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ABSTRACT

Background and Objectives: Prior studies have highlighted an escalating global burden of
hepatocellular carcinoma (HCC). The Notch signaling pathway regulates the initiation and
development of HCC and determines the HCC prognosis. Methods: The expression data
of genes related to the Notch signaling pathway were acquired from public databases. To
filter prognostic gene signatures and establish the risk model, the analyses of consensus
clustering, least absolute shrinkage and selection operator (LASSO), and multivariate Cox
were conducted. Subsequently, the risk stratification was optimized using a decision tree
and nomogram. The immune landscapes were revealed utilizing the single-sample gene
set enrichment analysis, and tumor immune dysfunction and exclusion score. Results:
According to the mRNA expression profile of Notch signaling pathway-related genes, HCC
patients were stratified to three clusters, which have different survival probability and immune
infiltration characteristic. Subsequently, we developed a risk model based on five prognostic
Notch signaling-related gene signatures (SPP1, SMG5, HMMR, PLOD2, and CFHR4).
The model demonstrated an accurate estimation of overall survival, revealing alterations in
immune status and immunotherapy sensitivity among HCC patients with different risk scores.
Conclusions: This study constructed a Notch signaling pathway-related prognostic model,
offering valuable insights for the assessment of immune characteristics and immunotherapy
responses in HCC patients.
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INTRODUCTION

As per Global Cancer Statistics 2023, liver
cancer ranks as the sixth most prevalent
cancer, witnessing 900,000 new cases.!"
Additionally, it stands as the 3" predominant
cause of worldwide cancer-related mortality,
accounting for 830,000 annual fatalities.”
Meanwhile, a persistent rise is observed
in both the incidence and mortality rates
of liver cancer.” Of all liver cancer
cases, 80% are attributed to hepatocellular
carcinoma (HCC). Most patients with

HCC are diagnosed with tumors at an
advanced stage, often accompanied by
cirthosis.P! Therefore, only 20%—30% of
patients qualify for surgical therapy, which is
considered the optimal treatment modality
for HCC.I" Since 2017, immunotherapy
has established itself as a breakthrough
therapeutic approach for advanced-stage
HCC.® In 2020, an IMbrave150 phase IIl trial
reported that atezolizumab combined with
bevacizumab as a first-line therapy exhibited
more favorable clinical outcomes than those
of sorafenib therapy.”'”! Moreover, the
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therapeutic efficacy of tremelimumab plus durvalumab as
a first-line treatment surpassed that of sorafenib.''Despite
advancements in systemic treatment strategies, accurate
diagnostic and prognostic biomarkers for early-stage HCC
remain elusive. Hence, it is pertinent to discover reliable
biomarkers for the diagnosis and prognosis of HCC.

The heterozygous deletion of Notch was identified on
the X chromosome of Drosophila.l'"? Notch receptor
is a type of heterodimeric cell membrane protein.!"’!
In humans, four Notch receptors have been identified:
NOTCHI1, NOTCH2, NOTCH3, and NOTCH4. These
receptors interact with transmembrane ligands, including
Delta-like (DLL1, DLL3, and DLL4) and Jagged/Serrate
(JAG1 and JAG2) family proteins, on neighboring cells
to transduce signals.'"! The activated Notch signaling
pathway triggers the classical Notch target genes, encoding
the HES, MYC, and P21 family members.""! The Notch
signaling pathway regulates organism development and
homeostasis.!'” Notably, mutations in Notch signaling
pathway-related proteins have been strongly associated
with several conditions, such as familial congenital
scoliosis and Alagille syndrome.'""! The aberrant Notch
signaling activation may induce nonalcoholic fatty liver
disease, while prolonged deficiency of this pathway can
lead to cartilaginous homeostasis imbalance and bone
destruction.”**l Additionally, the dysregulation observed in
the Notch signaling causes various pulmonary disorders.”**!
Thus, Notch signaling dysregulation markedly promotes the
onset and progression of congenital or nongenetic diseases.

