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Abstract: Multi-competitor races often feature complicated
within-race strategies that are difficult to capture when
training data on race outcome level data. Models which do
not account for race-level strategy may suffer from con-
founded inferences and predictions. We develop a genera-
tive model for multi-competitor races which explicitly mod-
els race-level effects like drafting and separates strategy
from competitor ability. The model allows one to simulate
full races from any real or created starting position opening
new avenues for attributing value to within-race actions
and performing counter-factual analyses. This methodology
is sufficiently general to apply to any track based multi-
competitor races where both tracking data is available and
competitor movement is well described by simultaneous
forward and lateral movements. We apply this methodology
to one-mile horse races using frame-level tracking data pro-
vided by the New York Racing Association (NYRA) and the
New York Thoroughbred Horsemen’s Association (NYTHA)
for the Big Data Derby 2022 Kaggle Competition. We demon-
strate how this model can yield new inferences, such as the
estimation of horse-specific speed profiles and examples of
posterior predictive counterfactual simulations to answer
questions of interest such as starting lane impacts on race
outcomes.
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1 Introduction

In multi-competitor sports, athletes and teams want not
only to understand the relative performance and under-
lying abilities of competitors, but also better understand
optimal within-race strategies to help a competitor improve.
In highly strategic races, such as middle distance running
or our canonical example of horse racing, teasing apart
within-race strategic effects from the underlying abilities
of competitors is extremely difficult using current meth-
ods which are trained using race-level outcomes. Optimal
strategy in such races is likely to depend not only on the
quality of the competitors, but also on particularities of each
race including the weather conditions and even within-race
conditions such as particular competitors getting good starts
or a competitor having restricted movement due to sur-
rounding competitors. Further, traditional analyses which
operate on race-level statistics like finishing time may easily
be confounded with respect to estimating competitor ability
since competitors of similar quality may be more likely
to race against each other and the optimal strategies for
each competitor given their competitors are likely to vary
according to their own abilities. For example, an elite NCAA
middle distance runner might typically prefer a front run-
ning strategy where they attempt to lead the race with a fast
enough pace to drop their opponents, but they might not be
fast enough for this strategy to be optimal in a semi-final or
final of the world championships. Without methods capable
of teasing strategy and ability apart, counterfactual anal-
ysis aiming to estimate what might have occurred under
different strategies or inferring underlying ability are likely
to be unreliable. This leaves coaches, athletes, and teams
in an information deficit with respect to where they stand
relative to their competitors and what they might be able to
achieve.

In this paper, we extend recent work in modelling
continuous outcomes in multi-competitor games (Che and
Glickman 2022) to the context of frame-level tracking data.
In our canonical example of horse racing, we capture the
interdependent strategic effects of the competitors by simul-
taneously modelling forward and horizontal movement as a
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function of underlying ability and relative spatial position-
ing with respect to all other competitors. We propose a gen-
erative Bayesian model which allows one to take advantage
of posterior predictive simulation. In particular, this allows
one to simulate counter-factual races and scenarios. For
example, one can simulate races with competitors who have
not necessarily raced against each other. The framework
is rich enough to simulate alternative strategies by one or
more competitors, estimate their impact on performance,
and estimate the impact of race conditions outside of the
competitor’s control such as the impact of starting lanes on
finishing probabilities.

2 Extending dynamic linear models
to multi-competitor frame-level
competitions

Much of the literature in multi-competitor sports has
focused on modelling rank-type data (Harville 1973; Henery
1981; Luce 1959; Plackett 1975) and more recently (Glickman
and Hennessy 2015) incorporating these ranking models
into a dynamic state-space framework where latent com-
petitor abilities evolve over time. This dynamic state-space
approach to allowing competitor abilities to evolve over
time was originally developed in the context of head-to-
head games or paired comparisons (Fahrmeir and Tutz 1994;
Glickman 1999; Glickman 2001; Glickman and Stern 2005).
One of the advantages of working directly with ranks as
opposed to other continuous measures of success or per-
formance, besides the ubiquity of this kind of data across
a multitude of competitions, is they may be more robust to
certain strategic effects. For example a runner may choose
to run sub-maximally against weaker competition, partic-
ularly in earlier rounds or heats and training a model on
run times directly may produce misleading predictions as a
result. On the other hand, excluding data in earlier rounds
of competition or in cases where there may be incentives
not aligned with producing maximal continuous outcome
results may result in severely shrinking the pool of com-
petitors over which one can learn relative abilities. The cost,
however, of modelling ranks directly is coarsening the data
used in the modelling step and potential loss of informa-
tion. More recent work has explored adding information
from continuous outcomes for head-to-head competitions
(Kovalchik 2020) and Che and Glickman (2022) proposed
an extension for multi-competitor sports. The key idea in
Che and Glickman (2022) is to learn a transformation of the
continuous outcome and to control for game-specific and
potentially strategic effects using covariates and functions
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of the latent competitor abilities. In particular, they pro-
pose using dynamic linear models (DLMs) with (monotonic)
transformed outcomes which are in part learned from the
data. This approach allows one to balance the simplicity
of the DLM framework while maintaining the flexibility
necessary to model arbitrary multi-competitor sports com-
petitions. Consider the probability model:

p(z;16.. X, 6), €)]

where 7(-) represents a (learned) transformation function
of a pre-processed outcome vector, y, and 0, represents a
vector of competitor ability parameters at time ¢, X is a set
of competition level covariates, and o is a noise parame-
ter. Following previous work in competitor ratings, such as
(Fahrmeir and Tutz 1994; Glickman 1999; Glickman 2001;
Glickman and Hennessy 2015; Glickman and Stern 2005), the
competitor abilities are allowed to evolve over time using
stochastic process priors such as a random walk.

In the context of frame-level data, we often have 1-25
frames of data per second with the locations of all competi-
tors recorded at each frame. In this work, we are interested
both in recovering competition-level predictions, such as
winning times and competitor ranking, and also having a
rich enough framework to simulate counter-factual scenar-
ios and strategies. Simulating entire races and capturing
the strategic nuances of multi-competitor racing requires
generating predicted locations at every frame until the sim-
ulated race is over. This rules out rank-like models at the
frame-level since they are unable to reproduce the locations
of the competitors in each frame in a generative sense. The
goal is then adapting the Che and Glickman (2022) frame-
work by modelling directly a function of competitor location
at each time, taking into consideration in-game and in-frame
strategic effects. The key idea in this framework to properly
account for the strategic components in such races as well as
specifying a model rich enough to generate exact locations
along the track is to split the movement of each competitor
in each frame into two components — a forward distance,
y© and a lateral distance, y'*. We define forward distance
to be distance travelled perpendicular to the inside of the
track and we refer to forward and perpendicular distance
interchangeably. Under this definition, a one-mile race is
completed by a competitor once they have travelled exactly
one-mile in terms of forward (or perpendicular) distance.
Lateral distance, then, is defined to be the complimentary
movement inside or outside of the track with respect to
the forward or perpendicular distance. By transforming the
distances to be relative to the inside of the track the lateral
distance can be thought of in terms of lane. When possible
competitors prefer to run closer to the inside of the track
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since this decreases the total distance needed to cover over
the duration of the race, all else being equal.

