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Abstract: Multi-competitor races often feature complicated

within-race strategies that are difficult to capture when

training data on race outcome level data. Models which do

not account for race-level strategy may suffer from con-

founded inferences and predictions. We develop a genera-

tive model for multi-competitor races which explicitly mod-

els race-level effects like drafting and separates strategy

from competitor ability. The model allows one to simulate

full races from any real or created starting position opening

new avenues for attributing value to within-race actions

and performing counter-factual analyses. Thismethodology

is sufficiently general to apply to any track based multi-

competitor races where both tracking data is available and

competitor movement is well described by simultaneous

forward and lateralmovements.We apply thismethodology

to one-mile horse races using frame-level tracking data pro-

vided by the New York Racing Association (NYRA) and the

New York Thoroughbred Horsemen’s Association (NYTHA)

for the Big Data Derby 2022 Kaggle Competition. We demon-

strate how this model can yield new inferences, such as the

estimation of horse-specific speed profiles and examples of

posterior predictive counterfactual simulations to answer

questions of interest such as starting lane impacts on race

outcomes.
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1 Introduction

In multi-competitor sports, athletes and teams want not

only to understand the relative performance and under-

lying abilities of competitors, but also better understand

optimalwithin-race strategies to help a competitor improve.

In highly strategic races, such as middle distance running

or our canonical example of horse racing, teasing apart

within-race strategic effects from the underlying abilities

of competitors is extremely difficult using current meth-

ods which are trained using race-level outcomes. Optimal

strategy in such races is likely to depend not only on the

quality of the competitors, but also on particularities of each

race including the weather conditions and even within-race

conditions such as particular competitors getting good starts

or a competitor having restricted movement due to sur-

rounding competitors. Further, traditional analyses which

operate on race-level statistics like finishing timemay easily

be confoundedwith respect to estimating competitor ability

since competitors of similar quality may be more likely

to race against each other and the optimal strategies for

each competitor given their competitors are likely to vary

according to their own abilities. For example, an elite NCAA

middle distance runner might typically prefer a front run-

ning strategy where they attempt to lead the race with a fast

enough pace to drop their opponents, but they might not be

fast enough for this strategy to be optimal in a semi-final or

final of the world championships.Withoutmethods capable

of teasing strategy and ability apart, counterfactual anal-

ysis aiming to estimate what might have occurred under

different strategies or inferring underlying ability are likely

to be unreliable. This leaves coaches, athletes, and teams

in an information deficit with respect to where they stand

relative to their competitors and what they might be able to

achieve.

In this paper, we extend recent work in modelling

continuous outcomes in multi-competitor games (Che and

Glickman 2022) to the context of frame-level tracking data.

In our canonical example of horse racing, we capture the

interdependent strategic effects of the competitors by simul-

taneouslymodelling forward and horizontalmovement as a
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function of underlying ability and relative spatial position-

ing with respect to all other competitors. We propose a gen-

erative Bayesian model which allows one to take advantage

of posterior predictive simulation. In particular, this allows

one to simulate counter-factual races and scenarios. For

example, one can simulate raceswith competitorswho have

not necessarily raced against each other. The framework

is rich enough to simulate alternative strategies by one or

more competitors, estimate their impact on performance,

and estimate the impact of race conditions outside of the

competitor’s control such as the impact of starting lanes on

finishing probabilities.

2 Extending dynamic linear models

to multi-competitor frame-level

competitions

Much of the literature in multi-competitor sports has

focused on modelling rank-type data (Harville 1973; Henery

1981; Luce 1959; Plackett 1975) and more recently (Glickman

and Hennessy 2015) incorporating these ranking models

into a dynamic state-space framework where latent com-

petitor abilities evolve over time. This dynamic state-space

approach to allowing competitor abilities to evolve over

time was originally developed in the context of head-to-

head games or paired comparisons (Fahrmeir andTutz 1994;

Glickman 1999; Glickman 2001; Glickman and Stern 2005).

One of the advantages of working directly with ranks as

opposed to other continuous measures of success or per-

formance, besides the ubiquity of this kind of data across

a multitude of competitions, is they may be more robust to

certain strategic effects. For example a runner may choose

to run sub-maximally against weaker competition, partic-

ularly in earlier rounds or heats and training a model on

run times directly may produce misleading predictions as a

result. On the other hand, excluding data in earlier rounds

of competition or in cases where there may be incentives

not aligned with producing maximal continuous outcome

results may result in severely shrinking the pool of com-

petitors overwhich one can learn relative abilities. The cost,

however, of modelling ranks directly is coarsening the data

used in the modelling step and potential loss of informa-

tion. More recent work has explored adding information

from continuous outcomes for head-to-head competitions

(Kovalchik 2020) and Che and Glickman (2022) proposed

an extension for multi-competitor sports. The key idea in

Che and Glickman (2022) is to learn a transformation of the

continuous outcome and to control for game-specific and

potentially strategic effects using covariates and functions

of the latent competitor abilities. In particular, they pro-

pose using dynamic linear models (DLMs) with (monotonic)

transformed outcomes which are in part learned from the

data. This approach allows one to balance the simplicity

of the DLM framework while maintaining the flexibility

necessary to model arbitrary multi-competitor sports com-

petitions. Consider the probability model:

p(𝝉𝝀(ỹ)|𝜽t,X, 𝜎), (1)

where 𝝉(⋅) represents a (learned) transformation function

of a pre-processed outcome vector, ỹ, and 𝜽t represents a

vector of competitor ability parameters at time t, X is a set

of competition level covariates, and 𝜎 is a noise parame-

ter. Following previous work in competitor ratings, such as

(Fahrmeir and Tutz 1994; Glickman 1999; Glickman 2001;

Glickman andHennessy 2015; Glickman and Stern 2005), the

competitor abilities are allowed to evolve over time using

stochastic process priors such as a random walk.

In the context of frame-level data, we often have 1–25

frames of data per second with the locations of all competi-

tors recorded at each frame. In this work, we are interested

both in recovering competition-level predictions, such as

winning times and competitor ranking, and also having a

rich enough framework to simulate counter-factual scenar-

ios and strategies. Simulating entire races and capturing

the strategic nuances of multi-competitor racing requires

generating predicted locations at every frame until the sim-

ulated race is over. This rules out rank-like models at the

frame-level since they are unable to reproduce the locations

of the competitors in each frame in a generative sense. The

goal is then adapting the Che and Glickman (2022) frame-

work bymodelling directly a function of competitor location

at each time, taking into consideration in-gameand in-frame

strategic effects. The key idea in this framework to properly

account for the strategic components in such races aswell as

specifying a model rich enough to generate exact locations

along the track is to split the movement of each competitor

in each frame into two components – a forward distance,

ỹfor, and a lateral distance, ỹlat. We define forward distance

to be distance travelled perpendicular to the inside of the

track and we refer to forward and perpendicular distance

interchangeably. Under this definition, a one-mile race is

completed by a competitor once they have travelled exactly

one-mile in terms of forward (or perpendicular) distance.

Lateral distance, then, is defined to be the complimentary

movement inside or outside of the track with respect to

the forward or perpendicular distance. By transforming the

distances to be relative to the inside of the track the lateral

distance can be thought of in terms of lane. When possible

competitors prefer to run closer to the inside of the track
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since this decreases the total distance needed to cover over

the duration of the race, all else being equal.

Figure 1 provides an illustration of the change in a

horse’s forward and lateral positioning between frames. In

this figure, the horsemoves from (0, 5) in the forward-lateral

positioning plane to (5, 6.5) between frames i and i+ 1. This

corresponds to a forward distance travelled of 5 m and a

lateral distance travelled of 1.5 m. The primary advantage

of converting to a coordinate systemwhich is relative to the

inside track and thus lane positioning is that themovements

can be consistently defined over the whole track including

the turns.