The Notch signaling pathway exerts an effect on the onset
and progression of HCC. The gain and loss of the function
of Notch may contribute to the HCC tumorigenesis. For
example, the overexpression of endogenous NOTCH1
may inhibit the signal transduction of 3-catenin, promoting
the epithelial-to-mesenchymal transition and enhancing
the invasive and migratory ability of HCC. Ankur Sharma
¢t al. reported the upregulation of NOTCH2, DLL4, and
HES1 in HCC samples. Sarah Luiken e7 a/. revealed that
the Notch target gene HES5 exerts tumor-suppressive
effects by inhibiting HES1 and downregulating the
pro-proliferative MYC target genes, such as ODC1 and
LDHA.P11n contrast, HES5 promoted oncogenesis by
disrupting the formation of AKT-dependent liver cancer.
Previous studies have reported that the downstream
signaling mediators of Notch (DLL4 and JAG1) and the
JAG1/NOTCH2 signaling pathway inhibit the progression
of HCC.P¥

In this study, Notch signaling pathway-related genes
were comprehensively examined using bioinformatic
analysis to identify significant prognostic genes for HCC.
Next, a prognostic model was established on the basis

of the mRNA expression levels of genes related to the
Notch signaling pathway. This model aims to facilitate
the development of clinical treatment and prognostic
assessment strategies for HCC patients.

MATERIALS AND METHODS

Data selection and processing

The Cancer Genome Atlas (TCGA) database was searched
to acquire the genomic mutation atlas, raw mRNA
expression profiles, and related clinical information about
liver hepatic cellular carcinoma (LIHC) (z = 421). In
addition, the clinical records and the RNA sequencing
(RNA-seq) data of 203 individuals with HCC were retrieved
by the HCC Database 18 (HCCDB18) dataset.” The Gene
Expression Omnibus (GEO) database was utilized to
retrieve the GSE14520 and GSE76427 datasets, comprising
clinical survival information and high-throughput mRNA
expression information. Additionally, 47 genes related
to the Notch signaling pathway were extracted from the
Molecular Signatutres Database (MSigDB).P A list of these
47 genes is shown in Table S1 (supplementary materials).

Exclusion criteria was applied to remove samples lacking
mRNA expression profiles and clinical data. Subsequently,
the Ensembl ID was matched to the gene symbol, and the
mean value of gene expression was employed for further
analysis.

Consensus clustering

The “ConsensusClusterPlus” package was employed
to identity the clusters of HCC samples with 15 Notch
signaling pathway-related genes significantly associated with
prognosis. The consensus cumulative distribution function
(CDF) curve was plotted, and the optimal clustering
number was assessed on the basis of the delta area plot.
When the CDF reaches a proximate ultimate value, the
clustering classification results gain the highest credibility,
with the corresponding k value indicating the optimum
value of k. The delta area plot illustrates the relative change
in the area under the CDF curve at “k” and “k—1"". Principal
component analysis (PCA) was performed to further verify
the rationality of the identified clusters. The heatmaps
were utilized to assess the correlation between the gene
expression levels and the prognosis of HCC patients.

Differentially expressed gene analysis and
functional enrichment assessment

Differential expression analysis of the mRNA expression
profile was performed to identify differentially expressed
genes (DEGs) between HCC and adjacent control samples
from TCGA. The analysis was performed utilizing the R
package “limma” based on the following criteria: false
discovery rate (FDR) < 0.05; |log, (fold-change (FC))| >
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log (1.5). Volcano plots were utilized to display the DEGs
between two clusters. In these plots, red dots represented
upregulated DEGs, blue indicated downregulated, and
gray dots represented non-significant DEGs. Next, a Venn
diagram was used to screen ovetlapping DEGs among
different clusters with the R package “VennDiagrams.”
Additionally, the DEGs underwent Gene Ontology (GO)
analyses to determine the most significantly enriched
biological functions in terms of biological process, cellular
component, and molecular function iz WebGestaltR
(V0.4.4). To identify the enriched pathways, the DEGs
underwent Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis.P"

Construction of the risk model

Univariate Cox analysis was carried out to identify the
prognostic DEGs. The least absolute shrinkage and
selection operator (LASSO) analysis, facilitated by the
R package “glmnet”, was employed to narrow down
the number of genes in the final model.”” The optimal
coefficient (A) was 0.0561. Furthermore, the genes
identified through LASSO underwent multivariate Cox
analysis for the identification of the final set of prognosis
related genes. The formula for the risk score calculation is:

risk score = 287 X Expi,

where 1 indicates prognostic genes, Expi indicates the
mRNA expression level of gene 7 and f indicates the
regression coefficient of corresponding genes. The
surv_cutpoint function of the R package “survminer” was
employed to filter the optimal threshold, categorizing the
samples into high-risk and low-risk groups.