Figure 1 provides an illustration of the change in a
horse’s forward and lateral positioning between frames. In
this figure, the horse moves from (0, 5) in the forward-lateral
positioning plane to (5, 6.5) between frames i and i + 1. This
corresponds to a forward distance travelled of 5m and a
lateral distance travelled of 1.5 m. The primary advantage
of converting to a coordinate system which is relative to the
inside track and thuslane positioning is that the movements
can be consistently defined over the whole track including
the turns.

Under those definitions, total distance travelled in each
frame is then a simple function of the forward and lat-

eral distance (y = 1/(F™)? + ("®)?). In principle each of

these components can be transformed following Che and
Glickman (2022), but for simplicity, in this text we will con-
sider a simple known transformation where we model the
additional distance travelled forward and laterally in each
frame. The goal then is to model the following joint distribu-
tion:

pOPr, 7207 (), 67 (), X, XTT 2y, i=1,2,... 1, (2)

where i represents an arbitrary frame which increases to
the vector of random variables I which represents the final
frame for each of the competitors, 6 and 6™ are within-
race competitor ability vectors, Xll.‘"“t and X f"r are covariates,
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Figure 1: An illustration of the change in a horse’s forward and lateral
positioning from frame labelled / and the subsequent frame i 4 1. The
lateral distance is calculated with respect to movement towards or away
from the inside of track. Forward distance is thus any movement
perpendicular to the inside of the track. In track based sports much of
the maneuvering is with respect to guarding the lane positioning since
traveling near the inside of the track allows the competitor to cover less
distance over the course of the race. The transformation of relative
coordinates to forward and lateral distance allows us to represent the
movement in strategically relevant terms.
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% is a variance-covariance matrix, and y is a vector of
covariate coefficients. The competitor ability vectors, [
and 6", depend on where in the race the competitors find
themselves in the race at frame i. We denote the distance
travelled up to frame i by the index j. This allows us to model
the competitors ability across different phases of the race
including reaction to the starting gun, initial acceleration,
drive and maintenance phases, as well as the final stretch
for example. In many racing sports we might expect there
to be different types of competitors which excel at different
phases which is not well captured by an overall constant
level of ability throughout the race. To model competitor
ability throughout the different race phases parsimoniously
we assume that the underlying ability evolves continuously
and smoothly over the course of the race. Specifically, we
use a spline based approach to reduce the continuous ability
vectors to a (relatively small) finite dimensional set of basis
parameters. One pre-specifies a number of knots or degrees
of freedom and for each competitor, k, their forward or
lateral ability isrepresented by a finite vector of parameters,
By ..., BF, where d is the dimension of the competitor-
level within-race coefficients. The continuous coefficients
are smooth functions of the finite vector representation.
In addition to providing more nuanced simulation possi-
bilities, the estimated within-race competitor-specific coef-
ficients allows one to characterize notions of both ability
and style. In Section 4.3 we discuss how one can cluster
within-race coefficients in the context of horse racing to
reveal racing styles or competitor profiles.

In the previous paragraph we discussed how in our
canonical horse racing example the index j represents the
cumulative distance that a competitor has travelled up until
frame i. It is important to note that this is only one of
potentially several ways to index a race or race phase. One
could alternatively imagine using total time elapsed up until
frame i, for example. Across different race types, different
indexing may correspond better or worse to the underlying
latent race phase and this indexing should be chosen with
the guidance of domain experts to insure the estimated race-
varying effects are meaningful.

Further note that although suppressed in the notation
here for simplicity, these competitor ability vectors may
depend on some time period ¢ and the spline vectors can
be updated according to a stochastic process prior in a way
similar to that which is standard in the dynamic competi-
tor rating literature as discussed above. For computational
simplicity we propose modelling the joint distribution of
an appropriate transformation of the frame-level forward
and lateral distances with normal or truncated normal
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distributions, where the matrix X represents the variance-
covariance matrix. This can be easily extended to more spe-
cific distributional choices when computational resources
permit. It may be especially important to consider probabil-
ity models which bound lateral movement according to lane
constraints of the track when simulating some race types,
but for simplicity we leave this as an extension.

X x™r represent the lateral and forward covariates,
respectively. The covariates can be categorized into two
groups — dynamic covariates which change over the course
of the race and static race-level covariates. The most impor-
tant spatial covariates capture interactions between com-
petitors. For example, we may expect competitors far ahead
of the field to slow up near the end of a race or for a
racer who is boxed in to be more restricted in the type of
movement they can make. In Section 3.3 we discuss Drafting
variables. This is a particularly difficult dynamic feature in
that it depends on the relative position of all competitors
and there may be both short-term and long-term effects. For
example, we might expect a competitor to expend additional
energy to close a gap in order to more effectively draft in
the short-term and in the long-term we might expect hav-
ing drafted more effectively in the past may lead to more
energy and speed in later stages of the race. Additionally in
Section 3.4 we discuss using simple spatial representations
of relative forward/backward and side-to-side positions of
horses to predict lateral movement. These kinds of covari-
ates are crucial to capture and effectively simulate strategic
behaviour.

Once a model for Equation (2) has been proposed and
fitted, one can simulate full races. Bayesian, or approxi-
mately Bayesian, procedures naturally allow one to account
for uncertainty in both the generative procedure and uncer-
tainty with respect to unknown parameters via posterior
predictive simulation and is our focus in this article. Mod-
elling the joint distribution for all competitors’ forward and
lateral movement in each frame allows us to perform sev-
eral new kinds of simulation analyses to better understand
performance and strategies in complex multi-competitor
races. Two notable types of simulation analyses are within-
race value attribution and counter-factual analysis.

In continuous team sports there has been a recent
emphasis on models which generate instantaneous notions
of value, notably the landmark basketball paper by Cer-
vone et al. (2016) which formalized the notion of an
Expected Possession Value (EPV) in basketball, which has
since been adapted to other continuous sports including soc-
cer (Fernandez et al. 2021). The idea is to model the future
actions and rewards of those actions given all of the (spa-
tial) information present at a given moment to generate a
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value for the possession averaging over the possible future
evolutions of the possession. This is represented mathemat-
ically as:

EXIF = [ X@Paolr). ®
@
where X is a value outcome of interest, o is a path or
possession path, and F; is a sigma-algebra representing the
(spatial) information up to time t.