Under those definitions, total distance travelled in each

frame is then a simple function of the forward and lat-

eral distance (ỹ =
√
(ỹfor)2 + (ỹlat)2). In principle each of

these components can be transformed following Che and

Glickman (2022), but for simplicity, in this text we will con-

sider a simple known transformation where we model the

additional distance travelled forward and laterally in each

frame. The goal then is tomodel the following joint distribu-

tion:

p(ỹfor
i
, ỹlat

i
|𝜽for( j),𝜽lat( j),X lat

i
,Xfor

i
,Σ, 𝜓 ), i = 1, 2,… , I, (2)

where i represents an arbitrary frame which increases to

the vector of random variables I which represents the final

frame for each of the competitors, 𝜽lat and 𝜽for are within-

race competitor ability vectors, X lat
i
and Xfor

i
are covariates,

Figure 1: An illustration of the change in a horse’s forward and lateral

positioning from frame labelled i and the subsequent frame i + 1. The

lateral distance is calculated with respect to movement towards or away

from the inside of track. Forward distance is thus any movement

perpendicular to the inside of the track. In track based sports much of

the maneuvering is with respect to guarding the lane positioning since

traveling near the inside of the track allows the competitor to cover less

distance over the course of the race. The transformation of relative

coordinates to forward and lateral distance allows us to represent the

movement in strategically relevant terms.

Σ is a variance-covariance matrix, and 𝜓 is a vector of

covariate coefficients. The competitor ability vectors, 𝜽lat

and 𝜽
for
, depend on where in the race the competitors find

themselves in the race at frame i. We denote the distance

travelled up to frame i by the index j. This allows us tomodel

the competitors ability across different phases of the race

including reaction to the starting gun, initial acceleration,

drive and maintenance phases, as well as the final stretch

for example. In many racing sports we might expect there

to be different types of competitors which excel at different

phases which is not well captured by an overall constant

level of ability throughout the race. To model competitor

ability throughout the different race phases parsimoniously

we assume that the underlying ability evolves continuously

and smoothly over the course of the race. Specifically, we

use a spline based approach to reduce the continuous ability

vectors to a (relatively small) finite dimensional set of basis

parameters. One pre-specifies a number of knots or degrees

of freedom and for each competitor, k, their forward or

lateral ability is represented by afinite vector of parameters,

(𝛽1,… , 𝛽d)
k , where d is the dimension of the competitor-

level within-race coefficients. The continuous coefficients

are smooth functions of the finite vector representation.

In addition to providing more nuanced simulation possi-

bilities, the estimated within-race competitor-specific coef-

ficients allows one to characterize notions of both ability

and style. In Section 4.3 we discuss how one can cluster

within-race coefficients in the context of horse racing to

reveal racing styles or competitor profiles.

In the previous paragraph we discussed how in our

canonical horse racing example the index j represents the

cumulative distance that a competitor has travelled up until

frame i. It is important to note that this is only one of

potentially several ways to index a race or race phase. One

could alternatively imagine using total time elapsed up until

frame i, for example. Across different race types, different

indexing may correspond better or worse to the underlying

latent race phase and this indexing should be chosen with

the guidance of domain experts to insure the estimated race-

varying effects are meaningful.

Further note that although suppressed in the notation

here for simplicity, these competitor ability vectors may

depend on some time period t and the spline vectors can

be updated according to a stochastic process prior in a way

similar to that which is standard in the dynamic competi-

tor rating literature as discussed above. For computational

simplicity we propose modelling the joint distribution of

an appropriate transformation of the frame-level forward

and lateral distances with normal or truncated normal
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distributions, where the matrix Σ represents the variance-

covariance matrix. This can be easily extended to more spe-

cific distributional choices when computational resources

permit. It may be especially important to consider probabil-

itymodels which bound lateralmovement according to lane

constraints of the track when simulating some race types,

but for simplicity we leave this as an extension.

X lat
i
,X for

i
represent the lateral and forward covariates,

respectively. The covariates can be categorized into two

groups – dynamic covariates which change over the course

of the race and static race-level covariates. The most impor-

tant spatial covariates capture interactions between com-

petitors. For example, wemay expect competitors far ahead

of the field to slow up near the end of a race or for a

racer who is boxed in to be more restricted in the type of

movement they canmake. In Section 3.3 we discuss Drafting

variables. This is a particularly difficult dynamic feature in

that it depends on the relative position of all competitors

and theremay be both short-term and long-term effects. For

example,wemight expect a competitor to expend additional

energy to close a gap in order to more effectively draft in

the short-term and in the long-term we might expect hav-

ing drafted more effectively in the past may lead to more

energy and speed in later stages of the race. Additionally in

Section 3.4 we discuss using simple spatial representations

of relative forward/backward and side-to-side positions of

horses to predict lateral movement. These kinds of covari-

ates are crucial to capture and effectively simulate strategic

behaviour.

Once a model for Equation (2) has been proposed and

fitted, one can simulate full races. Bayesian, or approxi-

mately Bayesian, procedures naturally allow one to account

for uncertainty in both the generative procedure and uncer-

tainty with respect to unknown parameters via posterior

predictive simulation and is our focus in this article. Mod-

elling the joint distribution for all competitors’ forward and

lateral movement in each frame allows us to perform sev-

eral new kinds of simulation analyses to better understand

performance and strategies in complex multi-competitor

races. Two notable types of simulation analyses are within-

race value attribution and counter-factual analysis.

In continuous team sports there has been a recent

emphasis on models which generate instantaneous notions

of value, notably the landmark basketball paper by Cer-

vone et al. (2016) which formalized the notion of an

Expected Possession Value (EPV) in basketball, which has

since been adapted to other continuous sports including soc-

cer (Fernández et al. 2021). The idea is to model the future

actions and rewards of those actions given all of the (spa-

tial) information present at a given moment to generate a

value for the possession averaging over the possible future

evolutions of the possession. This is represented mathemat-

ically as:

E[X|t] = ∫
𝜔

X(𝜔)P(d𝜔|t), (3)

where X is a value outcome of interest, 𝜔 is a path or

possession path, and t is a sigma-algebra representing the

(spatial) information up to time t.

One of the difficulties of these continuous sports is

that the actions and strategies that we would like to value

often take place disconnected in space and time from the

subsequent rewards. This makes it especially difficult to say

how valuable a particular pass was or the cost of turning

over the ball, for example, might be. The EPV framework

solves this problem by converting spatial information into

a continuous stock-ticker of value. Actions, and changes in

spatial positioning, have impacts on the future evolutions

of the play which are then captured by changes in EPV and

these changes, or deltas, can be attributed to competitors

or strategies through actions and/or functions of spatial

positioning. Generally, continuous actions sports like bas-

ketball, soccer, and hockey are too complicated to simulate

at a generative level and instead approximations must be

made to estimate instantaneous notions of value. We show

in our horse racing example in the sections to follow that our

proposed simulation framework for multi-competitor races

is both rich enough to simulate entire raceswith uncertainty

and computationally feasible. This means that like the EPV

framework, we can generate instantaneous values, such as

expectation over race finishing time or ranking for each

competitor, but additionally we can actually reproduce an

entire set of sample future paths. In mathematical terms,

value outcomes of interest like finishing time will be some

deterministic function, h(⋅), of the entire history of forward
locations, ỹfor

1:I
. Adapting the notation from Cervone et al.