Performance assessment of the risk model

The Kaplan-Meier (IK-M) analysis and log-rank test were
conducted to estimate the overall survival (OS) probability
in both risk groups.” The receiver operating charactertistic
(ROC) curve is indicative of the classification impact,
while the area under the curve (AUC) can demonstrate the
efficacy and sensitivity of the model. Therefore, the AUC
and ROC curve were employed to verify the universality
of the risk-scoring system in the validation datasets. The
risk score distribution in vatious clusters was then analyzed.
Furthermore, the correlation between clinical pathological
characteristics (T stage, stage, and grade) and risk score was
investigated using analysis of variance (ANOVA).

Single-sample gene set enrichment analysis

The R package “GSVA” was used to calculate the enrichment
scores of Notch signaling signature in tumor and adjacent
tissues. Besides, ssGSEA of 28 immune gene sets was
performed using genes associated with various types of
immunocytes, pathways, functions, and checkpoints.’” The

enrichment scores of immune cells were calculated utilizing
the ssGSEA algorithm implemented with the R package
“GSVA”. The Notch signaling signature-derived ssGSEA
score indicates the proportion of various immunocyte types
and immune-related pathways.

Assessment of drug sensitivity and
immunotherapeutic response

Tumor immune dysfunction and exclusion (TIDE) serves
as a foundation for identifying the underlying immune
checkpoint blockade and establishing biomarkers to
predict the immunotherapeutic responses.” A low TIDE
score indicates a decreased likelihood of immune evasion,
suggesting that patients can benefit from immunotherapy.
The RNA-seq data of individuals with HCC who
underwent immunotherapy were obtained from the
GSE135222, GSE78220, and GSE91061 datasets. The
sensitivity to antitumor agents was assessed by calculating
the half-maximal inhibitory concentration (IC50) value
of chemotherapeutic drugs utilizing the R package
“pRRophetic”. An analysis was conducted to assess how
the high- and low-risk groups differentially responded to
antitumor drugs.

Construction of decision tree and nomogram

A decision tree is a machine learning algorithm for
classification and prediction modeling. It provides different
decision paths by constructing a tree to visually represent
data and facilitate predictions. This study constructed a
decision tree to sort subgroups based on age, gender, grade,
M stage, N stage, stage, and risk type. The nomogram, a
graphical tool based on the regression model, quantifies
event risks using diverse prediction factors. This study
constructed the nomograms for the prediction of clinical
outcomes for HCC patients. The calibration and decision
curves were generated to evaluate the performance and
sensitivity of the model.

Cell cultivation

The healthy hepatocyte line (LO2 cells) and human liver
cancer cell line (HepG2 cells) were procured from the
Chinese Academy of Sciences (Shanghai, China). These
cells underwent cultivation in Dulbecco’s modified Fagle
medium (Gibco, USA), enriched with 1% penicillin
streptomycin (Beyotime, China) and 10% fetal bovine
serum (Gibco, USA) at 37°C in an incubator with 5% CO.,.

Single-cell RNA sequencing (scRNA-seq) analysis
The GSE125449 dataset was utilized to retrieve scRNA-
seq data of HCC samples. The data were filtered based on
the following criteria: each gene should be expressed in at
least three cells with a2 minimum of 200 genes per cell.”!
Additionally, the calculation of rRNA and mitochondrial
proportion was performed using the Percent-ageFeatureSet
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function to ensure that the number of genes was < 6000
and the per-centage of mitochondria was < 15%. The
unique molecular identifier of every cell was required to
be greater than 200. The data underwent standardization
and highly variable genes were sorted separately utilizing
the FindVariableFeatures function and log-normalization.
The ScaleData function was employed to scale all the
genes. PCA was used to reduce the dimension with the
specified value of 10 for selecting anchor points. Batch
correlation was performed using Harmony. The resolution
parameter was set to 0.04 with the FindClusters function,
dividing cells into 6 clusters. The score of each pathway
was assessed and the differential scores for the KEGG_
NOTCH_SIGNALING_PATHWAY in different cells
were estimated.

RNA extraction and quantitative real-time
polymerase chain reaction

The RNA easy mini kit (QIAGEN, USA) was utilized to
extract total RNA from cell homogenates. The reverse
transcription of isolated RNA into complementary DNA
(cDNA) was conducted through the PrimeScript RT
Master kit (Takara Bio, Japan). The whole process was
conducted on ice to suppress RNA degradation. Table S2
contains the list of primer sequences. TB Green Premix
(Takara Bio, Japan) was utilized to amplify cDNA, whereas
the 2—AACT method was employed to assess the relative
mRNA expression levels. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was employed as the internal
reference gene.