One of the difficulties of these continuous sports is
that the actions and strategies that we would like to value
often take place disconnected in space and time from the
subsequent rewards. This makes it especially difficult to say
how valuable a particular pass was or the cost of turning
over the ball, for example, might be. The EPV framework
solves this problem by converting spatial information into
a continuous stock-ticker of value. Actions, and changes in
spatial positioning, have impacts on the future evolutions
of the play which are then captured by changes in EPV and
these changes, or deltas, can be attributed to competitors
or strategies through actions and/or functions of spatial
positioning. Generally, continuous actions sports like bas-
ketball, soccer, and hockey are too complicated to simulate
at a generative level and instead approximations must be
made to estimate instantaneous notions of value. We show
in our horse racing example in the sections to follow that our
proposed simulation framework for multi-competitor races
ishoth rich enough to simulate entire races with uncertainty
and computationally feasible. This means that like the EPV
framework, we can generate instantaneous values, such as
expectation over race finishing time or ranking for each
competitor, but additionally we can actually reproduce an
entire set of sample future paths. In mathematical terms,
value outcomes of interest like finishing time will be some
deterministic function, h(-), of the entire history of forward
locations, j}{"; . Adapting the notation from Cervone et al.
(2016) to our context we can express the posterior predictive
of the forward position conditional of information up to
some specified frame i as

b1 = [ s = sty
X (y|(Y, X))dy (s)dsdy, @)

where y = (Gf"r(j), 6"'(j), =, y) are all of the parameters in
Equation (2), (¥, X) is all of the data used to fit the posterior,
F; represents the information available in frame i for the
simulation at hand, and I is the vector of final frames for
all participants. We can think of I as a vector of stopping
times equivalent to possession stopping times in the EPV
framework. Any outcome of interest, such as finishing time
or rank or rank up to a certain point of the race past frame
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i will be a deterministic function of this distribution. Col-
laboration with experts would allow us to design metrics
and models based on the changes in finishing time and
ranking to better value and understand competitor choices
with regards to making outside moves or drafting and/or
pinpoint where in a race a competitor lost or gained future
positioning.

In addition to absorbing many of the benefits of
the EPV framework, the relative simplicity of many
multi-competitor races allows us to also perform plausi-
ble counter-factual analyses. As mentioned above, as we
demonstrate in our horse racing example, it is possible to
fully simulate entire multi-competitor races starting from
any position. In principle, this allows one with the collab-
oration of experts to fix strategies of particular competitors
and to average over race outcomes to value those strategies.
For example, one could start near the end of a race where
a competitor decides to take an outside lane to overtake
a competitor. One could estimate the probability of win-
ning for each competitor had they waited any number of
meters to make their move. These kinds of analyses, at the
frame-level granularity of producing not only distributions
of outcomes but distributions of race paths for all competi-
tors, is largely computationally infeasible at scale for most
team-level sports due to the additional dimensionality of the
competitor movement and action spaces. Thisis true even in
those sports for which EPV has been well established, like
basketball or soccer. We believe this offers a unique oppor-
tunity for better understanding multi-competitor races
since it allows us to examine and represent uncertainty
over value outcomes of interest and additionally allows
us to directly study the properties of the produced sam-
ple paths, which may be especially useful in strategic
races.

3 Application to horse racing

Horse racing is an example of a multi-competitor race with
dynamic and complex intra-race strategies. For example,
a jockey may need to conserve their horse’s energy via
drafting while avoiding their horse getting boxed in by
competitors and losing position. Given the costs and com-
plexity of horse racing, statistical models capable of better
understanding and valuing horses, jockeys, and strategies
can greatly benefit owners and team members by providing
insights into their horses. Through Kaggle’s Big Data Derby
2022 (New York Racing Association NYRA and New York
2022), sponsored by the New York Racing Association (NYRA)
and the New York Thoroughbred Horsemen’s Association
(NYTHA), we obtained tracking data recording the longitude
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and latitude positions of all competing horses at a frequency
of approximately 4 frames/second. The data set includes all
NYRA races from the 2019 season at Aqueduct Racetrack,
Belmont Park, and Saratoga Race Course.

The goal of this application is to demonstrate the via-
bility of the framework outlined in Section 2 and it’s versa-
tility for answering a variety of complicated questions not
adequately addressed by methods which focus on race-level
outcomes. Specifically, at the frame-level we wish to predict
the future position of each horse given their current position
on the track and with respect to their competitors. Doing
so, we are able to develop a race simulation at any frame
in the race and compute placement (e.g. 1st, 2nd, 3rd, etc.)
probabilities for each horse which converge to the true
result as the race progresses.

3.1 Data preparation

We perform multiple operations in order to transform the
data to suit our needs. The primary challenges we had
to tackle in order to prepare our data for modelling and
analyses were gathering data for track outlines and finish
lines, converting coordinates from longitude and latitude to
Cartesian coordinates, partitioning the track into stretches
and turns, and imputing missing or incorrect data.

The data provided by NYRA had longitude and latitude
locations of the horses but did not include spatial informa-
tion about the inside and outside edges of the track or the
finish lines. To address this, we manually gathered track
outline and finish line data for Aqueduct, Belmont Park and
Saratoga using Google Earth. Upon obtaining these data, we
converted longitude and latitude coordinates for the track
outlines, finish lines and horse location data to Cartesian
coordinates using the haversine formula (Van Brummelen
2012) and rotating the track such that the stretches are hor-
izontal. Figure 2 provides an illustration of the raw track
outlines in Figure 2a and the transformation to Cartesian
coordinates in Figure 2b.

Upon obtaining Cartesian coordinates for the tracks,
we split it into chutes, stretches and turns. Stretches are
straight portions of the track, turns are curved portions, and
chutes are extensions of the track used to set up the starting
lanes for each horse. Chutes are manually partitioned for
each track. To separate turns and stretches, we create a
circle with diameter equal to the difference between the
maximum and minimum y-coordinate in the inner track
outline. This circle is centred at an x-coordinate equal to the
minimum x-coordinate plus the radius and a y-coordinate
equal to the midpoint of the maximum and minimum y-
coordinate. Intuitively, the left side of the circle should trace
along the left stretch of the track. We deem any portion of the
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Figure 2: Track outlines for Belmont Park. This figure shows the transformation of coordinates from those collected directly from Google Earth in
terms of latitude and longitude to standard Cartesian coordinates which are easier to work with. (a) Raw track outlines and finish lines manually
collected from Google Earth for Belmont Park. (b) Transformed track outlines and finish lines from longitude/latitude to Cartesian coordinates for
Belmont Park. With rotation so that the back stretch of the track is near y = 0 and the stretches are horizontal.

track to the left of the centre of the circle to be part of the left
turn. This process is repeated on the right side to identify the
right turn.

Finally, we linearly interpolate at a rate of 10 cm along
the inside of the track. We then find the point along the
inside of the track at which the distance to the horse’s
location is minimized for each horse. This provides us with
a sense of the horse’s forward location along the track,
rounded to the nearest 10 cm. Additionally, we take the
distance between the horse and the inside of the track to
be the horse’s lateral positioning with respect to the inner
track outline. We then use the change in forward and lateral
location of the horse over each frame to describe the horse’s
movement on a frame-by-frame basis. Figure 3a illustrates
the lateral location from the inside of the track as the length
of the black lines connecting each horse to the track outline
and the forward location as the point at which the black
lines meet the inside of the track.

Note that we also use the forward, lateral, and total
(Euclidean) distances between horses at each frame to cre-
ate a suite of metrics that quantify a horse’s positioning
relative to the competition. Figure 3b illustrates the distance
to the nearest horse for each of these three measurements.
Using these distances travelled between frames, we are able
to determine horse positions during the race. Further, we
can determine the forward, lateral, and Euclidean distance
between any two horses; from this we can determine if a
horse is in a draft position as well as its future possible
trajectories.

