint function of  the R package “survminer” was 
employed to filter the optimal threshold, categorizing the 
samples into high-risk and low-risk groups.

Performance assessment of the risk model
The Kaplan-Meier (K-M) analysis and log-rank test were 
conducted to estimate the overall survival (OS) probability 
in both risk groups.[33] The receiver operating characteristic 
(ROC) curve is indicative of  the classification impact, 
while the area under the curve (AUC) can demonstrate the 
efficacy and sensitivity of  the model. Therefore, the AUC 
and ROC curve were employed to verify the universality 
of  the risk-scoring system in the validation datasets. The 
risk score distribution in various clusters was then analyzed. 
Furthermore, the correlation between clinical pathological 
characteristics (T stage, stage, and grade) and risk score was 
investigated using analysis of  variance (ANOVA).

Single-sample gene set enrichment analysis
The R package “GSVA” was used to calculate the enrichment 
scores of  Notch signaling signature in tumor and adjacent 
tissues. Besides, ssGSEA of  28 immune gene sets was 
performed using genes associated with various types of  
immunocytes, pathways, functions, and checkpoints.[34] The 

enrichment scores of  immune cells were calculated utilizing 
the ssGSEA algorithm implemented with the R package 
“GSVA”. The Notch signaling signature-derived ssGSEA 
score indicates the proportion of  various immunocyte types 
and immune-related pathways.

Assessment of drug sensitivity and 
immunotherapeutic response
Tumor immune dysfunction and exclusion (TIDE) serves 
as a foundation for identifying the underlying immune 
checkpoint blockade and establishing biomarkers to 
predict the immunotherapeutic responses.[35] A low TIDE 
score indicates a decreased likelihood of  immune evasion, 
suggesting that patients can benefit from immunotherapy. 
The RNA-seq data of  individuals with HCC who 
underwent immunotherapy were obtained from the 
GSE135222, GSE78220, and GSE91061 datasets. The 
sensitivity to antitumor agents was assessed by calculating 
the half-maximal inhibitory concentration (IC50) value 
of  chemotherapeutic drugs utilizing the R package 
“pRRophetic”. An analysis was conducted to assess how 
the high- and low-risk groups differentially responded to 
antitumor drugs.

Construction of decision tree and nomogram
A decision tree is a machine learning algorithm for 
classification and prediction modeling. It provides different 
decision paths by constructing a tree to visually represent 
data and facilitate predictions. This study constructed a 
decision tree to sort subgroups based on age, gender, grade, 
M stage, N stage, stage, and risk type. The nomogram, a 
graphical tool based on the regression model, quantifies 
event risks using diverse prediction factors. This study 
constructed the nomograms for the prediction of  clinical 
outcomes for HCC patients. The calibration and decision 
curves were generated to evaluate the performance and 
sensitivity of  the model.

Cell cultivation
The healthy hepatocyte line (LO2 cells) and human liver 
cancer cell line (HepG2 cells) were procured from the 
Chinese Academy of  Sciences (Shanghai, China). These 
cells underwent cultivation in Dulbecco’s modified Eagle 
medium (Gibco, USA), enriched with 1% penicillin 
streptomycin (Beyotime, China) and 10% fetal bovine 
serum (Gibco, USA) at 37°C in an incubator with 5% CO2.

Single-cell RNA sequencing (scRNA-seq) analysis
The GSE125449 dataset was utilized to retrieve scRNA-
seq data of  HCC samples. The data were filtered based on 
the following criteria: each gene should be expressed in at 
least three cells with a minimum of  200 genes per cell.[36] 
Additionally, the calculation of  rRNA and mitochondrial 
proportion was performed using the Percent-ageFeatureSet 
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function to ensure that the number of  genes was < 6000 
and the per-centage of  mitochondria was < 15%. The 
unique molecular identifier of  every cell was required to 
be greater than 200. The data underwent standardization 
and highly variable genes were sorted separately utilizing 
the FindVariableFeatures function and log-normalization. 
The ScaleData function was employed to scale all the 
genes. PCA was used to reduce the dimension with the 
specified value of  10 for selecting anchor points. Batch 
correlation was performed using Harmony. The resolution 
parameter was set to 0.04 with the FindClusters function, 
dividing cells into 6 clusters. The score of  each pathway 
was assessed and the differential scores for the KEGG_
NOTCH_SIGNALING_PATHWAY in different cells 
were estimated.