(2016) to our context we can express the posterior predictive

of the forward position conditional of information up to

some specified frame i as

p(ỹfor
1:I
|i, (Y ,X)) = ∭ p

(
ỹfor
1:s
, ỹlat

1:s
, I = s|i, 𝛾

)
f

× (𝛾|(Y ,X))dỹlat(s)dsd𝛾, (4)

where 𝛾 = (𝜽
for
(j),𝜽

lat
(j),Σ, 𝜓 ) are all of the parameters in

Equation (2), (Y ,X) is all of the data used to fit the posterior,

i represents the information available in frame i for the

simulation at hand, and I is the vector of final frames for

all participants. We can think of I as a vector of stopping

times equivalent to possession stopping times in the EPV

framework. Any outcome of interest, such as finishing time

or rank or rank up to a certain point of the race past frame
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i will be a deterministic function of this distribution. Col-

laboration with experts would allow us to design metrics

and models based on the changes in finishing time and

ranking to better value and understand competitor choices

with regards to making outside moves or drafting and/or

pinpoint where in a race a competitor lost or gained future

positioning.

In addition to absorbing many of the benefits of

the EPV framework, the relative simplicity of many

multi-competitor races allows us to also perform plausi-

ble counter-factual analyses. As mentioned above, as we

demonstrate in our horse racing example, it is possible to

fully simulate entire multi-competitor races starting from

any position. In principle, this allows one with the collab-

oration of experts to fix strategies of particular competitors

and to average over race outcomes to value those strategies.

For example, one could start near the end of a race where

a competitor decides to take an outside lane to overtake

a competitor. One could estimate the probability of win-

ning for each competitor had they waited any number of

meters to make their move. These kinds of analyses, at the

frame-level granularity of producing not only distributions

of outcomes but distributions of race paths for all competi-

tors, is largely computationally infeasible at scale for most

team-level sports due to the additional dimensionality of the

competitormovement and action spaces. This is true even in

those sports for which EPV has been well established, like

basketball or soccer. We believe this offers a unique oppor-

tunity for better understanding multi-competitor races

since it allows us to examine and represent uncertainty

over value outcomes of interest and additionally allows

us to directly study the properties of the produced sam-

ple paths, which may be especially useful in strategic

races.

3 Application to horse racing

Horse racing is an example of a multi-competitor race with

dynamic and complex intra-race strategies. For example,

a jockey may need to conserve their horse’s energy via

drafting while avoiding their horse getting boxed in by

competitors and losing position. Given the costs and com-

plexity of horse racing, statistical models capable of better

understanding and valuing horses, jockeys, and strategies

can greatly benefit owners and teammembers by providing

insights into their horses. Through Kaggle’s Big Data Derby

2022 (New York Racing Association NYRA and New York

2022), sponsored by theNewYorkRacingAssociation (NYRA)

and the New York Thoroughbred Horsemen’s Association

(NYTHA), we obtained tracking data recording the longitude

and latitude positions of all competing horses at a frequency

of approximately 4 frames/second. The data set includes all

NYRA races from the 2019 season at Aqueduct Racetrack,

Belmont Park, and Saratoga Race Course.

The goal of this application is to demonstrate the via-

bility of the framework outlined in Section 2 and it’s versa-

tility for answering a variety of complicated questions not

adequately addressed bymethods which focus on race-level

outcomes. Specifically, at the frame-level we wish to predict

the future position of eachhorse given their current position

on the track and with respect to their competitors. Doing

so, we are able to develop a race simulation at any frame

in the race and compute placement (e.g. 1st, 2nd, 3rd, etc.)

probabilities for each horse which converge to the true

result as the race progresses.

3.1 Data preparation

We perform multiple operations in order to transform the

data to suit our needs. The primary challenges we had

to tackle in order to prepare our data for modelling and

analyses were gathering data for track outlines and finish

lines, converting coordinates from longitude and latitude to

Cartesian coordinates, partitioning the track into stretches

and turns, and imputing missing or incorrect data.

The data provided by NYRA had longitude and latitude

locations of the horses but did not include spatial informa-

tion about the inside and outside edges of the track or the

finish lines. To address this, we manually gathered track

outline and finish line data for Aqueduct, Belmont Park and

Saratoga using Google Earth. Upon obtaining these data, we

converted longitude and latitude coordinates for the track

outlines, finish lines and horse location data to Cartesian

coordinates using the haversine formula (Van Brummelen

2012) and rotating the track such that the stretches are hor-

izontal. Figure 2 provides an illustration of the raw track

outlines in Figure 2a and the transformation to Cartesian

coordinates in Figure 2b.

Upon obtaining Cartesian coordinates for the tracks,

we split it into chutes, stretches and turns. Stretches are

straight portions of the track, turns are curved portions, and

chutes are extensions of the track used to set up the starting

lanes for each horse. Chutes are manually partitioned for

each track. To separate turns and stretches, we create a

circle with diameter equal to the difference between the

maximum and minimum y-coordinate in the inner track

outline. This circle is centred at an x-coordinate equal to the

minimum x-coordinate plus the radius and a y-coordinate

equal to the midpoint of the maximum and minimum y-

coordinate. Intuitively, the left side of the circle should trace

along the left stretch of the track.Wedeemanyportion of the
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Figure 2: Track outlines for Belmont Park. This figure shows the transformation of coordinates from those collected directly from Google Earth in

terms of latitude and longitude to standard Cartesian coordinates which are easier to work with. (a) Raw track outlines and finish lines manually

collected from Google Earth for Belmont Park. (b) Transformed track outlines and finish lines from longitude/latitude to Cartesian coordinates for

Belmont Park. With rotation so that the back stretch of the track is near y = 0 and the stretches are horizontal.

track to the left of the centre of the circle to be part of the left

turn. This process is repeated on the right side to identify the

right turn.

Finally, we linearly interpolate at a rate of 10 cm along

the inside of the track. We then find the point along the

inside of the track at which the distance to the horse’s

location is minimized for each horse. This provides us with

a sense of the horse’s forward location along the track,

rounded to the nearest 10 cm. Additionally, we take the

distance between the horse and the inside of the track to

be the horse’s lateral positioning with respect to the inner

track outline.We then use the change in forward and lateral

location of the horse over each frame to describe the horse’s

movement on a frame-by-frame basis. Figure 3a illustrates

the lateral location from the inside of the track as the length

of the black lines connecting each horse to the track outline

and the forward location as the point at which the black

lines meet the inside of the track.

Note that we also use the forward, lateral, and total

(Euclidean) distances between horses at each frame to cre-

ate a suite of metrics that quantify a horse’s positioning

relative to the competition. Figure 3b illustrates the distance

to the nearest horse for each of these three measurements.

Using these distances travelled between frames, we are able

to determine horse positions during the race. Further, we

can determine the forward, lateral, and Euclidean distance

between any two horses; from this we can determine if a

horse is in a draft position as well as its future possible

trajectories.

When necessary, we smooth the trajectory of a horse

using an imputation based on their opponents’ acceleration

patterns. We sometimes observe cases in the tracking data

where a horse freezes in a certain location for multiple

frames then reappear improbably far down the track. This

was generally an issue near the beginning of the race. Since

a horse’s speed is non-linear - particularly near the begin-

ning of the race – linear interpolation would not be an

appropriate solution for this issue. Instead, we leveraged

information from horses that were not absent from the

tracking data in those frames. If we are missing tracking

data for a horse from frame a to b, we use the average of the

proportion of distance travelled between frame a and b by

all horses with reliable tracking data. This provides us with

a more realistic approximation of the horse’s acceleration

pattern when missing from the tracking data. We apply this

imputation process to the first 40 frames (approximately

10 s) of the race for 4.2 % of horses across all one-mile races

to stabilize the tracking data when necessary. Horses that

require imputation may lack the same level of detail in

the frame-by-frame positioning updates compared to their

non-imputed counterparts. However, this imputation pro-

cess still leverages the horse’s known positioning at the

starting and end moment of imputation during the acceler-

ation phase of the race and thus the average speed over the

missing interval is still correct. One can think of this impu-

tation procedure as shrinking the missing frames towards

the speed of the average horse in each interval with the

constraint that the average speed over all missing frames

is equal to the actual average speed travelled by the horse.