Statistical analyses

The R program (version 4.1.3) was utilized to perform all
the statistical analyses. LASSO and Cox analyses (univatiate
and multivariate) were executed to investigate the genes
related to prognosis. Comparison of the OS curves of the
high- and low-risk groups was carried out by employing
log-rank test and K-M analysis. The AUC and ROC analysis
were employed to examine the accuracy of the risk model.
Significant variations were depicted at P < 0.05.

RESULTS

Mutation and expression landscapes of Notch
signaling pathway-related genes in HCC

This study preliminarily analyzed the differential Notch
signaling signature-derived ssGSEA scores between tumor
and adjacent tissues in TCGA, HCCDB18, GSE14520,
and GSE76427 datasets (Figure 1A). The Notch signaling
score of HCC tissue was lower than that of adjacent
tissue, indicating the involvement of the Notch signaling
pathway in the HCC progression. Univariate Cox regression
analysis revealed 15 genes significantly correlated with HCC
prognosis (Figure 1B). In HCC tissues, the expression levels

of both protective and risk genes were upregulated when
compared to adjacent tissues (Figure 1C). The mutation
rates in these genes were observed to be less than 1%
(Figure 1D). Analysis of the variation in copy numbers
revealed that APHIA and NCSTN exhibited increased
copy numbers, whereas DVL2, HDAC1, HDAC2, PSEN1,
and SNW1 exhibited decreased copy numbers (Figure 1E).

Identification of three different clusters based on
Notch signaling pathway-related genes

Consensus clustering analysis was carried out using the
mRNA expression profile of 15 genes related to Notch
signaling pathways (Figure 2A and 2B). The rationality
and stability of the result were evident in the CDF delta
area curve, particularly when HCC patients were stratified
into three different clusters (Figure 2C). The K-M curves
depicted significant difference in the OS, progression-free
interval (PFI), disease-free interval (DFI), and disease-
specific survival (DSS) between the three clusters in TCGA
cohort (Figure 2D). Notably, the C3 cluster exhibited
the most favorable prognosis, and similar survival result
was observed in HCCDB18 cohort (Figure 2E). PCA
plot revealed the distinct molecular profiles of the three
clusters, with minimal differences within the groups but
pronounced differences between them (Figure 2F). The
heatmap depicted the expression levels of HCC prognosis-
related genes across the three clusters. These genes
exhibited universal upregulation in the C1 cluster, whereas
downregulation was observed in the C3 cluster (Figure 2G).

Further analysis was performed to assess the infiltration
levels of immune cells in distinct clusters. Data on
infiltrating immune cells were retrieved from previous
studies.P” We found that the proportions of activated
CD4" T cells, central memory CD4" T cells, effector
memory CD4" T cells, and type 2 helper T cells varied
across different clusters. The C1 cluster exhibited a high
immune score, whereas decreased immune score were
observed in C3 (Figure 2H). Additionally, the adaptive
immune landscape demonstrated significant differences
between C1 and C2, as well as between C1 and C3 (Figure
2I). However, the innate immune landscape showed no
substantial variations between the three clusters. ssGSEA
was executed to calculate enrichment scores for diverse
immune cell subpopulations within the aforementioned
clusters. Compared with those in other clusters,
the abundances of B cells, CD8" T cells, cytotoxic
lymphocytes, endothelial cells, fibroblasts, monocytic
lineage, myeloid dendritic cells, natural killer (NK) cells,
neutrophils, and T cells were markedly upregulated in the
C1 cluster (Figure 2J).

Analysis of DEGs among different clusters
Next, this study analyzed the DEGs between the following
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Figure 1: Mutation and expression landscape of Notch signaling-related genes in hepatocellular carcinoma (HCC). Differential scores in single-sample gene
set enrichment analysis (ssGSEA) of Notch signaling pathway between tumor and adjacent tissues from four datasets (A). Univariate Cox regression of vital
genes in The Cancer Genome Atlas (TCGA)-LIHC cohort (B). Comparative analysis of the expression levels of Notch signaling-related genes between adjacent
control tissues and tumor tissues (C). The mutational frequency of Notch-signaling-related genes in HCC (D). The frequency of copy number variation (CNV) in

Notch signaling pathway-related genes (E). ""P < 0.001, and """P < 0.0001.