RNA extraction and quantitative real‑time 
polymerase chain reaction
The RNA easy mini kit (QIAGEN, USA) was utilized to 
extract total RNA from cell homogenates. The reverse 
transcription of  isolated RNA into complementary DNA 
(cDNA) was conducted through the PrimeScript RT 
Master kit (Takara Bio, Japan). The whole process was 
conducted on ice to suppress RNA degradation. Table S2 
contains the list of  primer sequences. TB Green Premix 
(Takara Bio, Japan) was utilized to amplify cDNA, whereas 
the 2−ΔΔCT method was employed to assess the relative 
mRNA expression levels. Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was employed as the internal 
reference gene.

Statistical analyses
The R program (version 4.1.3) was utilized to perform all 
the statistical analyses. LASSO and Cox analyses (univariate 
and multivariate) were executed to investigate the genes 
related to prognosis. Comparison of  the OS curves of  the 
high- and low-risk groups was carried out by employing 
log-rank test and K-M analysis. The AUC and ROC analysis 
were employed to examine the accuracy of  the risk model. 
Significant variations were depicted at P < 0.05.

RESULTS

Mutation and expression landscapes of Notch 
signaling pathway-related genes in HCC
This study preliminarily analyzed the differential Notch 
signaling signature-derived ssGSEA scores between tumor 
and adjacent tissues in TCGA, HCCDB18, GSE14520, 
and GSE76427 datasets (Figure 1A). The Notch signaling 
score of  HCC tissue was lower than that of  adjacent 
tissue, indicating the involvement of  the Notch signaling 
pathway in the HCC progression. Univariate Cox regression 
analysis revealed 15 genes significantly correlated with HCC 
prognosis (Figure 1B). In HCC tissues, the expression levels 

of  both protective and risk genes were upregulated when 
compared to adjacent tissues (Figure 1C). The mutation 
rates in these genes were observed to be less than 1% 
(Figure 1D). Analysis of  the variation in copy numbers 
revealed that APH1A and NCSTN exhibited increased 
copy numbers, whereas DVL2, HDAC1, HDAC2, PSEN1, 
and SNW1 exhibited decreased copy numbers (Figure 1E).

Identification of three different clusters based on 
Notch signaling pathway-related genes
Consensus clustering analysis was carried out using the 
mRNA expression profile of  15 genes related to Notch 
signaling pathways (Figure 2A and 2B). The rationality 
and stability of  the result were evident in the CDF delta 
area curve, particularly when HCC patients were stratified 
into three different clusters (Figure 2C). The K-M curves 
depicted significant difference in the OS, progression-free 
interval (PFI), disease-free interval (DFI), and disease-
specific survival (DSS) between the three clusters in TCGA 
cohort (Figure 2D). Notably, the C3 cluster exhibited 
the most favorable prognosis, and similar survival result 
was observed in HCCDB18 cohort (Figure 2E). PCA 
plot revealed the distinct molecular profiles of  the three 
clusters, with minimal differences within the groups but 
pronounced differences between them (Figure 2F). The 
heatmap depicted the expression levels of  HCC prognosis-
related genes across the three clusters. These genes 
exhibited universal upregulation in the C1 cluster, whereas 
downregulation was observed in the C3 cluster (Figure 2G).