Since the proportion of horses for which this issue occurred

is small and the imputation procedure effectively leverages

all of the information present it is unlikely this procedure

has a large influence on the overall results, although it may

be true that we underestimate the amount of uncertainty

during some such segments. In extensions to this work, one

could build such an imputation procedure directly into the

joint Bayesian generative model to properly propagate the

uncertainty but we leave this for future work.

3.2 Feature engineering

We construct multiple features used for the novel method-

ology. In Section 2 we discussed the importance of using

spatial features to represent the relationships between com-

petitors. In thisworkwe considered a simple representation

of spatial information largely based on forward, lateral,
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Figure 3: Illustration of a race snapshot. At each snapshot of the race many dynamic covariates are calculated. In Figure 3a we show how we partition

the race track into track segments. In Figure 3b we show the calculation of several important covariates relating the relative locations of the horses in

the race. (a) A snapshot of the 3rd race at Belmont Park on 2019-05-16 using our cleaned data. Stages of the track are partitioned with perpendicular

lines along the track at each 10 m mark. Brown shapes with coloured dots represent the horses, the coloured trail behind each horse represents its

speed – with blue to red representing slow to fast – and black lines illustrate the point at which the horse is located along the inside of the track.

(b) A snapshot of race 3 at Belmont Park on 2019-05-16 and illustration of how several important dynamic spatial covariates are calculated. Namely we

show the forward, Euclidean, and lateral distance to the nearest competitor at this moment in time in the three display circles from left to right

respectively. These covariates capture a low dimensional representation of whether a competitor has space to manoeuvre in various directions and as

such play a large role in our generative models.

and Euclidean distances (and position) to the nearest horse

frame-by-frame. In addition, we conditioned on the number

of opponents each horse is surrounded by on either side

and in front during a race. In principle, one could imagine a

richer set of spatial relationships but we found even simple

relations captured the large majority of the variation in

lateral movement in particular.

With this,we can construct a set of dynamic features for

each horse that describes its relative position and movable

space in its immediate area. This allows us to engineer a

drafting model, which we describe in the next subsection.

We further adjust for the effect of course type and track

condition. We also generate horse and jockey effects fea-

tures, which are discussed in the next section. Table 2 in the

Appendix provides a summary of the features and predic-

tors used in our forward and lateral movement models.

3.3 Drafting

Drafting is an important factor in many multi-competitor

races, including horse racing (Spence et al. 2012), however it

may be difficult tomodel with the appropriate level of detail

without a model which operates at the granular within-race

level. This may explain why, to the best of our knowledge,

the literature ondrafting inmulti-competitor races is largely

restricted to studies of aerodynamics and physics and not

directly linked to performance. We believe our generative

model offers a unique opportunity to study the effects of

such a dynamic strategy in detail and more importantly

serve as a proof of concept for future development in this

area.

A horse, or more generally a competitor, is required

to remain behind another in order to draft at all, poten-

tially sacrificing position and/or speed in that moment. The

benefit comes in the form of saved energy and potentially

increased speed in the later stages of the race. What matters

when deciding to draft is whether the set of race paths from

that moment forward are improved or not. One also has

to be careful to separate horses and jockeys particularly

adapted to certain strategies from the strategies themselves.

To create our drafting feature, we develop a three-

dimensional computer-aided design (CAD) of a horse and

jockey. With this design, we use the open source software

Blender (Blender Online Community 2018) and OpenFOAM

(Jasak 2009) to create a 3D model of a horse and jockey,

analyze the computational fluid dynamics of themodel, and

construct simulations. In this work, we primarily aim to

demonstrate the feasibility of developing dynamic drafting

covariates in a generative modelling approach at the frame-

level. As such we make several simplifying assumptions

regarding aerodynamics in order to generate drag coeffi-

cients which balance realism and computational efficiency.
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We leave improvement to fluid-dynamic modelling and

more specific development on drafting models for multi-

competitor races to future work.

One of the fundamental simplifying assumptions we

made was regarding the boundary conditions for the

fluid-dynamic simulations. We assume a simplified set-up

wherein the horse and jockey are enclosed within a virtual

closed box with air flow coming from the front. In prac-

tice there may be wind coming from other directions or

other conditions which impact the flow of air and the direc-

tion of these imparted forces. On average we expect this

assumption to be reasonable and it allows us to primarily

focus our attention on the dynamics regarding the horse

pushing against the air in front of it and the flow of air

around the horse creating pockets of lower resistance.

In early tests we additionally allowed for skin friction

drag, as opposed to only the form drag. Skin friction drag

is caused by the interaction of the friction on the surface

of an object and the fluid air. In some settings, skin friction

can be an important force and, in fact, NASA estimated it to

be the dominant drag force for subsonic rocket applications

totaling 45 % of the total drag (Fischer and Ash 1974). The

two most important considerations for skin friction drag

are the speed of travel, since this drag is a function of the

squared velocity, and the surface area interacting with the

fluid. Relative to applications like flight and rocket travel,

horses travel at very slow speeds and their surface area

interacting with air head on is also very small which means

we expect the skin friction drag to be relatively small aswell.

Early simulations confirmed that adding skin friction drag

had nearly no effect on the simulations for horse racing and

it was thus subsequently ignored, but this should be kept in

mind as a potentially important force in some applications,

particularly those involving high speeds and larger surface

areas.

Given the above assumptions about the nature of the

fluid dynamic forces, we additionally made two types of

computational approximations. The first is regarding the

mesh or cell size. In computational fluid dynamic simula-

tions one is estimating the solution to a set of Navier–Stokes

equations. To aid in computation the object of interest is

split into small pieces by a mesh and the equations are

solved individually on each piece and added back together

linearly to determine the result of the simulation on the total

object. In our case, the simulation on each cell was solved

using the pressure-implicit with splitting operators (PISO)

algorithm provided by OpenFOAM. As the mesh becomes

finer and we break the object of interest into smaller pieces

the fidelity of the simulation increases at the expense of

computation. In sophisticated mesh designs one can divide

the object of interest unevenly across regions with different

features. In our case, the body of the horse acts as a solid

rectangle against the incoming air, whereas the face is

curved and interacts with the air in less trivial ways. These

special areas with the highest local curvature were given a

finer mesh as we expect the simulation results vary more

greatly across these areas. To determine the final mesh, we

used an iterationmethod recommended byWhat is CFD. An

initial mesh was chosen by visual inspection taking into

account the regions of high and low local curvature as dis-

cussed above. Then a series of simulations were conducted

with each simulation using a finer mesh than the previous.

The iterations continued until the results converged with

respect to a pre-specified tolerance, which we chose in this

case to be a 5 % relative change in simulation results. In

some applications, a smaller tolerance will be desirable to

choose. Additionally, we checked the estimated y+ value

from the final simulations as provided by OpenFOAM to

ensure it met the diagnostic condition appropriate for this

class of simulations (30 < y+ < 300) (What is y+). The y+
measure is important for determining the simulation per-

formance near the boundaries or walls in computational

fluid dynamics simulations.

The second kind of numerical approximation which

was necessary was with respect to the distance between

horses. The drag reduction fromdrafting is a function of dis-

tance to the horse in front. As that distance increases the rel-

ative decrease in drag experienced by the trailing horse goes

to zero. Similarly being directly behind a horsewill decrease

the drag experienced more than being slightly to the left or

the right of the horse in front. The goal of our simulations

is to be able to return a coefficient of drag as a function of

any relative positioning of the trailing and leading horse,

however we are unable to run full simulations at all pos-

sible (continuous) distance values. To approximate the drag

function we specified a two-dimensional grid of distances

where we ran simulations and then linearly interpolated to

generate the drag coefficients used as a basis for covariates

in the various distance models. We ran simulations on a

3 × 3 grid of locations at which the drafting horse is located

where the drafting horse is either 2, 3.5, or 5 m behind and

either directly behind or 0.5 m to the right or left. Finally,

we also calculated the drag in the scenario of no drafting or

otherwise called the clean air condition.