pairs: C1 and C2; C2 and C3; C1 and C3. Volcano curves
were plotted to visualize the DEGs (Figure 3A-3C).
Additionally, a Venn diagram was created to illustrate the
overlapping DEGs (Figure 3D). Subsequently, the DEGs
from the three clusters were subjected to KEGG and GO
analyses. In particular, the DEGs underwent enrichment in
different GO terms as follows (Figure 3E-3G): biological
process: mRNA processing, cell cycle phase transition,
and cell division; cellular component: centrosome, nuclear
chromosome, and microtubule organizing center; molecular
function: DNA-dependent ATPase and chromatin binding.
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KEGG pathway analysis depicted that the DEGs were
enriched in various pathways, including cell cycle, ubiquitin-
mediated proteolysis, and endocytosis (Figure 3H).

Development and validation of the prognostic
model

To explore the key prognostic genes for HCC, univariate
Cox regression was conducted on 1256 DEGs. This
analysis identified 854 genes that significantly affected
outcomes with HCC patients (P < 0.05). LASSO Cox
regression was employed to further refine the most critical
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prognostic gene signature. This analysis identified RNF2,
PLOD2, CDCAS8, HMMR, MRPLY, SPP1, SMG5, UCK2,
and CFHR4 (A = 0.0561) as the target genes (Figure 4A-4B).
Stepwise Cox regression analysis further narrowed down
the range and revealed five genes and their corresponding
coefficients, suggesting that these five genes constitute the
optimal gene signature (Figure 4C).

Following is the formula for the risk score calculation for
HCC patients:

risk score = (0.264 X SMG5 expression level) + (0.187 X
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HMMR expression level) + (0.172 X PLOD2 expression
level) — (0.073 X CFHR4 expression level) + (0.074 X SPP1
expression level).

As per the calculated risk score, the patients were classified
into high-risk and low-risk groups. K-M analysis depicted
that the high-risk group exhibited a reduction in the OS in
comparison to the other group. The ROC curves revealed
AUC values of 0.81,0.72, and 0.72 for the prediction of 1-,
3-, and 5-year survival, respectively (Figure 4D). The trend
of risk scores observed in the HCCDB18, GSE14520, and
GSE76427 cohorts were consistent with those identified
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Figure 4: Construction and validation of a risk scoring model in the training group. Nine genes were discovered as the target genes when A = 0.0561 (A).
Screening of optimal parameters (lambda) (B). Stepwise multiple Cox regression analysis revealed five genes, as well as the corresponding coefficients, and
demonstrated that they are the optimal gene signature (C). Kaplan-Meier (K-M) curves of both risk patients and the receiver operating characteristic (ROC)
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in the training cohort (Figure 4E-4G).

Individuals with HCC were categorized on the basis of
their clinicopathological features. There was a remarkable
variation in risk score distribution between the groups,
with an increase in the risk score corresponding to higher
T stage, stage, and grade (Figure 4H). Additionally, the risk
scores were markedly varied between the three clusters
(C1, C2,and C3) (Figure 41). Subsequently, the distribution
of Notch signaling signature-derived ssGSEA score in
clinical features was analyzed. The Notch signaling scores
varied according to age and gender (Figure 4]). Moreover,
the Notch signaling scores varied among C1, C2, and C3
clusters, and also between both risk groups (Figure 4K-L).
These findings indicate an enhanced performance of the
Notch signaling pathway-related gene signature-based HCC
prognostic model.

Evaluation of tumor microenvironment and
treatment strategies for HCC based on risk score
The correlation between functional pathways and risk
score was examined in both high-risk and low-risk groups
from the TCGA cohort. The study observed significant
differences in the enrichment of 34 pathways, including
apoptosis, H2F targets, G2M checkpoint, inflammatory
response, 1L6-JAK-STAT3 signaling, Notch signaling,
TNFA signaling »za NFKB, and P53 pathway, between
patients of the aforementioned groups (Figure 5A). The
correlation between 34 functional pathways and risk scores
was further investigated. The risk scores were found to
be positively correlated with mitotic mTORCI signaling,
PI3K/AKT/mTOR signaling, spindle, glycolysis, and
DNA repair (Figure 5B). These pathways are associated
with immune response. The human gene signatures of 13
immunotherapy response-related pathways were retrieved
from a previous study, which collected samples before
programmed death ligand 1 (PD-L1) blockade treatment.)
In our study, the risk score depicted a positive association
with base excision repait, cell cycle, DNA replication, DNA
damage response (DDR), homologous recombination,
mismatch repair, and nucleotide excision repair (Figure
5C-5D). The low-risk patients, having a low TIDE score,
may benefit from immunotherapy. Meanwhile, high-risk
patients with heightened exclusion and lower dysfunction
scores may exhibit an elevated potential for immune escape.
Thus, the limited efficacy of immune checkpoint inhibitor
therapy was observed in these patients (Figure 5E). The risk
score exhibited a strong correlation with TIDE (R = 0.409)
and exclusion (R = 0.495) scores, and negative correlation
with dysfunction (R = -0.321) scores (overall P<0.001)
(Figure 5F). An assessment of traditional chemotherapy
drugs revealed that high-risk patients exhibited sensitivity
to cyclopamine, crizotinib, sunitinib, S-trityl-L-cysteine,
paclitaxel, sorafenib, and imatinib. Conversely, the low-risk