Further analysis was performed to assess the infiltration 
levels of  immune cells in distinct clusters. Data on 
infiltrating immune cells were retrieved from previous 
studies.[37,38] We found that the proportions of  activated 
CD4+ T cells, central memory CD4+ T cells, effector 
memory CD4+ T cells, and type 2 helper T cells varied 
across different clusters. The C1 cluster exhibited a high 
immune score, whereas decreased immune score were 
observed in C3 (Figure 2H). Additionally, the adaptive 
immune landscape demonstrated significant differences 
between C1 and C2, as well as between C1 and C3 (Figure 
2I). However, the innate immune landscape showed no 
substantial variations between the three clusters. ssGSEA 
was executed to calculate enrichment scores for diverse 
immune cell subpopulations within the aforementioned 
clusters. Compared with those in other clusters, 
the abundances of  B cells, CD8+ T cells, cytotoxic 
lymphocytes, endothelial cells, fibroblasts, monocytic 
lineage, myeloid dendritic cells, natural killer (NK) cells, 
neutrophils, and T cells were markedly upregulated in the 
C1 cluster (Figure 2J).

Analysis of DEGs among different clusters
Next, this study analyzed the DEGs between the following 
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pairs: C1 and C2; C2 and C3; C1 and C3. Volcano curves 
were plotted to visualize the DEGs (Figure 3A-3C). 
Additionally, a Venn diagram was created to illustrate the 
overlapping DEGs (Figure 3D). Subsequently, the DEGs 
from the three clusters were subjected to KEGG and GO 
analyses. In particular, the DEGs underwent enrichment in 
different GO terms as follows (Figure 3E-3G): biological 
process: mRNA processing, cell cycle phase transition, 
and cell division; cellular component: centrosome, nuclear 
chromosome, and microtubule organizing center; molecular 
function: DNA-dependent ATPase and chromatin binding. 

KEGG pathway analysis depicted that the DEGs were 
enriched in various pathways, including cell cycle, ubiquitin-
mediated proteolysis, and endocytosis (Figure 3H).

Development and validation of the prognostic 
model
To explore the key prognostic genes for HCC, univariate 
Cox regression was conducted on 1256 DEGs. This 
analysis identified 854 genes that significantly affected 
outcomes with HCC patients (P < 0.05). LASSO Cox 
regression was employed to further refine the most critical 

Figure 1: Mutation and expression landscape of Notch signaling-related genes in hepatocellular carcinoma (HCC). Differential scores in single-sample gene 
set enrichment analysis (ssGSEA) of Notch signaling pathway between tumor and adjacent tissues from four datasets (A). Univariate Cox regression of vital 
genes in The Cancer Genome Atlas (TCGA)-LIHC cohort (B). Comparative analysis of the expression levels of Notch signaling-related genes between adjacent 
control tissues and tumor tissues (C). The mutational frequency of Notch-signaling-related genes in HCC (D). The frequency of copy number variation (CNV) in 
Notch signaling pathway-related genes (E). ***P < 0.001, and ****P < 0.0001.



Shi et al.: Notch signaling pathway-related gene in HCC

558 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / NOV-DEC 2024 / VOL 12 | ISSUE 6

Figure 2: Clusters identification based on Notch signaling pathway-related genes. The cumulative distribution function (CDF) curve and delta area of TCGA 
cohort (A-B). The consensus heatmap of samples when k = 3 (C). The Kaplan-Meier (K-M) analysis of overall survival (OS), progression-free interval (PFI), 
disease-free interval (DFI), and disease-specific survival (DSS) in the TCGA cohort (D). The K-M survival curves of the HCCDB18 cohort (E). Principal component 
analysis (PCA) of the 3 clusters in the TCGA cohort (F). The heatmap of 15 gene expression levels in the three clusters (G). The immune cell infiltration scores 
of 28 immune cells (H). The adaptive and innate immunity scores among three clusters (I). The distribution of 10 immune cell scores in the three clusters (J). 
**P < 0.01, and ***P < 0.001; ns: non-significant.
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prognostic gene signature. This analysis identified RNF2, 
PLOD2, CDCA8, HMMR, MRPL9, SPP1, SMG5, UCK2, 
and CFHR4 (λ = 0.0561) as the target genes (Figure 4A-4B). 
Stepwise Cox regression analysis further narrowed down 
the range and revealed five genes and their corresponding 
coefficients, suggesting that these five genes constitute the 
optimal gene signature (Figure 4C).