Using the estimated grid of drag coefficients from the

simulations and the linear interpolations thereofwe created

two types of covariates which we then used in our mod-

els. The first covariate was a simple indicator of whether

a horse was currently drafting, or currently located such

that they were benefiting from a reduction in air drag, or
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not. Second, we estimated the total proportion of energy

saved from drafting up to each moment in the race. This is

done by calculating the energy, E, used by a horse as E =
Fds, where Fd = 1

2
𝜌 𝑣2 cd A is the force experienced by the

horse while trying to move forward, 𝜌 is the mass density of

air, 𝑣 is the velocity of the horse, cd is the calculated drag

coefficient, A is the frontal area of the horse (assumed to

be one square metre), and s is the distance covered by the

horse in a frame. These two approaches allow us to capture

both short- and long-term dynamics relating to drafting. In

principle, muchmore complicated drafting simulations and

covariates are possible. And perhaps more importantly one

could specify relevant interactions between these covariate

values and the current stage of the race. In some multi-

competitor races, it may be especially important to under-

stand drafting dynamics in packs or groups for example.

Cycling is a good example where much of the race occurs

in a pack where there is much more drag reduction. In

this application, however, we assume that the bulk of the

drafting effect is the result of the nearest horse in front in

order to limit the complexity and scope of the computational

simulations required. While these assumptions may be sim-

plifying, we believe that they represent a meaningful step

toward capturing these complicated dynamics and serve as

proof of concept. See Figure 4 for visualizations of the fluid

dynamics and drafting simulation procedure.

3.4 Model and simulations

To build ourmodel, we only include the one-mile races from

the 2019 season provided byNYRA andNYTHA. Ourmethod-

ology can easily be extended to races of differing lengths

in a hierarchical scheme, and we make this choice for both

demonstrative purposes and computational efficiency. Fol-

lowing the general methodology outlined in Section 2 we

develop two models, one for estimating a horses forward

movement at each frame and another estimating lateral

movement. Based on the data we made several simplifica-

tions to the general joint density in Equation (2). First we

assumed independence between the forward and lateral

movements. This is of course not true. In fact, there must

on some level be dependence since horses only have a finite

amount of energy to expend, and maximal exertion per-

pendicular, for example, would result in restrictions to how

much lateral movement would be possible.

More formally, the most natural way one would model

the dependence between the forward and lateral move-

ment would be to make one model conditional on the

other. Explicitly, one could modify the joint distribution in

Equation (2) as follows:

p(ỹfor
i
|𝜽for( j),Xfor

i
, 𝜓 f ) × p(ỹlat

i
|ỹfor

i
,𝜽

lat( j),X lat
i
, 𝜓l),

i = 1, 2,… , I,
(5)

Figure 4: An illustration of our drafting model and simulations. In Figure 4a we show a representation of the pressure coefficients generated from a

fluid dynamics simulation in clean air. In the subsequent Figure 4b we see a visual representation of the drag coefficients from a fluid dynamics

simulation with two horses, one trailing another or drafting. In Figure 4c we see an illustration of the drag effect. That is, we can see that the trailing

horse is subject to less air resistance according to the fluid dynamic simulations. (a) Measurements of air pressure on a horse and jockey in clean air.

(b) Measurements of air pressure for two horse and jockey pairs, with one drafting behind the other. (c) A visualization of simulations of the fluid

dynamics of two horse and jockey pairs, with one drafting behind the other. Obtained from applying the pressure-implicit splitting operators (PISO)

algorithm with OpenFOAM.
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where we condition directly on the forward distance in the

lateral movement moment. This requires us to simulate the

forward distance first and subsequently the lateral distance

which can bemore cumbersome. In some cases a multivari-

ate normal on the outcome or some transformation thereof

may also be appropriate.

In practice with respect to our canonical example, how-

ever, since the frames are approximately 0.25 s long the

large majority of this effect is captured in the latent effects,

the spatial information from the previous time-step and

covariate information aboutwhere the horse is on the track,

such as whether they are on a bend or not, and thus this

simplification seemed not to impact inferences very much.

More formally, when the time between frames is relatively

small, i.e. Δt < 𝜖, then we would expect the information at
time t represented by the filtration t to be well approxi-

mated by the information at the previous time step, t−Δt.

In the small Δt setting, if our models are capturing the

total information available at each time step, then wemight

expect the loss of not modelling the dependence to be more

minimal since our models are explicitly conditioned on all

the information available up to t−Δt. In the example of the

lateral model, we use the information of lateral movement

in the previous framewhich is highly related to the forward

movement in the previous frame which is highly correlated

with the forwardmovement in the current frame. The inde-

pendence simplification, of course, may not be appropri-

ate for all multi-competitor races, particularly those where

frames are spaced out further in timewhere approximating

the current information with that available in the previous

frame may not be as credible.

Second, for similar reasons, we assumed that there are

no latent time-varying horse effects in the lateralmovement

model, but instead time constant jockey effects. Preliminary

testing found that over 99 % of the variation in lateralmove-

ment could be explained by simple spatial covariates, a

constant jockey effect, track phase indicators which include

this like turn and home stretch, and the motion from the

previous time frame. Since this simple model accounted

for much of the variation, the model was simplified for

computational reasons. Of course, when appropriate, these

effects could be made more complicated. We also assumed

that horse speeds only depend on each other through the

spatial covariates such as distances to nearest horses at each

frame.

For the forward movement model we modelled the

horse speed profiles with b-splines (De Boor and De Boor

1978; Dierckx 1995). This spline technique encodes the

knowledge that a horse’s average speed at any point in a

race is likely to be smoothwithout assuming toomuch about

what that function looks like exactly and using the data to

best decide. The splines are fitted using all tracks, and the

knot placements for the splines were decided both using a

leave-one-out cross-validation approximation and a visual

assessment. The knot placements correspond roughly to

strategy transitions, for instance the end of the initial accel-

eration at the start of the race as well as the final quarter-

mile. The b-splines were generatedwith the splines2 R pack-

age (Wang and Yan 2021).

Overall, the forward model for each competitor k looks

like:

ỹfor
i
(k) ∼ N(𝜽

for
k
( j)+ 𝛿 f

jockey
+ 𝛿 f

track
+ X for𝜓x, 𝜎 f ), (6)

where𝜽
for
k
( j) is the kth competitors spline value at location j,

the 𝛿 parameters represent track and jockey effects andXfor

represents all other covariates which are listed in Table 2.

The finite vector of spline parameters and the track

and jockey effects were all regularized using random effects

structures of the form:

𝛿 ∼ n(𝜇𝛿, 𝜎𝛿), (7)

where 𝜇𝛿 was treated as an unknown mean for the spline

effects, but fixed at zero for the jockey and track effects

and 𝜎𝛿 was a fixed hyper-parameter for all three parameter

types. Thus the spline parameters were shrunk towards the

average speed for that portion of the race and jockey and

track effects were shrunk towards 0. Covariate and outcome

variance coefficients were given weakly informative priors.

When fitting the forward model on all the data, par-

ticularly in the model exploration phase, we used the opti-

mization functions in the RStan package (Stan Develop-

ment Team 2024). Optimization generates an approximately

Bayesianmodel viaMaximumA Posteriori (MAP) estimates.

In principle, one could allow the random effect variance

parameters to be unknown, for example, but this may be

more suitable for variational or MCMC methods with the

trade-off being longer compute times. We found that the

posterior means and posterior predictive means tended to

be well-behaved using Optimization, but that occasionally

these fits produced poorly behaved tails and subsequently

unrealistic simulations. Additionally, when using truncated

distributions the optimization approach sometimes failed to

converge. When generating later simulations on a handful

of horses in Section 9 we fit full MCMC models on a subset

of the data and additionally truncated the forward model

below at 0. When the goal was generating expectations,

truncating or not did not have large impacts in most cases,

but if the object of interest was realistic and interpretable

simulations we found truncating to be important.
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The second model we construct is a lateral movement

(LM) model. This models the lateral speed of each horse.