When necessary, we smooth the trajectory of a horse
using an imputation based on their opponents’ acceleration
patterns. We sometimes observe cases in the tracking data
where a horse freezes in a certain location for multiple
frames then reappear improbably far down the track. This
was generally an issue near the beginning of the race. Since
a horse’s speed is non-linear - particularly near the begin-
ning of the race — linear interpolation would not be an
appropriate solution for this issue. Instead, we leveraged

information from horses that were not absent from the
tracking data in those frames. If we are missing tracking
data for a horse from frame a to b, we use the average of the
proportion of distance travelled between frame a and b by
all horses with reliable tracking data. This provides us with
a more realistic approximation of the horse’s acceleration
pattern when missing from the tracking data. We apply this
imputation process to the first 40 frames (approximately
10 s) of the race for 4.2 % of horses across all one-mile races
to stabilize the tracking data when necessary. Horses that
require imputation may lack the same level of detail in
the frame-by-frame positioning updates compared to their
non-imputed counterparts. However, this imputation pro-
cess still leverages the horse’s known positioning at the
starting and end moment of imputation during the acceler-
ation phase of the race and thus the average speed over the
missing interval is still correct. One can think of this impu-
tation procedure as shrinking the missing frames towards
the speed of the average horse in each interval with the
constraint that the average speed over all missing frames
is equal to the actual average speed travelled by the horse.
Since the proportion of horses for which this issue occurred
is small and the imputation procedure effectively leverages
all of the information present it is unlikely this procedure
has a large influence on the overall results, although it may
be true that we underestimate the amount of uncertainty
during some such segments. In extensions to this work, one
could build such an imputation procedure directly into the
joint Bayesian generative model to properly propagate the
uncertainty but we leave this for future work.

3.2 Feature engineering

We construct multiple features used for the novel method-
ology. In Section 2 we discussed the importance of using
spatial features to represent the relationships between com-
petitors. In this work we considered a simple representation
of spatial information largely based on forward, lateral,
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Figure 3: Illustration of a race snapshot. At each snapshot of the race many dynamic covariates are calculated. In Figure 3a we show how we partition
the race track into track segments. In Figure 3b we show the calculation of several important covariates relating the relative locations of the horses in
the race. (a) A snapshot of the 3rd race at Belmont Park on 2019-05-16 using our cleaned data. Stages of the track are partitioned with perpendicular
lines along the track at each 10 m mark. Brown shapes with coloured dots represent the horses, the coloured trail behind each horse represents its
speed - with blue to red representing slow to fast - and black lines illustrate the point at which the horse is located along the inside of the track.

(b) A snapshot of race 3 at Belmont Park on 2019-05-16 and illustration of how several important dynamic spatial covariates are calculated. Namely we
show the forward, Euclidean, and lateral distance to the nearest competitor at this moment in time in the three display circles from left to right
respectively. These covariates capture a low dimensional representation of whether a competitor has space to manoeuvre in various directions and as

such play a large role in our generative models.

and Euclidean distances (and position) to the nearest horse
frame-by-frame. In addition, we conditioned on the number
of opponents each horse is surrounded by on either side
and in front during a race. In principle, one could imagine a
richer set of spatial relationships but we found even simple
relations captured the large majority of the variation in
lateral movement in particular.

With this, we can construct a set of dynamic features for
each horse that describes its relative position and movable
space in its immediate area. This allows us to engineer a
drafting model, which we describe in the next subsection.
We further adjust for the effect of course type and track
condition. We also generate horse and jockey effects fea-
tures, which are discussed in the next section. Table 2 in the
Appendix provides a summary of the features and predic-
tors used in our forward and lateral movement models.

3.3 Drafting

Drafting is an important factor in many multi-competitor
races, including horse racing (Spence et al. 2012), however it
may be difficult to model with the appropriate level of detail
without a model which operates at the granular within-race
level. This may explain why, to the best of our knowledge,
the literature on drafting in multi-competitor races islargely
restricted to studies of aerodynamics and physics and not

directly linked to performance. We believe our generative
model offers a unique opportunity to study the effects of
such a dynamic strategy in detail and more importantly
serve as a proof of concept for future development in this
area.

A horse, or more generally a competitor, is required
to remain behind another in order to draft at all, poten-
tially sacrificing position and/or speed in that moment. The
benefit comes in the form of saved energy and potentially
increased speed in the later stages of the race. What matters
when deciding to draft is whether the set of race paths from
that moment forward are improved or not. One also has
to be careful to separate horses and jockeys particularly
adapted to certain strategies from the strategies themselves.

To create our drafting feature, we develop a three-
dimensional computer-aided design (CAD) of a horse and
jockey. With this design, we use the open source software
Blender (Blender Online Community 2018) and OpenFOAM
(Jasak 2009) to create a 3D model of a horse and jockey,
analyze the computational fluid dynamics of the model, and
construct simulations. In this work, we primarily aim to
demonstrate the feasibility of developing dynamic drafting
covariates in a generative modelling approach at the frame-
level. As such we make several simplifying assumptions
regarding aerodynamics in order to generate drag coeffi-
cients which balance realism and computational efficiency.
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We leave improvement to fluid-dynamic modelling and
more specific development on drafting models for multi-
competitor races to future work.

One of the fundamental simplifying assumptions we
made was regarding the boundary conditions for the
fluid-dynamic simulations. We assume a simplified set-up
wherein the horse and jockey are enclosed within a virtual
closed box with air flow coming from the front. In prac-
tice there may be wind coming from other directions or
other conditions which impact the flow of air and the direc-
tion of these imparted forces. On average we expect this
assumption to be reasonable and it allows us to primarily
focus our attention on the dynamics regarding the horse
pushing against the air in front of it and the flow of air
around the horse creating pockets of lower resistance.

In early tests we additionally allowed for skin friction
drag, as opposed to only the form drag. Skin friction drag
is caused by the interaction of the friction on the surface
of an object and the fluid air. In some settings, skin friction
can be an important force and, in fact, NASA estimated it to
be the dominant drag force for subsonic rocket applications
totaling 45 % of the total drag (Fischer and Ash 1974). The
two most important considerations for skin friction drag
are the speed of travel, since this drag is a function of the
squared velocity, and the surface area interacting with the
fluid. Relative to applications like flight and rocket travel,
horses travel at very slow speeds and their surface area
interacting with air head on is also very small which means
we expect the skin friction drag to be relatively small as well.
Early simulations confirmed that adding skin friction drag
had nearly no effect on the simulations for horse racing and
it was thus subsequently ignored, but this should be kept in
mind as a potentially important force in some applications,
particularly those involving high speeds and larger surface
areas.