Following is the formula for the risk score calculation for 
HCC patients:

risk score = (0.264 × SMG5 expression level) + (0.187 × 

HMMR expression level) + (0.172 × PLOD2 expression 
level) – (0.073 × CFHR4 expression level) + (0.074 × SPP1 
expression level).

As per the calculated risk score, the patients were classified 
into high-risk and low-risk groups. K-M analysis depicted 
that the high-risk group exhibited a reduction in the OS in 
comparison to the other group. The ROC curves revealed 
AUC values of  0.81, 0.72, and 0.72 for the prediction of  1-, 
3-, and 5-year survival, respectively (Figure 4D). The trend 
of  risk scores observed in the HCCDB18, GSE14520, and 
GSE76427 cohorts were consistent with those identified 

Figure 3: Differentially expressed gene (DEG) analysis across different clusters. Volcano plots depicting DEGs, where red indicates upregulation and blue color 
signifies downregulation (A-C). Intersection of DEGs between the three clusters (D). Findings of Gene Ontology (GO) enrichment analysis depicting the DEG 
enrichment in biological process (BP), cellular component (CC), and molecular function (MF) (E-G). The bubble plot illustrating the DEG enrichment in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways (H).
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Figure 4: Construction and validation of a risk scoring model in the training group. Nine genes were discovered as the target genes when λ = 0.0561 (A). 
Screening of optimal parameters (lambda) (B). Stepwise multiple Cox regression analysis revealed five genes, as well as the corresponding coefficients, and 
demonstrated that they are the optimal gene signature (C). Kaplan-Meier (K-M) curves of both risk patients and the receiver operating characteristic (ROC) 
curves for 1, 3, and 5-year survival in the (D) TCGA, (E) HCCDB18, (F) GSE14520, and (G) GSE76427 cohorts. (H) The distribution of risk scores in various clinical 
characteristics of TCGA cohort. The risk scores varied between the clusters (I). The distribution of Notch signaling signature-derived ssGSEA scores in clinical 
characteristics including age and gender (J). The Notch signaling signature-derived ssGSEA scores varied between the clusters (K). The ssGSEA scores of 
Notch signaling significantly varied between the high-risk and low-risk groups (L). *P < 0.05, **P < 0.01, and ***P < 0.001; ns: non-significant.
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in the training cohort (Figure 4E-4G).

Individuals with HCC were categorized on the basis of  
their clinicopathological features. There was a remarkable 
variation in risk score distribution between the groups, 
with an increase in the risk score corresponding to higher 
T stage, stage, and grade (Figure 4H). Additionally, the risk 
scores were markedly varied between the three clusters 
(C1, C2, and C3) (Figure 4I). Subsequently, the distribution 
of  Notch signaling signature-derived ssGSEA score in 
clinical features was analyzed. The Notch signaling scores 
varied according to age and gender (Figure 4J). Moreover, 
the Notch signaling scores varied among C1, C2, and C3 
clusters, and also between both risk groups (Figure 4K-L). 
These findings indicate an enhanced performance of  the 
Notch signaling pathway-related gene signature-based HCC 
prognostic model.