Throughout this work we use the terms side movement and

lateral movement interchangeably. For thismodel, we again

use a simple Gaussian model:

ỹlat ∼ N
(
PLM𝛽plm + 𝛿l

jockey
+ 𝛿l

track
+ X lat𝜓lat, 𝜎l

)
, (8)

where again the track and jockey effects, 𝛿l
track

and 𝛿l
jockey

,

had random effect structures and the lateral covariates

found in Table 2 had weakly informative priors scaled to

movement speeds possible for a horse. The most important

covariate in this model is PLMwhich is the horse’s previous

lateral movement from the past frame. This encodes the

fact that horses moving to the inside or the outside tend to

continue doing so since the frames are so close in time.

The forward and lateral models give us a straight-

forwardmethod for simulating entire races. We simply iter-

ate between simulating forward motion and then lateral

movement for all horses simultaneously frame-by-frame

ensuring we save the current location of all horses and

calculate all dynamic covariates at each step. See Figure 5a

for a summary of the simulation algorithm.

While simple, simulating over a sufficient number of

posterior drawsmay be computationally cumbersome even

for a single race. One-mile races, for example, tend to last

approximately 100 s which generates on the order of 400

frames in this data set. Simulating over 2000 posterior

drawswith 6 competitors requires 6 × 2 × 400 × 2000 =
9.6 × 106 draws from normal distributions in addition

to updating the positions and recalculating the dynamic

covariates. This is largely infeasible at scale in standard R

coding. We were able to make the problem feasible leverag-

ing the fact that Stanis written in C++. Rstan (Stan Devel-

opment Team 2024) has a function gqs(⋅) which gives direct
access to the generative quantities block. This allows us to

write the posterior simulations directly in this block and

execute them both separate from fitting the model but also

in such awaywhich lends itself well to parallelization of the

simulations at the race-level. Using the gqs function, 2000

Figure 5: Illustration of the simulation procedure and full modelling pipeline, respectively. These flowcharts represent the step-by-step process taken

in building this project. (a) Simulation procedure leveraging the forward and lateral movement models. This illustration is meant to provide a

high-level pseudo-algorithm for the prediction of horse races using this model framework. For each horse, we (1) simulate the forward distance

travelled in the next frame, (2) simulate the lateral distance travelled in the next frame, (3) after applying steps (1) and (2), update the spatiotemporal

features. This process is repeated on a frame-by-frame basis until all horses cross the finish line. Note that lateral movements are exaggerated for

illustrative purposes. (b) Full methodology summary. We begin with data preparation and feature engineering such as includes extracting track

outlines from Google Earth, smoothing tracking data via imputation and calculating distance features based on the relative positioning of the horses.

Next, we fit approximate Bayesian models to predict the forward and lateral movement of each horse on a frame-by-frame basis. We then use those

models to predict race outcomes at any moment of a race by running thousands of simulations of the forward and lateral movement of horses for

each frame until all horses have completed the race. This simulation process as well as the model parameters and effects provide a wide range of

applications in multicompetitor races with spatiotemporal tracking data.
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simulations of a race can be fit on the order of 90–120 s

on a MacBook Pro with 64 GB of RAM and 16 cores. Early

versions of this code written in standard R took 5–10 min to

complete fewer than 50 full simulations. When saving only

final outputs or summaries of the simulations the memory

load is significantly lower and these computation times can

be reduced significantly in many cases.

As discussed, these simulations allow the computation

of various notions of instantaneous value. For example, in

Figure 5b we can see dynamic placing probabilities for all

horses at a given snapshot of a real race. In the following

sections we will discuss some of the inferences generated

from this model as well as some examples of the kinds of

analysis a fully generative multi-competitor race model is

capable of.

3.5 Model evaluation

At a high-level our recommended philosophy for model

evaluation of these kinds of models incorporates three ele-

ments. First, we want to understand how well our models

operate on the data granularity level on which the data is

trained. Since these are frame-level models, we evaluate

their performance in terms of how well they predict frame

level outcomes (in and out of sample) such as say the actual

forward or lateral distance travelled in a frame. Second, we

want to look at outcomes on a larger more meaningful unit.

In our canonical example we looked at race-level outcomes.

Race-times and rankings are examples of units for which

we can generate predictions but for which our model is not

directly trained and for which different modelling choices

can be evaluated. In somemulti-competitor races theremay

be additional sub-units below the race-level for which such

evaluation is also valuable. Finallywe looked at the inferred

coefficients and the produced simulations. Poor modelling

choices can lead to more unrealistic race paths and latent

valueswhich strongly contradict domain expert knowledge.

This step can most benefit from collaboration with experts.

Since the models are computationally very expensive

we also took advantage of using simplified models for var-

ious parts of the model evaluation process. In some cases

this meant simplifying the number of covariates to only the

most important ones or fitting on a smaller subset of horses

or races to test out simulations. Building out these models

in layers of complexity can be crucial both from a develop-

ment time standpoint and in understanding how additional

features or more complicated model architectures change

the predictions and inferences generated.

In Section 4.3 we describe how we chose the hyper-

parameters relating to the forward speed profiles such as

the number of knots and their placement with respect to the

above outlined evaluation principles. These choices were

found to be the most important modeling decisions with

respect to overall performance.

4 Results

4.1 Race simulation and dynamic win
probability

At each race frame, our model performs multiple simu-

lations that predict the remainder of the race. Using the

extracted finishing position of horses in these simulations,

we are able to construct dynamic race finishing placement

probabilities for each horse. As more information is pro-

videdwith each frame that passes, these predictions become

more accurate and converge to the true race result. We

present how our dynamic win probabilities behave using

race three from the Belmont which occurred May 16, 2019

in Figure 6.

In the heat maps depicted in Figure 6a–c, the left-most

column corresponds to the probability a horse finishes in

first, and the right-most column corresponds to a horse

finishing last. The circular visual to the right of the heat

map is a bird’s eye view of the race state at that given

time. As the true race progresses, the win probabilities are

being updated given the new information of the race char-

acteristics until the race finishes and the true finish order

is determined. Analyzing this visualization we see that the

horse Curlin’s New Moon is sitting back in the first half and

in a draft position. Despite sitting around fifth and seventh

place, our model still predicts that this horse will have a top

finish placement during the early stages of the race. Curlin’s

NewMoon ultimately finished second this race, demonstrat-

ing our model’s capability to capture effects that would

otherwise be lost to the human eye. This effect is likely due

to a combination of Curlin’s NewMoon having relative high

predicted speed in the upcoming stretches of the race and

his favorable positioning with respect to drafting. We can

construct full simulations and thus visualizations for any

mile-long race in the originally provided data set or even

for races which did not occur as long as the horses are in

the data set.