Given the above assumptions about the nature of the
fluid dynamic forces, we additionally made two types of
computational approximations. The first is regarding the
mesh or cell size. In computational fluid dynamic simula-
tions one is estimating the solution to a set of Navier—Stokes
equations. To aid in computation the object of interest is
split into small pieces by a mesh and the equations are
solved individually on each piece and added back together
linearly to determine the result of the simulation on the total
object. In our case, the simulation on each cell was solved
using the pressure-implicit with splitting operators (PISO)
algorithm provided by OpenFOAM. As the mesh becomes
finer and we break the object of interest into smaller pieces
the fidelity of the simulation increases at the expense of
computation. In sophisticated mesh designs one can divide
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the object of interest unevenly across regions with different
features. In our case, the body of the horse acts as a solid
rectangle against the incoming air, whereas the face is
curved and interacts with the air in less trivial ways. These
special areas with the highest local curvature were given a
finer mesh as we expect the simulation results vary more
greatly across these areas. To determine the final mesh, we
used an iteration method recommended by What is CFD. An
initial mesh was chosen by visual inspection taking into
account the regions of high and low local curvature as dis-
cussed above. Then a series of simulations were conducted
with each simulation using a finer mesh than the previous.
The iterations continued until the results converged with
respect to a pre-specified tolerance, which we chose in this
case to be a 5% relative change in simulation results. In
some applications, a smaller tolerance will be desirable to
choose. Additionally, we checked the estimated y+ value
from the final simulations as provided by OpenFOAM to
ensure it met the diagnostic condition appropriate for this
class of simulations (30 < y+ < 300) (What is y+). The y+
measure is important for determining the simulation per-
formance near the boundaries or walls in computational
fluid dynamics simulations.

The second kind of numerical approximation which
was necessary was with respect to the distance between
horses. The drag reduction from drafting is a function of dis-
tance to the horse in front. As that distance increases the rel-
ative decrease in drag experienced by the trailing horse goes
to zero. Similarly being directly behind a horse will decrease
the drag experienced more than being slightly to the left or
the right of the horse in front. The goal of our simulations
is to be able to return a coefficient of drag as a function of
any relative positioning of the trailing and leading horse,
however we are unable to run full simulations at all pos-
sible (continuous) distance values. To approximate the drag
function we specified a two-dimensional grid of distances
where we ran simulations and then linearly interpolated to
generate the drag coefficients used as a basis for covariates
in the various distance models. We ran simulations on a
3 X 3grid oflocations at which the drafting horse is located
where the drafting horse is either 2, 3.5, or 5 m behind and
either directly behind or 0.5 m to the right or left. Finally,
we also calculated the drag in the scenario of no drafting or
otherwise called the clean air condition.

Using the estimated grid of drag coefficients from the
simulations and the linear interpolations thereof we created
two types of covariates which we then used in our mod-
els. The first covariate was a simple indicator of whether
a horse was currently drafting, or currently located such
that they were benefiting from a reduction in air drag, or
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not. Second, we estimated the total proportion of energy
saved from drafting up to each moment in the race. This is
done by calculating the energy, E, used by a horse as E =
F;s, where F; = % pU? ¢ A is the force experienced by the
horse while trying to move forward, p is the mass density of
air, v is the velocity of the horse, ¢, is the calculated drag
coefficient, A is the frontal area of the horse (assumed to
be one square metre), and s is the distance covered by the
horse in a frame. These two approaches allow us to capture
both short- and long-term dynamics relating to drafting. In
principle, much more complicated drafting simulations and
covariates are possible. And perhaps more importantly one
could specify relevant interactions between these covariate
values and the current stage of the race. In some multi-
competitor races, it may be especially important to under-
stand drafting dynamics in packs or groups for example.
Cycling is a good example where much of the race occurs
in a pack where there is much more drag reduction. In
this application, however, we assume that the bulk of the
drafting effect is the result of the nearest horse in front in
order to limit the complexity and scope of the computational
simulations required. While these assumptions may be sim-
plifying, we believe that they represent a meaningful step
toward capturing these complicated dynamics and serve as
proof of concept. See Figure 4 for visualizations of the fluid
dynamics and drafting simulation procedure.
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3.4 Model and simulations

To build our model, we only include the one-mile races from
the 2019 season provided by NYRA and NYTHA. Our method-
ology can easily be extended to races of differing lengths
in a hierarchical scheme, and we make this choice for both
demonstrative purposes and computational efficiency. Fol-
lowing the general methodology outlined in Section 2 we
develop two models, one for estimating a horses forward
movement at each frame and another estimating lateral
movement. Based on the data we made several simplifica-
tions to the general joint density in Equation (2). First we
assumed independence between the forward and lateral
movements. This is of course not true. In fact, there must
on some level be dependence since horses only have a finite
amount of energy to expend, and maximal exertion per-
pendicular, for example, would result in restrictions to how
much lateral movement would be possible.

More formally, the most natural way one would model
the dependence between the forward and lateral move-
ment would be to make one model conditional on the
other. Explicitly, one could modify the joint distribution in
Equation (2) as follows:

PII0 (), X yrp) X pO T, 6, XY v,
i=12,...,1,

Velocity: Magnitude (m/s)
[} 15.7 313

Figure 4: Anillustration of our drafting model and simulations. In Figure 4a we show a representation of the pressure coefficients generated from a
fluid dynamics simulation in clean air. In the subsequent Figure 4b we see a visual representation of the drag coefficients from a fluid dynamics
simulation with two horses, one trailing another or drafting. In Figure 4c we see an illustration of the drag effect. That is, we can see that the trailing
horse is subject to less air resistance according to the fluid dynamic simulations. (a) Measurements of air pressure on a horse and jockey in clean air.
(b) Measurements of air pressure for two horse and jockey pairs, with one drafting behind the other. (c) A visualization of simulations of the fluid
dynamics of two horse and jockey pairs, with one drafting behind the other. Obtained from applying the pressure-implicit splitting operators (PISO)

algorithm with OpenFOAM.
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where we condition directly on the forward distance in the
lateral movement moment. This requires us to simulate the
forward distance first and subsequently the lateral distance
which can be more cumbersome. In some cases a multivari-
ate normal on the outcome or some transformation thereof
may also be appropriate.

In practice with respect to our canonical example, how-
ever, since the frames are approximately 0.25s long the
large majority of this effect is captured in the latent effects,
the spatial information from the previous time-step and
covariate information about where the horse is on the track,
such as whether they are on a bend or not, and thus this
simplification seemed not to impact inferences very much.
More formally, when the time between frames is relatively
small, i.e. At < €, then we would expect the information at
time ¢ represented by the filtration 7; to be well approxi-
mated by the information at the previous time step, F;_,,.
In the small At setting, if our models are capturing the
total information available at each time step, then we might
expect the loss of not modelling the dependence to be more
minimal since our models are explicitly conditioned on all
the information available up to 7;,_,,. In the example of the
lateral model, we use the information of lateral movement
in the previous frame which is highly related to the forward
movement in the previous frame which is highly correlated
with the forward movement in the current frame. The inde-
pendence simplification, of course, may not be appropri-
ate for all multi-competitor races, particularly those where
frames are spaced out further in time where approximating
the current information with that available in the previous
frame may not be as credible.

Second, for similar reasons, we assumed that there are
no latent time-varying horse effects in the lateral movement
model, but instead time constant jockey effects. Preliminary
testing found that over 99 % of the variation in lateral move-
ment could be explained by simple spatial covariates, a
constant jockey effect, track phase indicators which include
this like turn and home stretch, and the motion from the
previous time frame. Since this simple model accounted
for much of the variation, the model was simplified for
computational reasons. Of course, when appropriate, these
effects could be made more complicated. We also assumed
that horse speeds only depend on each other through the
spatial covariates such as distances to nearest horses at each
frame.