Evaluation of tumor microenvironment and 
treatment strategies for HCC based on risk score
The correlation between functional pathways and risk 
score was examined in both high-risk and low-risk groups 
from the TCGA cohort. The study observed significant 
differences in the enrichment of  34 pathways, including 
apoptosis, E2F targets, G2M checkpoint, inflammatory 
response, IL6-JAK-STAT3 signaling, Notch signaling, 
TNFA signaling via NFKB, and P53 pathway, between 
patients of  the aforementioned groups (Figure 5A). The 
correlation between 34 functional pathways and risk scores 
was further investigated. The risk scores were found to 
be positively correlated with mitotic mTORC1 signaling, 
PI3K/AKT/mTOR signaling, spindle, glycolysis, and 
DNA repair (Figure 5B). These pathways are associated 
with immune response. The human gene signatures of  13 
immunotherapy response-related pathways were retrieved 
from a previous study, which collected samples before 
programmed death ligand 1 (PD-L1) blockade treatment.[39] 
In our study, the risk score depicted a positive association 
with base excision repair, cell cycle, DNA replication, DNA 
damage response (DDR), homologous recombination, 
mismatch repair, and nucleotide excision repair (Figure 
5C-5D). The low-risk patients, having a low TIDE score, 
may benefit from immunotherapy. Meanwhile, high-risk 
patients with heightened exclusion and lower dysfunction 
scores may exhibit an elevated potential for immune escape. 
Thus, the limited efficacy of  immune checkpoint inhibitor 
therapy was observed in these patients (Figure 5E). The risk 
score exhibited a strong correlation with TIDE (R = 0.409) 
and exclusion (R = 0.495) scores, and negative correlation 
with dysfunction (R = -0.321) scores (overall P < 0.001) 
(Figure 5F). An assessment of  traditional chemotherapy 
drugs revealed that high-risk patients exhibited sensitivity 
to cyclopamine, crizotinib, sunitinib, S-trityl-L-cysteine, 
paclitaxel, sorafenib, and imatinib. Conversely, the low-risk 

patients exhibited sensitivity to erlotinib and rapamycin 
(Figure 5G).

Efficacy of the risk model in immunotherapy 
datasets
The low-risk group, determined by the risk score, may 
exhibit an immune-hot subtype within tumors. To 
further examine the predictive efficacy of  risk score 
for immunotherapy response, the clinical information 
and transcriptome data of  HCC patients treated with 
immunotherapy were analyzed using the GSE135222 
(anti-PD1 therapy), GSE78220 (anti-PD1 therapy), and 
GSE91061 (anti-CTLA4 and anti-PD1 therapy) datasets. 
In the GSE135222 dataset, the survival probability 
substantially varied between the two groups categorized per 
the median risk score (P = 0.021). ROC analysis indicated 
that the AUC values for the prognosis of  0.5-year and 
1-year survival were 0.81 (95% CI = 0.64–0.97) and 0.86 
(95% CI = 0.68–1.04), respectively. This suggests that 
the model showed an excellent performance in patient 
outcome prediction. The elevated proportion of  high-risk 
patients with progressive disease (PD)/stable disease (SD) 
was observed than that of  the low-risk patients (Figure 
6A). This indicated that the benefit of  immunotherapy 
was minimal for high-risk patients. Consistent results 
were revealed in the TIDE score analysis. Additionally, 
similar findings were obtained during the examination of  
GSE78220 (Figure 6B) and GSE91061 (Figure 6C) datasets.