4.2 Jockey ratings

From the forward model, we can compute the posterior

mean of the jockey’s random effect to produce a jockey

rankingsmeasure. The ability to compute this demonstrates

the benefit of our choice to model in a Bayesian framework

as well as our methodology’s flexibility. This measure
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Figure 6: Illustrative example of dynamic win probability behaviour using data from the 3rd one-mile race at Belmont Park on 2019-05-16. The square

heatmap on the left represents the placement probabilities for all horses on the y-axis and all finishing placements on the x-axis. The visual on the

right displays the horse positionings on the track at the corresponding frame where horse colours correspond to the rainbow colour scale to the left of

the horse and jockey names. (a) Placement probabilities of all horse/jockey combinations at the beginning of the race. At the beginning of the race,

horse spline effects, jockey effects and starting lanes are the primary influencers on placement probabilities. Purchasing power (blue) is at a

disadvantage starting on the outside lane. Whereas, there he goes and somebody are in the more advantageous inside lanes. (b) Placement

probabilities of all horse/jockey combinations at the half way point (50.2 s since start). There he goes remains one of the favourites to win at the front

of the pack while purchasing power remains the most likely candidate to finish 6th as he remains on the outside lane. (c) Placement probabilities of all

horse/jockey combinations as the 1st place horse crosses the finish line. As the end of the race nears, the placement probabilities begin to converge to

each horse’s true finishing placement. However, uncertainty still remains as some horses are very tightly placed such as purchasing power and

somebody in 3rd and 4th, respectively.

quantitatively describes the positive impact that a jockey

has on their horse’s estimated final position (i.e. the

higher the rating, the greater the positive impact on

race result). Table 1 displays the top ten jockey ratings

produced by our modelling procedure. We compare our

ratings to the total earnings leaderboard in 2022 for

Saratoga (New York Racing Association (NYRA)), Belmont

Park (New York Racing Association (NYRA)), and Aqueduct

(New York Racing Association (NYRA)) for our model’s top

ten jockeys. Unfortunately, we are unable to obtain the earn-

ings rankings from 2019 as they are not available on the

track websites. However, we find that Irad Ortiz Jr., the top

rated jockey from our model, also ranks first at Saratoga

and Belmont, and fourth at Aqueduct. The models top jock-

eys have performed reasonably well on at least one of the

selected tracks in 2022, 3 years post our training set, with

the exception of Joe Bravo who did not compete on any of

the three tracks. However, Joe Bravo has still achieved 54

first place finishes in 2022 by the end of October 2022. This

suggests our model has some positive signal in identifying

top jockeys in a forward predictive sense.

4.3 Horse profiles

In this section we discuss the estimated forward speed pro-

files. One of the more complicated choices in building a

model like this is to determine the number of knots for the

spline as well as the enforced smoothness. In general, we

would expect underlying speed profiles to be reasonably

smooth and we want to be careful to not overfit the data

especially sincewe expect other effects to explain significant

portions of the data variance.

As described in Section 3.4, we fit a hierarchical cubic

b-spline to incorporate a horse effect into the forwardmove-

ment model. There are still a number of additional choices

required to fit such a spline model including the number
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Table 1: Top ten jockeys in the random effect from the forward model,

compared to jockey rankings provided by Saratoga, Belmont Park, and

Aqueduct in 2022 based on total earnings.

Jockey Model

rank

Saratoga

rank

Belmont

rank

Aqueduct

rank

Irad Ortiz Jr. 1 1 1 4

Jose L. Ortiz 2 5 7 6

Luis Saez 3 3 6 NR

John R. Velazquez 4 8 14 NR

Javier Castellano 5 7 10 2

Manuel Franco 6 6 3 1

Jose Lezcano 7 9 8 NR

Joe Bravo 8 DNC DNC DNC

Joel Rosario 9 4 4 NR

Junior Alvarado 10 12 22 NR

NR, not ranked; DNC, did not compete in 2022.

of knots and the placement of those knots. Spline knots can

be categorized into two types – boundary and internal. The

boundary knots anchor the start and end of the smooth

curve. The internal knots divide the cumulative distance

(i.e. distance along the track) between the boundary knots

into segments and influence the shape of the b-spline curve

within each segment. They allow us to better capture differ-

ences in a horse’s speed tendencies for different distances

into a race. Since we consider only 1-mile races, we choose 0

and 1650 m as boundary knots. Internal knot placement had

to be chosen to accommodate all horses and tracks, as the

knots were kept constant across all horses and each horse

ran on multiple tracks. To select these hyper-parameters,

we used a combination of visual assessment and a leave-

one-out cross-validation (LOOCV) approximation using the

loo package in Rstan (Vehtari et al. 2022) on a subset of the

horse data using a simplified model. Plots of spline fit for

that subset of horse were used to choose the degree of the

b-spline (3) and the number of internal knots required to

capture trends in speed (5), and to obtain reasonable candi-

date sets of internal knots. LOOCVwasused to determine the

best choice among these candidate sets. We chose internal

knots of 90, 250, 800, 1207, and 1375 m. The estimated horse

profiles from the simplified model can be seen in Figure 7a

and a selection of profiles compared to the observed data

can be seen in Figure 7b.

There are numerous inferences and further analyses

that can bemadewith respect to the estimated latent param-

eters. One particular example we explore here is clustering

latent effects on the final fittedmodel to understand various

horse speed profiles in our dataset. This can help to analyze

horse tendencies and strengths with respect to the distance

travelled along the track. We performed hierarchical clus-

tering with Ward’s linkage on all horses that competed in

at least 5 races in our data. As a result, we obtain 3 clusters

which we label “Strong Build, Slow Finish” (blue), “Medium

Build,MediumFinish” (red), and “SlowBuild, Strong Finish”

(green) as shown in Figure 8. The Strong Build, Slow Finish

group has exceptional acceleration over the first 100 m but

slowly trails off throughout the race. The Medium Build,

MediumFinish group takes a bit longer to reach its top speed

but maintains it well throughout the race. The Slow Start,

Strong Finish group takes longer to reach the top speed but

holds a higher impact on speed throughout most of the race

and has an additional burst of energy at the end of the

race.

Additionally, we provide the resulting dendrogram

from our hierarchical clustering results in the Appendix in

Figure 10. This gives us a sense of the relationship between

horses with respect to their speed patterns. We logically

find a large proportion of the horses analyzed belong to the

Medium Build, Medium Finish group as these represent the

horses that possess a consistent race pace.

Figure 7: Horse profile plots from simplified model used to determine the spline complexity and knot locations. (a) Forward speed profiles with six

selected horses highlighted. (b) Six selected horse profiles compared to the observed data from all races.
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Figure 8: The three identified horse profiles using Ward’s linkage. The

blue cluster represents horses that are able to reach their top speed the

quickest but fail to maintain that speed over the course of the race. The

green cluster represents horses that are slow out of the gate but reach

the highest top speed and finish strong. The red cluster represents

horses in the middle of the pack who both start the at middling

acceleration and finish at a middling pace.

4.4 Counter-factual simulations

Fully generative models for multi-competitor races open up

new possibilities for analysis. In particular one can sim-

ulate races or strategies that are not observed. As a sim-

ple example of the kinds of insights that counter-factual

simulations can provide we show how one could estimate

starting lane effects. It is important to control for competi-

tor strength when attempting to estimate lane effects. In

this example we randomly select six horse/jockey pairs and

simulate races between them in all possible lane assign-

ments. With six horse/jockey pairs, there are 6! = 720

different lane combinations and for each lane combina-

tion we simulate 100 races from the posterior predictive

distribution.

In Figure 9 we see the results of our counter-factual

simulation. The second lane has the lowest (best) expected

finishing rank at 3.28 as well as the highest probability of

finishing in first, 0.21. The two lanes adjacent to the second

lane, the first and third, have the next lowest expected ranks

and finishing probabilities. From the fourth lane to the sixth

lane the expected rank increases and the probability of

placing first, second, and third decreasesmonotonically. The

sixth lane seems to present the largest disadvantage and risk

with the highest expected rank of 3.88. This is largely driven

by the sixth lane having an elevated chance of finishing

last and significantly decreased probability of finishing first.

Notice, however, the probability of finishing second through

fourth is similar to nearby lanes. Another advantage of fully

generative models is that analysis can go beyond simply

estimating expectations as we have presented here. To bet-

ter understand why the sixth lane is disadvantageous, for

example, one could study the properties of the simulation

draws themselves to identify patterns and characteristics

leading to low results. Those patterns could be further strat-

ified with respect to different racing styles or horse char-

acteristics since we might expect effect heterogeneity with

respect to lane effects.