For the forward movement model we modelled the
horse speed profiles with b-splines (De Boor and De Boor
1978; Dierckx 1995). This spline technique encodes the
knowledge that a horse’s average speed at any point in a
race is likely to be smooth without assuming too much about
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what that function looks like exactly and using the data to
best decide. The splines are fitted using all tracks, and the
knot placements for the splines were decided both using a
leave-one-out cross-validation approximation and a visual
assessment. The knot placements correspond roughly to
strategy transitions, for instance the end of the initial accel-
eration at the start of the race as well as the final quarter-
mile. The b-splines were generated with the splines2 R pack-
age (Wang and Yan 2021).

Overall, the forward model for each competitor k looks
like:
+6f

track

(k) ~ NO () + 67

jockey +X forWX’ O-f)’ 6)

where 92‘”( J) is the kth competitors spline value at location j,
the & parameters represent track and jockey effects and X
represents all other covariates which are listed in Table 2.

The finite vector of spline parameters and the track
and jockey effects were all regularized using random effects
structures of the form:

6 ~ nus,os), V)

where ps was treated as an unknown mean for the spline
effects, but fixed at zero for the jockey and track effects
and o5 was a fixed hyper-parameter for all three parameter
types. Thus the spline parameters were shrunk towards the
average speed for that portion of the race and jockey and
track effects were shrunk towards 0. Covariate and outcome
variance coefficients were given weakly informative priors.
When fitting the forward model on all the data, par-
ticularly in the model exploration phase, we used the opti-
mization functions in the RStan package (Stan Develop-
ment Team 2024). Optimization generates an approximately
Bayesian model via Maximum A Posteriori (MAP) estimates.
In principle, one could allow the random effect variance
parameters to be unknown, for example, but this may be
more suitable for variational or MCMC methods with the
trade-off being longer compute times. We found that the
posterior means and posterior predictive means tended to
be well-behaved using Optimization, but that occasionally
these fits produced poorly behaved tails and subsequently
unrealistic simulations. Additionally, when using truncated
distributions the optimization approach sometimes failed to
converge. When generating later simulations on a handful
of horses in Section 9 we fit full MCMC models on a subset
of the data and additionally truncated the forward model
below at 0. When the goal was generating expectations,
truncating or not did not have large impacts in most cases,
but if the object of interest was realistic and interpretable
simulations we found truncating to be important.
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The second model we construct is a lateral movement
(LM) model. This models the lateral speed of each horse.
Throughout this work we use the terms side movement and
lateral movement interchangeably. For this model, we again
use a simple Gaussian model:

F ~ N(PLMfy, + 5!

jockey + 5l + Xlatu/lat’ O-l>’ (8)

track

where again the track and jockey effects, 5! . and 5l.lockey,
had random effect structures and the lateral covariates
found in Table 2 had weakly informative priors scaled to
movement speeds possible for a horse. The most important
covariate in this model is PLM which is the horse’s previous
lateral movement from the past frame. This encodes the
fact that horses moving to the inside or the outside tend to
continue doing so since the frames are so close in time.

The forward and lateral models give us a straight-
forward method for simulating entire races. We simply iter-
ate between simulating forward motion and then lateral
movement for all horses simultaneously frame-by-frame

For each frame...

For each horse...

Simulate the forward
distance travelled by
the horse.

Simulate the lateral
distance travelled by
the horse.

Recalculate dynamic within-
race features needed to
simulate next frame.

2horses
outside

I—)[ End once all horses cross the finish line. ]

(a)
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ensuring we save the current location of all horses and
calculate all dynamic covariates at each step. See Figure 5a
for a summary of the simulation algorithm.

While simple, simulating over a sufficient number of
posterior draws may be computationally cumbersome even
for a single race. One-mile races, for example, tend to last
approximately 100 s which generates on the order of 400
frames in this data set. Simulating over 2000 posterior
draws with 6 competitors requires 6 X 2 X 400 X 2000 =
9.6 x 10% draws from normal distributions in addition
to updating the positions and recalculating the dynamic
covariates. This is largely infeasible at scale in standard R
coding. We were able to make the problem feasible leverag-
ing the fact that Stanis written in C++. Rstan (Stan Devel-
opment Team 2024) has a function gqs(-) which gives direct
access to the generative quantities block. This allows us to
write the posterior simulations directly in this block and
execute them both separate from fitting the model but also
in such a way which lends itself well to parallelization of the
simulations at the race-level. Using the ggs function, 2000

Forward
Model

Simulate Race
Outcomes

Data Preparation and
Feature Engineering

Simulated Race ..

o [ Worsorsockey Timo.

Lateral i
Model [ rorsrio

Repeat...

l l Applications

Dynamic Finishing Position Horse and Jocke P
Y s g 5 J 4 Other Applications
Probabilities Ratings
— # | Jockey Rating Determine effect on winning
i - rad Getizdr 5700 by different starting lanes
e 2 | Jose L. Ortiz 194 R
) Analyze optimal drafting
» 3 | Luis Saez 193 patterns
| 4 | JohnR. Velazquez | 1.92
- e 5 | Javier Castellano | 1.91

Figure 5: Illustration of the simulation procedure and full modelling pipeline, respectively. These flowcharts represent the step-by-step process taken
in building this project. (a) Simulation procedure leveraging the forward and lateral movement models. This illustration is meant to provide a
high-level pseudo-algorithm for the prediction of horse races using this model framework. For each horse, we (1) simulate the forward distance
travelled in the next frame, (2) simulate the lateral distance travelled in the next frame, (3) after applying steps (1) and (2), update the spatiotemporal
features. This process is repeated on a frame-by-frame basis until all horses cross the finish line. Note that lateral movements are exaggerated for
illustrative purposes. (b) Full methodology summary. We begin with data preparation and feature engineering such as includes extracting track
outlines from Google Earth, smoothing tracking data via imputation and calculating distance features based on the relative positioning of the horses.
Next, we fit approximate Bayesian models to predict the forward and lateral movement of each horse on a frame-by-frame basis. We then use those
models to predict race outcomes at any moment of a race by running thousands of simulations of the forward and lateral movement of horses for
each frame until all horses have completed the race. This simulation process as well as the model parameters and effects provide a wide range of

applications in multicompetitor races with spatiotemporal tracking data.
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simulations of a race can be fit on the order of 90-120 s
on a MacBook Pro with 64 GB of RAM and 16 cores. Early
versions of this code written in standard R took 5-10 min to
complete fewer than 50 full simulations. When saving only
final outputs or summaries of the simulations the memory
load is significantly lower and these computation times can
be reduced significantly in many cases.

As discussed, these simulations allow the computation
of various notions of instantaneous value. For example, in
Figure 5b we can see dynamic placing probabilities for all
horses at a given snapshot of a real race. In the following
sections we will discuss some of the inferences generated
from this model as well as some examples of the kinds of
analysis a fully generative multi-competitor race model is
capable of.