Development of a decision tree and nomogram 
based on the risk model
A decision tree was generated by incorporating various 
factors, including age, gender, grade, stage, M stage, N 
stage, T stage, and risk type of  individuals having HCC in 
the TCGA-LIHC cohort. However, the two key parameters 
in the decision tree were risk type and stage (Figure 7A). 
Utilizing these parameters, three different risk subgroups 
(S1, S2, and S3) were identified. The OS status markedly 
varied among the three subgroups (Figure 7B). Patients in 
the risk subgroup S3 exhibited high-risk scores, whereas 
those in the S1 and S2 groups exhibited low-risk scores 
(Figure 7C). Furthermore, the survival status varied 
between distinct risk subgroups (Figure 7D). Univariate 
and multivariate Cox analyses marked the risk score as the 
crucial independent risk factor (hazard ratio (HR) = 2.6, 
95% CI = 2–3.5, P < 0.001) for the HCC patients’ prognoses 
(Figure 7E and 7F). A nomogram was generated to quantify 
the risk estimation and survival status of  individuals with 
HCC, using the combination of  risk score and other 
clinicopathological features. The risk score exerted the 
highest influence on survival prediction (Figure 7G). The 
predicted calibration curves for 1-year, 3-year, and 5-year 
survival closely aligned with the standard curve, suggesting 
excellent performance exhibited by the nomogram (Figure 
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Figure 5: Analysis of pathway, immune score, immunotherapy response, and drug sensitivity in the risk groups. Distribution of 34 functional pathways in the 
high-risk and low-risk groups within TCGA cohort (A). Examination of the correlation between 34 functional pathways and risk scores (x indicates P > 0.05) 
(B). Assessment of the association between human gene signatures of 13 immunotherapy response-related pathways and risk scores (C). The correlation 
analysis between the immunotherapy response-related pathways and risk scores (D). The differential tumor immune dysfunction and exclusion (TIDE) scores 
between the two groups (E). Correlation analysis between risk scores and TIDE/Dysfunction/Exclusion scores (F). Heatmap of differential sensitivities to nine 
drugs (G). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; ns: non-significant.
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7H). Decision curve analysis demonstrated that both the 
nomogram and risk score outperformed the extreme curve 
(Figure 7I), confirming that their predictive performance 
for assessing the survival of  HCC patients surpassed that 
of  other clinicopathological features.

scRNA-seq analysis verifying the robustness of 
the risk model
The single-cell transcriptome atlas of  HCC from the 
GSE125449 dataset was analyzed, resulting in the 
categorization of  all cells into the following six clusters: 
endothelial cells, hepatocytes, B cells, fibroblasts, T cells, 
and macrophages (Figure 8A). The specific upregulated 
genes in different cell clusters are shown in the bubble 
plot (Figure 8B). The pathway score of  each cluster 
was evaluated. The Notch signaling signature-derived 
ssGSEA score varied between different cells (Figure 8C). 
Furthermore, the expression of  five risk genes was mapped 
in different cell clusters. PLOD2 and SPP1 underwent 
upregulation in hepatocytes (Figure 8D). The expression 
levels of  five signature genes in HepG2 cells and LO2 

cells were analyzed using qRT-PCR. The mRNA levels of  
SMG5 and SPP1 in HepG2 cells were elevated as compared 
to those in the LO2 cells. Meanwhile, the mRNA levels 
of  HMMR and PLOD2 underwent downregulation in 
HepG2 cells (Figure 8E-8I). The results of  the cell-level 
experiment were consistent with those obtained using 
the novel prognostic model. These findings indicated the 
function of  the Notch signaling pathway in the occurrence 
and progression of  HCC at the single-cell level and 
demonstrated the rationality of  the developed risk model.

DISCUSSION

The primary therapeutic modalities for HCC include 
hepatectomy and liver transplantation. However, traditional 
clinical signatures cannot effectively predict HCC 
recurrence due to tumor heterogeneity and consequently 
do not contribute to the improvement of  long-term 
survival in patients undergoing radical hepatectomy for 
HCC. Therefore, it is imperative to identify prognostic 
biomarkers for HCC. Prior research has demonstrated that 

Figure 6: Comparative analysis of the performance of immunotherapies in diverse datasets. The immunotherapy response distribution map, receiver operating 
characteristic (ROC) curve, and survival curve in the GSE135222 (A), GSE78220 (B), and GSE91061 datasets (C). *P < 0.05, and **P < 0.01; ns: non-significant.
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the Notch signaling pathway regulates the differentiation 
and proliferation of  HCC cells.[40] In this study, 15 Notch 
signaling pathway-related genes were identified as being 
associated with HCC prognosis. The expression levels of  
these 15 genes varied between HCC and adjacent tissues, 
suggesting their potential involvement in carcinogenesis. 
Consensus clustering was performed to determine the 
optimal k value. HCC was classified into three molecular 
clusters, each exhibiting distinct clinical outcomes and 
immune infiltration statuses. This suggests that the 
heterogeneous immune status in HCC could serve as a 
promising prognostic index. 