Overall, we see that even in this simple setting, with a

relatively straightforward simulation set-up and question,

that fully generative simulations can reveal and help us

Figure 9: Posterior predictive expected ranks, finishing probabilities, and finishing times from 720 × 100 posterior predictive simulations from the

starting lane experiment. Coloured square heat-map on the left represents placement probabilities for all combinations of finishing placement x-axis

and starting lane y-axis. The white column in the middle represents the mean finishing placement for each starting lane based on the 72,000

simulations. The white column on the right represents the mean finishing time for each horse along with a 95 % credible interval in brackets based on

the 72,000 simulations.
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better understand non-obvious complexities. This is really

valuable to competitors, race organizers, and other stake-

holders especially in competitions where strategy plays a

large role such as horse racing.

Even with respect to estimating lane effects, there are

several ways tomodify the simulation experiment in accord

with specific inferential or predictive goals. For example,

one might argue that this simulation estimates a particu-

lar conditional average treatment effect (CATE) which is

specific to the particular horse and jockey pairs that we

chose. Depending on the question at hand, it may be more

appropriate to estimate amarginal average treatment effect

(ATE) by averaging over many horse and jockey pairs rac-

ing against themselves. The ATE, for example, might better

answer the question about lane effects from the perspec-

tive of a race organizer wanting to either keep races fair

or to appropriately reward competitors having done well

in previous rounds or competitions. On the other hand,

by choosing the competitors carefully according to known

abilities or tendencies, one could estimate a (potentially)

more informative CATE for developing and understanding

optimal strategywith respect to a specific competitor or type

of competitor.

5 Conclusion and future work

In theworkwe propose a generativemodel compatible with

multi-competitor races with available frame-level tracking

data. We show how this class of models can capture some of

the important within-race dynamics of such races including

tactical movements and strategies. The key to these models

is modelling total movement as a function of perpendicular

and lateral movement at each time step. We demonstrate

how this can be applied to the context of one-mile horse

races using high-resolution tracking data provided by the

NYRA and NYTHA.

The contributions of this paper are three-fold. First, we

estimate within-race competitor-specific coefficients which

vary smoothly over the course of the race and separate these

effects from both observed race-level coefficients such as

jockey and track effects as well as intra-race factors such

as drafting and other dynamic effects. Second, we show

how these models can be used to generate computationally

feasible posterior predictive simulations of entire races for

any starting positions and competitors for which we have

suitable data. These simulations can be used to generate

instantaneous notions of value analogous to those available

through the EPV framework in continuous sports like bas-

ketball and soccer. Measures of continuous value can then

be further analyzed to study tactics or to attribute value

to competitor decisions for example. Finally, the generative

nature of the models allows one to simulate counter-factual

scenarios to understand probable results given alternative

strategies not observed in actual competitions or to study

race effects such as our lane effect case-study. This can be

especially powerful in collaboration with domain experts

who are able to adequately describe potential strategies or

research questions of interest.

The proposed class of generative models is sufficiently

general to apply to anymulti-competitor racewhere there is

available tracking data and competitormotion is adequately

represented by forward and lateral movements such as

most track based events. This is not to say that adaptation

to other race settings can be done without care. One of the

desirable features of many horse races is the combination

of high sampling rate of the data (∼4 hz) and the relatively
short nature of many events (e.g. the canonical one-mile

event takes on the order of 90 s and 350–400 frames). High

sampling rates allow one to accurately capture instanta-

neous features such as drafting and relatively short overall

races make simulations computationally feasible to gener-

ate. Some multi-competitor races will not have access to

this level of data or may be significantly longer that sim-

ulations on this scale of granularity may not be possible.

For example, a Tour de France stage is often on the order

of several hundred kilometers and may take many hours

to complete. Such cases will require some adaptations to be

feasible.

There are two broad classes of solutions to these prob-

lems – sampling schemes and emulatorswhichmay be used

in combinationwith each other. Themost natural solution to

dealing with races which are an order of magnitude larger

in terms of number of frames (or number of competitors or

both) is to coarsen the sampling until it is amanageable size.

In some races it may be necessary to make the coarsening

quite significant. The trade-off with coarsening is that fea-

tures like drafting cease to be instantaneous measures and

additionally this lack of granularity may show up in some

measures of uncertainty and impact the granularity of the

questions that can be answered by the simulation. In some

cases, some of the drawbacks may be partially overcome

by coarsening over meaningful subsections of the race. In

road cycling, for example, stages are often classified into

particular subsections of flats, hills, and descents. It may be

sufficient to capture things like rider ability and average

drag over these subsections (or further divisions thereof)

to generate meaningful inferences, predictions, and simula-

tions. The subsections need not be overly coarse, however.

As we demonstrated in our canonical examplewewere able

to simulate feasibly on the order of 400 frames and in many
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cases dividing a race into several hundred subsections may

not be overly restrictive. Another sampling approach can

involve down-sampling and interpolating over these sub-

sections rather than modelling the subsections as a distinct

unit. Coarsening and down-sampling approaches may also

be combined when appropriate.

The problem of needing to lower the computational

burden of inferences and predictions based on computa-

tionally intensive simulations is hardly unique to sports and

the tracking data context. Emulators, that is models which

approximate the outputs of complex simulations are, in fact,

common in physical and social sciences such as physics

(Kataoka et al. 2023), biology (Stolfi and Castiglione 2021),

and fields like economics or sociology where agent based

modelling is employed (Angione et al. 2020). In practice,

models like Gaussian processes and neural networks are

trained based on outcomes which are some function of the

simulation results. In some cases Bayesianmethods are pre-

ferred when one is interested in capturing the underlying

uncertainty in the simulations rather than simply point esti-

mates of expectations (Vernon et al. 2022), however there

is an emerging literature aiming to quantify the epistemic

andmodel uncertainty of deepermachine learningmethods

in the context of emulators (Thiagarajan et al. 2020). The

emulator still requires some number of full simulations to

be conducted to develop a sufficient training set for the task

at hand to ensure the key features of the richer simulation

framework is learned effectively. It is also important to note

that several different emulation models may need to be

developed tomodel different outputs for the simulation. For

example, returning to the canonical horse racing example,

one may need to build a different emulator for predicting

race finishing times than if one is investigating the impor-

tance of lane assignment on lateral movement in the early

stages of the race.
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Appendix A

A.1 Covariates table

Table 2: All covariates and effects used in proposed forward and lateral movement models for each combination of horse and jockey during active

races.

Feature Type Description

n_horses_inside DWR Number of horses to the inside (left)

n_horses_outside DWR Number of horses to the outside (right)

n_horses_forward DWR Number of horses in front

n_horses_backward DWR Number of horses behind

nearest_inside DWR Nearest horse on the inside, in terms of lateral distance

nearest_outside DWR Nearest horse to the outside, in terms of lateral distance

nearest_inside_euclid DWR Nearest horse on the inside, in terms of Euclidean distance

nearest_outside_euclid DWR Nearest horse to the outside, in terms of Euclidean distance

nearest_forward DWR Nearest horse in front, in terms of forward distance

prev_lat_movement DWR Lateral distance travelled in previous frame (LMO)

is_drafting DWR An indicator for whether the horse is drafting in the current frame

prop_energy_saved DWR Total proportion of energy saved due to drafting

is_turn DWR An indicator for whether the horse is going around a turn

is_home_stretch DWR Horse is in the home stretch of the race (LMO)

turn_to_home_stretch DWR Horse is in the first 10 m of the home stretch coming out of turn (LMO)

race_context RE A combination of track type (dirt, turf) and surface condition (fast, good, sloppy, or muddy)

jockey RE A simple random effect for the jockey

horse_spline RE A hierarchical B-spline describing the movement pattern of each horse (FMO)

DWR, dynamic within-race feature; RE, random effect; LMO, lateral model only; FMO, forward model only.
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A.2 Clustering dendrogram

Figure 10: A hierarchical clustering dendrogram based on all horses with 5 or more 1 mile races. Red borders are used to divide clusters.
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