3.5 Model evaluation

At a high-level our recommended philosophy for model
evaluation of these kinds of models incorporates three ele-
ments. First, we want to understand how well our models
operate on the data granularity level on which the data is
trained. Since these are frame-level models, we evaluate
their performance in terms of how well they predict frame
level outcomes (in and out of sample) such as say the actual
forward or lateral distance travelled in a frame. Second, we
want to look at outcomes on a larger more meaningful unit.
In our canonical example we looked at race-level outcomes.
Race-times and rankings are examples of units for which
we can generate predictions but for which our model is not
directly trained and for which different modelling choices
can be evaluated. In some multi-competitor races there may
be additional sub-units below the race-level for which such
evaluation is also valuable. Finally we looked at the inferred
coefficients and the produced simulations. Poor modelling
choices can lead to more unrealistic race paths and latent
values which strongly contradict domain expert knowledge.
This step can most benefit from collaboration with experts.

Since the models are computationally very expensive
we also took advantage of using simplified models for var-
ious parts of the model evaluation process. In some cases
this meant simplifying the number of covariates to only the
most important ones or fitting on a smaller subset of horses
or races to test out simulations. Building out these models
in layers of complexity can be crucial both from a develop-
ment time standpoint and in understanding how additional
features or more complicated model architectures change
the predictions and inferences generated.

In Section 4.3 we describe how we chose the hyper-
parameters relating to the forward speed profiles such as
the number of knots and their placement with respect to the
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above outlined evaluation principles. These choices were
found to be the most important modeling decisions with
respect to overall performance.

4 Results

4.1 Race simulation and dynamic win
probability

At each race frame, our model performs multiple simu-
lations that predict the remainder of the race. Using the
extracted finishing position of horses in these simulations,
we are able to construct dynamic race finishing placement
probabilities for each horse. As more information is pro-
vided with each frame that passes, these predictions become
more accurate and converge to the true race result. We
present how our dynamic win probabilities behave using
race three from the Belmont which occurred May 16, 2019
in Figure 6.

In the heat maps depicted in Figure 6a—c, the left-most
column corresponds to the probability a horse finishes in
first, and the right-most column corresponds to a horse
finishing last. The circular visual to the right of the heat
map is a bird’s eye view of the race state at that given
time. As the true race progresses, the win probabilities are
being updated given the new information of the race char-
acteristics until the race finishes and the true finish order
is determined. Analyzing this visualization we see that the
horse Curlin’s New Moon is sitting back in the first half and
in a draft position. Despite sitting around fifth and seventh
place, our model still predicts that this horse will have a top
finish placement during the early stages of the race. Curlin’s
New Moon ultimately finished second this race, demonstrat-
ing our model’s capability to capture effects that would
otherwise be lost to the human eye. This effect is likely due
to a combination of Curlin’s New Moon having relative high
predicted speed in the upcoming stretches of the race and
his favorable positioning with respect to drafting. We can
construct full simulations and thus visualizations for any
mile-long race in the originally provided data set or even
for races which did not occur as long as the horses are in
the data set.

4.2 Jockey ratings

From the forward model, we can compute the posterior
mean of the jockey’s random effect to produce a jockey
rankings measure. The ability to compute this demonstrates
the benefit of our choice to model in a Bayesian framework
as well as our methodology’s flexibility. This measure
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Horse / Jockey
[ here He Goes / kendrick carmouche
[  curtin’s New Moon / Manuet Franco
[T purchasing Power / Javier Castettano
Somebody / Reylu Gutierrez

Craigville Beach / Eric Cancel

Hoard / Joey R. Martinez

OEOO

Change of Venue / Dylan Davis

Finishing Place

(a)

Horse / Jockey

[ here He Goes / kendrick carmouche |

[T purchasing Power / Javier Casteliano

Curlin’s New Moon / Manuel Franco
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Figure 6: Illustrative example of dynamic win probability behaviour using data from the 3rd one-mile race at Belmont Park on 2019-05-16. The square
heatmap on the left represents the placement probabilities for all horses on the y-axis and all finishing placements on the x-axis. The visual on the
right displays the horse positionings on the track at the corresponding frame where horse colours correspond to the rainbow colour scale to the left of
the horse and jockey names. (a) Placement probabilities of all horse/jockey combinations at the beginning of the race. At the beginning of the race,
horse spline effects, jockey effects and starting lanes are the primary influencers on placement probabilities. Purchasing power (blue) is at a
disadvantage starting on the outside lane. Whereas, there he goes and somebody are in the more advantageous inside lanes. (b) Placement
probabilities of all horse/jockey combinations at the half way point (50.2 s since start). There he goes remains one of the favourites to win at the front
of the pack while purchasing power remains the most likely candidate to finish 6th as he remains on the outside lane. (c) Placement probabilities of all
horse/jockey combinations as the 1st place horse crosses the finish line. As the end of the race nears, the placement probabilities begin to converge to
each horse’s true finishing placement. However, uncertainty still remains as some horses are very tightly placed such as purchasing power and

somebody in 3rd and 4th, respectively.

quantitatively describes the positive impact that a jockey
has on their horse’s estimated final position (i.e. the
higher the rating, the greater the positive impact on
race result). Table1 displays the top ten jockey ratings
produced by our modelling procedure. We compare our
ratings to the total earnings leaderboard in 2022 for
Saratoga (New York Racing Association (NYRA)), Belmont
Park (New York Racing Association (NYRA)), and Aqueduct
(New York Racing Association (NYRA)) for our model’s top
ten jockeys. Unfortunately, we are unable to obtain the earn-
ings rankings from 2019 as they are not available on the
track websites. However, we find that Irad Ortiz Jr., the top
rated jockey from our model, also ranks first at Saratoga
and Belmont, and fourth at Aqueduct. The models top jock-
eys have performed reasonably well on at least one of the
selected tracks in 2022, 3 years post our training set, with
the exception of Joe Bravo who did not compete on any of
the three tracks. However, Joe Bravo has still achieved 54

first place finishes in 2022 by the end of October 2022. This
suggests our model has some positive signal in identifying
top jockeys in a forward predictive sense.

4.3 Horse profiles

In this section we discuss the estimated forward speed pro-
files. One of the more complicated choices in building a
model like this is to determine the number of knots for the
spline as well as the enforced smoothness. In general, we
would expect underlying speed profiles to be reasonably
smooth and we want to be careful to not overfit the data
especially since we expect other effects to explain significant
portions of the data variance.

As described in Section 3.4, we fit a hierarchical cubic
b-spline to incorporate a horse effect into the forward move-
ment model. There are still a number of additional choices
required to fit such a spline model including the number



378 = T.Stokes et al.: A generative approach to frame-level MCRs

Table 1: Top ten jockeys in the random effect from the forward model,
compared to jockey rankings provided by Saratoga, Belmont Park, and
Aqueduct in 2022 based on total earnings.