patients exhibited sensitivity to erlotinib and rapamycin
(Figure 5G).

Efficacy of the risk model in immunotherapy
datasets

The low-risk group, determined by the risk score, may
exhibit an immune-hot subtype within tumors. To
further examine the predictive efficacy of risk score
for immunotherapy response, the clinical information
and transcriptome data of HCC patients treated with
immunotherapy were analyzed using the GSE135222
(anti-PD1 therapy), GSE78220 (anti-PD1 therapy), and
GSE91061 (anti-CTLA4 and anti-PD1 therapy) datasets.
In the GSE135222 dataset, the survival probability
substantially varied between the two groups categorized per
the median risk score (P = 0.021). ROC analysis indicated
that the AUC values for the prognosis of 0.5-year and
1-year survival were 0.81 (95% CI = 0.64-0.97) and 0.86
(95% CI = 0.68-1.04), respectively. This suggests that
the model showed an excellent performance in patient
outcome prediction. The elevated proportion of high-risk
patients with progressive disease (PD)/stable disease (SD)
was observed than that of the low-risk patients (Figure
6A). This indicated that the benefit of immunotherapy
was minimal for high-risk patients. Consistent results
were revealed in the TIDE score analysis. Additionally,
similar findings were obtained during the examination of
GSE78220 (Figure 6B) and GSE91061 (Figure 6C) datasets.

Development of a decision tree and nomogram
based on the risk model

A decision tree was generated by incorporating various
factors, including age, gender, grade, stage, M stage, N
stage, T stage, and risk type of individuals having HCC in
the TCGA-LIHC cohort. However, the two key parameters
in the decision tree were risk type and stage (Figure 7A).
Utilizing these parameters, three different risk subgroups
(81, S2, and S3) were identified. The OS status markedly
varied among the three subgroups (Figure 7B). Patients in
the risk subgroup S3 exhibited high-risk scores, whereas
those in the S1 and S2 groups exhibited low-risk scores
(Figure 7C). Furthermore, the survival status varied
between distinct risk subgroups (Figure 7D). Univariate
and multivariate Cox analyses marked the risk score as the
crucial independent risk factor (hazard ratio (HR) = 2.0,
95% CI =2-3.5, P< 0.001) for the HCC patients’ prognoses
(Figure 7E and 7F). A nomogram was generated to quantify
the risk estimation and survival status of individuals with
HCC, using the combination of risk score and other
clinicopathological features. The risk score exerted the
highest influence on survival prediction (Figure 7G). The
predicted calibration curves for 1-year, 3-year, and 5-year
survival closely aligned with the standard curve, suggesting
excellent performance exhibited by the nomogram (Figure
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Figure 6: Comparative analysis of the performance of inmunotherapies in diverse datasets. The inmunotherapy response distribution map, receiver operating
characteristic (ROC) curve, and survival curve in the GSE135222 (A), GSE78220 (B), and GSE91061 datasets (C). *P < 0.05, and **P < 0.01; ns: non-significant.