Next, an HCC risk model was established using Notch 
signaling pathway-related genes. Individuals in the low-
risk group depicted an improved OS. Analysis of  the 
immunotherapeutic responses of  patients with HCC 
indicated a substantial variation in the number of  patients 
with PD/SD between the high-risk and low-risk groups 
in the immunotherapy cohort. This proposes that the risk 
model has the ability to predict the clinical outcome and 
immunotherapy response of  individuals having HCC. 
Compared with that of  alpha-fetoprotein (AFP), a valuable 
preoperative and postoperative monitoring index, the 
performance of  the model was favorable for the prediction 

Figure 7: Optimization of the prognostic model and survival prediction by decision tree and nomogram. The construction of a decision tree on the basis of full-
scale annotations (A). The differential overall survival between the three risk subgroups of liver hepatocellular carcinoma (LIHC) (B). Comparative analysis of 
risk scores between different subgroups (C). Comparative analysis of survival status between distinct subgroups (D). Univariate and multivariate Cox regression 
analyses of clinicopathological features and risk scores (E and F). The nomogram was constructed on the basis of risk scores and other clinicopathological 
features (G). Comparative analysis of predicted calibration curves and standard curves for 1, 3, and 5-year survival (H). The decision curve analysis (DCA) of 
nomogram (I). *P < 0.05, and ***P < 0.001,
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of  HCC clinical outcomes.[41] AFP has been used for over 
two decades in the screening of  HCC. The upregulation 
of  AFP is indicative of  a poor prognosis in HCC patients. 
However, the prognostic application of  AFP is limited 
as it does not provide information on long progression-
free survival and OS during treatment.[42] The risk model 
developed during this research exerts the ability to predict 

the fate, onset, and progression of  HCC throughout the 
whole process.

The following five prognostic genes were selected using 
LASSO regression and multivariate Cox regression analyses: 
SPP1, SMG5, HMMR, PLOD2, and CFHR4. SPP1 was 
recognized as an immune-related signature associated 

Figure 8: scRNA-seq analysis verifying the robustness of the risk model. Uniform Manifold Approximation and Projection (UMAP) of the GSE125449 dataset 
(A). The bubble plot depicting upregulated genes in related cell clusters (B). Comparison of the single-sample gene set enrichment analysis (ssGSEA) scores 
derived from the Notch signaling signature across different clusters (C). The bubble plot depicts the expression of five key risk genes (D). The mRNA expression 
levels of five risk genes (SMG5, HMMR, PLOD2, CFHR4, and SPP1) in HepG2 and LO2 cells (E-I). *P < 0.05, **P < 0.01, and ***P < 0.001; ns: non-significant.
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with unfavorable prognosis in the HCC cohort.[43] Liu et al. 
demonstrated that SPP1 is linked to the formation of  the 
tumor immune barrier by interacting with cancer-associated 
fibroblasts, thereby restricting immune cell infiltration 
into the tumor core and influencing immunotherapy 
efficacy.[44] SMG5, an RNA-binding protein, regulates the 
oncogenesis and progression of  HCC.[45] Additionally, 
HMMR, a hyaluronic acid receptor, promotes the growth, 
migration, and differentiation of  HCC cells.[46] Prior 
research reported that endoplasmic reticulum (ER) stress-
stimulated HMMR may prolong and attenuate ER stress, 
providing conducive conditions for the transformation of  
hepatitis B virus-related cancer.[47] PLOD2, which facilitates 
the generation of  stable collagen cross-links, can activate 
BIRC3, ultimately enhancing the invasion and migration 
of  HCC.[48-50] The study by Yang et al. observed a negative 
correlation between PLOD2 expression and the infiltration 
of  B cells. These outcomes indicate that the risk genes 
identified in this research can predict the immunotherapy 
response, progression, and survival outcomes of  HCC.