7H). Decision curve analysis demonstrated that both the
nomogram and risk score outperformed the extreme curve
(Figure 71), confirming that their predictive performance
for assessing the survival of HCC patients surpassed that
of other clinicopathological features.

scRNA-seq analysis verifying the robustness of
the risk model

The single-cell transcriptome atlas of HCC from the
GSE125449 dataset was analyzed, resulting in the
categorization of all cells into the following six clusters:
endothelial cells, hepatocytes, B cells, fibroblasts, T cells,
and macrophages (Figure 8A). The specific upregulated
genes in different cell clusters are shown in the bubble
plot (Figure 8B). The pathway score of each cluster
was evaluated. The Notch signaling signature-derived
ssGSEA score varied between different cells (Figure 8C).
Furthermore, the expression of five risk genes was mapped
in different cell clusters. PLOD2 and SPP1 underwent
upregulation in hepatocytes (Figure 8D). The expression
levels of five signature genes in HepG2 cells and LO2
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cells were analyzed using qRT-PCR. The mRNA levels of
SMG?5 and SPP1 in HepG2 cells were elevated as compared
to those in the LLO2 cells. Meanwhile, the mRNA levels
of HMMR and PLOD2 underwent downregulation in
HepG2 cells (Figure 8E-8I). The results of the cell-level
experiment were consistent with those obtained using
the novel prognostic model. These findings indicated the
function of the Notch signaling pathway in the occurrence
and progression of HCC at the single-cell level and
demonstrated the rationality of the developed risk model.

DISCUSSION

The primary therapeutic modalities for HCC include
hepatectomy and liver transplantation. However, traditional
clinical signatures cannot effectively predict HCC
recurrence due to tumor heterogeneity and consequently
do not contribute to the improvement of long-term
survival in patients undergoing radical hepatectomy for
HCC. Therefore, it is imperative to identify prognostic
biomarkers for HCC. Prior research has demonstrated that
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Figure 7: Optimization of the prognostic model and survival prediction by decision tree and nomogram. The construction of a decision tree on the basis of full-
scale annotations (A). The differential overall survival between the three risk subgroups of liver hepatocellular carcinoma (LIHC) (B). Comparative analysis of
risk scores between different subgroups (C). Comparative analysis of survival status between distinct subgroups (D). Univariate and multivariate Cox regression
analyses of clinicopathological features and risk scores (E and F). The nomogram was constructed on the basis of risk scores and other clinicopathological
features (G). Comparative analysis of predicted calibration curves and standard curves for 1, 3, and 5-year survival (H). The decision curve analysis (DCA) of

nomogram (). "P < 0.05, and *"P < 0.001,

the Notch signaling pathway regulates the differentiation
and proliferation of HCC cells.*" In this study, 15 Notch
signaling pathway-related genes were identified as being
associated with HCC prognosis. The expression levels of
these 15 genes varied between HCC and adjacent tissues,
suggesting their potential involvement in carcinogenesis.
Consensus clustering was performed to determine the
optimal £ value. HCC was classified into three molecular
clusters, each exhibiting distinct clinical outcomes and
immune infiltration statuses. This suggests that the
heterogeneous immune status in HCC could serve as a
promising prognostic index.

564

Next, an HCC risk model was established using Notch
signaling pathway-related genes. Individuals in the low-
risk group depicted an improved OS. Analysis of the
immunotherapeutic responses of patients with HCC
indicated a substantial variation in the number of patients
with PD/SD between the high-risk and low-tisk groups
in the immunotherapy cohort. This proposes that the risk
model has the ability to predict the clinical outcome and
immunotherapy response of individuals having HCC.
Compared with that of alpha-fetoprotein (AFP), a valuable
preoperative and postoperative monitoring index, the
performance of the model was favorable for the prediction
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Figure 8: scRNA-seq analysis verifying the robustness of the risk model. Uniform Manifold Approximation and Projection (UMAP) of the GSE125449 dataset
(A). The bubble plot depicting upregulated genes in related cell clusters (B). Comparison of the single-sample gene set enrichment analysis (ssGSEA) scores
derived from the Notch signaling signature across different clusters (C). The bubble plot depicts the expression of five key risk genes (D). The mRNA expression
levels of five risk genes (SMG5, HMMR, PLOD2, CFHR4, and SPP1) in HepG2 and LO2 cells (E-l). 'P < 0.05, P < 0.01, and ""*P < 0.001; ns: non-significant.

of HCC clinical outcomes.!I AFP has been used for over
two decades in the screening of HCC. The upregulation
of AFP is indicative of a poor prognosis in HCC patients.
However, the prognostic application of AFP is limited
as it does not provide information on long progression-
free survival and OS during treatment.” The risk model
developed during this research exerts the ability to predict
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the fate, onset, and progression of HCC throughout the
whole process.

The following five prognostic genes were selected using
LASSO regression and multivariate Cox regression analyses:

SPP1, SMG5, HMMR, PLOD2, and CFHR4. SPP1 was
recognized as an immune-related signature associated
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with unfavorable prognosis in the HCC cohort."! Liu e al.
demonstrated that SPP1 is linked to the formation of the
tumor immune barrier by interacting with cancer-associated
fibroblasts, thereby restricting immune cell infiltration
into the tumor core and influencing immunotherapy
efficacy.* SMG5, an RNA-binding protein, regulates the
oncogenesis and progression of HCC.*! Additionally,
HMMR, a hyaluronic acid receptor, promotes the growth,
migration, and differentiation of HCC cells.*!! Prior
research reported that endoplasmic reticulum (ER) stress-
stimulated HMMR may prolong and attenuate ER stress,
providing conducive conditions for the transformation of
hepatitis B virus-related cancer."’? PLOD2, which facilitates
the generation of stable collagen cross-links, can activate
BIRC3, ultimately enhancing the invasion and migration
of HCC.¥**'I'The study by Yang ¢ a/. observed a negative
correlation between PLOD?2 expression and the infiltration
of B cells. These outcomes indicate that the risk genes
identified in this research can predict the immunotherapy
response, progression, and survival outcomes of HCC.

The risk score exhibited a positive correlation with various
functional pathways, such as DNA repair, glycolysis,
mTORC1 signaling, mitotic spindle, and PI3K/AKT/
mTOR signaling. The PI3K/AKT/mTOR pathway, a
classical dysregulated pathway in HCC, promotes treatment
resistance and the progression of malignancy in solid
cancers.P*mTOR is involved in vatious cellular processes,
including cellular metabolism, immune responses, protein
synthesis, and cell death, whereas mTORCI is known to
regulate the Warburg Effect in cancer.” In prior research,
it was revealed that mTORC1 suppressed NEAT1_2
transcription and paraspeckle biogenesis, thereby
upregulating aerobic glycolysis to provide energy for the
anabolic activities of HCC cells.F¥ These findings provide
a foundation for future investigations into the mechanisms
through which risk genes can predict HCC prognosis.

The immune landscape of the liver is unique as it contains
several distinct immune cells, including Kupffer cells.”
The maintenance of liver homeostasis is dependent on
innate cells and innate cell-like cells, encompassing dendritic
cells, gamma delta T cells, granulocytes, macrophages, NK
T cells, and NK cells. The immune characteristics and
abundance of immune cells varied between the risk groups.
Notably, NK cells are one of the key immunoregulatory
cells of the innate immune system with cytotoxic ability and
can directly kill tumor cells.”**" Prior research has indicated
that the abundance of tumor-related NK cells is a critical
factor in influencing the response to anti-PD1 therapy in
HCC.P¥'The proportion of immune cells, including NK
cells, may serve as an indicator of the immunocompetence
and treatment outcomes in HCC.

The sensitivity to traditional chemotherapy drugs varied

between the aforementioned groups. The high-risk patients
exhibited sensitivity to crizotinib, cyclopamine, imatinib,
paclitaxel, sorafenib, S-trityl-L-cysteine, and sunitinib,
whereas the low-risk individuals exhibited sensitivity to
erlotinib and rapamycin. Consequently, the efficacy of
chemotherapy in HCC patients can be determined on the
basis of risk score. Particulatly, sorafenib, the first molecular
targeted drug utilized for unresectable or metastatic HCC
treatment, stands out as one of the first-line therapeutic
agents in systemic treatments, especially for advanced
HCC.P Recent studies suggest that the combination of
PD-L1 inhibitor atezolizumab and the vascular endothelial
growth factor inhibitor bevacizumab demonstrates better
overall and progression-free clinical outcomes than those
of sorafenib.'"*"*'PD-L1 inhibitors induce strong immune
responses across various cancers. However, their efficacy
is observed in only a small subset of patients.’ The
responses to PD-L1 inhibitor treatments are influenced by
several factors, such as CD8 T-effector cell phenotype, high
neoantigen, and tumor mutation burden. Additionally, the
transforming growth factor {3 signaling in fibroblasts has the
potential to suppress immune response by restricting T cell
infiltration. These findings identify targets for enhancing
the efficacy of PD-L1 inhibitors.

CONCLUSION

In conclusion, this study has yielded some valuable
results in exploring the Notch signaling pathway in HCC,
proposing a risk model based on genes related to the
Notch signaling pathway. However, it has not yet been
validated for clinical application. Future clinical studies
can evaluate the practical application value of this model
in guiding the treatment and prognosis assessment of
patients with HCC.
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