The risk score exhibited a positive correlation with various 
functional pathways, such as DNA repair, glycolysis, 
mTORC1 signaling, mitotic spindle, and PI3K/AKT/
mTOR signaling. The PI3K/AKT/mTOR pathway, a 
classical dysregulated pathway in HCC, promotes treatment 
resistance and the progression of  malignancy in solid 
cancers.[51,52] mTOR is involved in various cellular processes, 
including cellular metabolism, immune responses, protein 
synthesis, and cell death, whereas mTORC1 is known to 
regulate the Warburg Effect in cancer.[53] In prior research, 
it was revealed that mTORC1 suppressed NEAT1_2 
transcription and paraspeckle biogenesis, thereby 
upregulating aerobic glycolysis to provide energy for the 
anabolic activities of  HCC cells.[54] These findings provide 
a foundation for future investigations into the mechanisms 
through which risk genes can predict HCC prognosis.

The immune landscape of  the liver is unique as it contains 
several distinct immune cells, including Kupffer cells.[55] 
The maintenance of  liver homeostasis is dependent on 
innate cells and innate cell-like cells, encompassing dendritic 
cells, gamma delta T cells, granulocytes, macrophages, NK 
T cells, and NK cells. The immune characteristics and 
abundance of  immune cells varied between the risk groups. 
Notably, NK cells are one of  the key immunoregulatory 
cells of  the innate immune system with cytotoxic ability and 
can directly kill tumor cells.[56,57] Prior research has indicated 
that the abundance of  tumor-related NK cells is a critical 
factor in influencing the response to anti-PD1 therapy in 
HCC.[58] The proportion of  immune cells, including NK 
cells, may serve as an indicator of  the immunocompetence 
and treatment outcomes in HCC.

The sensitivity to traditional chemotherapy drugs varied 

between the aforementioned groups. The high-risk patients 
exhibited sensitivity to crizotinib, cyclopamine, imatinib, 
paclitaxel, sorafenib, S-trityl-L-cysteine, and sunitinib, 
whereas the low-risk individuals exhibited sensitivity to 
erlotinib and rapamycin. Consequently, the efficacy of  
chemotherapy in HCC patients can be determined on the 
basis of  risk score. Particularly, sorafenib, the first molecular 
targeted drug utilized for unresectable or metastatic HCC 
treatment, stands out as one of  the first-line therapeutic 
agents in systemic treatments, especially for advanced 
HCC.[59] Recent studies suggest that the combination of  
PD-L1 inhibitor atezolizumab and the vascular endothelial 
growth factor inhibitor bevacizumab demonstrates better 
overall and progression-free clinical outcomes than those 
of  sorafenib.[10,60,61] PD-L1 inhibitors induce strong immune 
responses across various cancers. However, their efficacy 
is observed in only a small subset of  patients.[39] The 
responses to PD-L1 inhibitor treatments are influenced by 
several factors, such as CD8 T-effector cell phenotype, high 
neoantigen, and tumor mutation burden. Additionally, the 
transforming growth factor β signaling in fibroblasts has the 
potential to suppress immune response by restricting T cell 
infiltration. These findings identify targets for enhancing 
the efficacy of  PD-L1 inhibitors.

CONCLUSION

In conclusion, this study has yielded some valuable 
results in exploring the Notch signaling pathway in HCC, 
proposing a risk model based on genes related to the 
Notch signaling pathway. However, it has not yet been 
validated for clinical application. Future clinical studies 
can evaluate the practical application value of  this model 
in guiding the treatment and prognosis assessment of  
patients with HCC.
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