Jockey Model Saratoga Belmont Aqueduct
rank rank rank rank
Irad Ortiz]r. 1 1 1 4
Jose L. Ortiz 2 5 6
Luis Saez 3 3 NR
John R. Velazquez 4 8 14 NR
Javier Castellano 5 7 10 2
Manuel Franco 6 6 3 1
Jose Lezcano 7 9 8 NR
Joe Bravo 8 DNC DNC DNC
Joel Rosario 9 4 4 NR
Junior Alvarado 10 12 22 NR

NR, not ranked; DNC, did not compete in 2022.

of knots and the placement of those knots. Spline knots can
be categorized into two types — boundary and internal. The
boundary knots anchor the start and end of the smooth
curve. The internal knots divide the cumulative distance
(i.e. distance along the track) between the boundary knots
into segments and influence the shape of the b-spline curve
within each segment. They allow us to better capture differ-
ences in a horse’s speed tendencies for different distances
into a race. Since we consider only 1-mile races, we choose 0
and 1650 m as boundary knots. Internal knot placement had
to be chosen to accommodate all horses and tracks, as the
knots were kept constant across all horses and each horse
ran on multiple tracks. To select these hyper-parameters,
we used a combination of visual assessment and a leave-
one-out cross-validation (LOOCV) approximation using the
loo package in Rstan (Vehtari et al. 2022) on a subset of the
horse data using a simplified model. Plots of spline fit for
that subset of horse were used to choose the degree of the
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b-spline (3) and the number of internal knots required to
capture trends in speed (5), and to obtain reasonable candi-
date sets of internal knots. LOOCV was used to determine the
best choice among these candidate sets. We chose internal
knots of 90, 250, 800, 1207, and 1375 m. The estimated horse
profiles from the simplified model can be seen in Figure 7a
and a selection of profiles compared to the observed data
can be seen in Figure 7b.

There are numerous inferences and further analyses
that can be made with respect to the estimated latent param-
eters. One particular example we explore here is clustering
latent effects on the final fitted model to understand various
horse speed profiles in our dataset. This can help to analyze
horse tendencies and strengths with respect to the distance
travelled along the track. We performed hierarchical clus-
tering with Ward’s linkage on all horses that competed in
at least 5 races in our data. As a result, we obtain 3 clusters
which we label “Strong Build, Slow Finish” (blue), “Medium
Build, Medium Finish” (red), and “Slow Build, Strong Finish”
(green) as shown in Figure 8. The Strong Build, Slow Finish
group has exceptional acceleration over the first 100 m but
slowly trails off throughout the race. The Medium Build,
Medium Finish group takes a bitlonger to reach its top speed
but maintains it well throughout the race. The Slow Start,
Strong Finish group takes longer to reach the top speed but
holds a higher impact on speed throughout most of the race
and has an additional burst of energy at the end of the
race.

Additionally, we provide the resulting dendrogram
from our hierarchical clustering results in the Appendix in
Figure 10. This gives us a sense of the relationship between
horses with respect to their speed patterns. We logically
find a large proportion of the horses analyzed belong to the
Medium Build, Medium Finish group as these represent the
horses that possess a consistent race pace.
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Figure 7: Horse profile plots from simplified model used to determine the spline complexity and knot locations. (a) Forward speed profiles with six
selected horses highlighted. (b) Six selected horse profiles compared to the observed data from all races.
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Figure 8: The three identified horse profiles using Ward’s linkage. The
blue cluster represents horses that are able to reach their top speed the
quickest but fail to maintain that speed over the course of the race. The
green cluster represents horses that are slow out of the gate but reach
the highest top speed and finish strong. The red cluster represents
horses in the middle of the pack who both start the at middling
acceleration and finish at a middling pace.

4.4 Counter-factual simulations

Fully generative models for multi-competitor races open up
new possibilities for analysis. In particular one can sim-
ulate races or strategies that are not observed. As a sim-
ple example of the kinds of insights that counter-factual
simulations can provide we show how one could estimate
starting lane effects. It is important to control for competi-
tor strength when attempting to estimate lane effects. In
this example we randomly select six horse/jockey pairs and
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simulate races between them in all possible lane assign-
ments. With six horse/jockey pairs, there are 6! =720
different lane combinations and for each lane combina-
tion we simulate 100 races from the posterior predictive
distribution.

In Figure 9 we see the results of our counter-factual
simulation. The second lane has the lowest (best) expected
finishing rank at 3.28 as well as the highest probability of
finishing in first, 0.21. The two lanes adjacent to the second
lane, the first and third, have the next lowest expected ranks
and finishing probabilities. From the fourth lane to the sixth
lane the expected rank increases and the probability of
placing first, second, and third decreases monotonically. The
sixthlane seems to present the largest disadvantage and risk
with the highest expected rank of 3.88. This is largely driven
by the sixth lane having an elevated chance of finishing
last and significantly decreased probability of finishing first.
Notice, however, the probability of finishing second through
fourth is similar to nearby lanes. Another advantage of fully
generative models is that analysis can go beyond simply
estimating expectations as we have presented here. To bet-
ter understand why the sixth lane is disadvantageous, for
example, one could study the properties of the simulation
draws themselves to identify patterns and characteristics
leading to low results. Those patterns could be further strat-
ified with respect to different racing styles or horse char-
acteristics since we might expect effect heterogeneity with
respect to lane effects.

Overall, we see that even in this simple setting, with a
relatively straightforward simulation set-up and question,
that fully generative simulations can reveal and help us
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Figure 9: Posterior predictive expected ranks, finishing probabilities, and finishing times from 720 X 100 posterior predictive simulations from the
starting lane experiment. Coloured square heat-map on the left represents placement probabilities for all combinations of finishing placement x-axis
and starting lane y-axis. The white column in the middle represents the mean finishing placement for each starting lane based on the 72,000
simulations. The white column on the right represents the mean finishing time for each horse along with a 95 % credible interval in brackets based on

the 72,000 simulations.
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better understand non-obvious complexities. This is really
valuable to competitors, race organizers, and other stake-
holders especially in competitions where strategy plays a
large role such as horse racing.

Even with respect to estimating lane effects, there are
several ways to modify the simulation experiment in accord
with specific inferential or predictive goals. For example,
one might argue that this simulation estimates a particu-
lar conditional average treatment effect (CATE) which is
specific to the particular horse and jockey pairs that we
chose. Depending on the question at hand, it may be more
appropriate to estimate a marginal average treatment effect
(ATE) by averaging over many horse and jockey pairs rac-
ing against themselves. The ATE, for example, might better
answer the question about lane effects from the perspec-
tive of a race organizer wanting to either keep races fair
or to appropriately reward competitors having done well
in previous rounds or competitions. On the other hand,
by choosing the competitors carefully according to known
abilities or tendencies, one could estimate a (potentially)
more informative CATE for developing and understanding
optimal strategy with respect to a specific competitor or type
of competitor.

5 Conclusion and future work

In the work we propose a generative model compatible with
multi-competitor races with available frame-level tracking
data. We show how this class of models can capture some of
the important within-race dynamics of such races including
tactical movements and strategies. The key to these models
is modelling total movement as a function of perpendicular
and lateral movement at each time step. We demonstrate
how this can be applied to the context of one-mile horse
races using high-resolution tracking data provided by the
NYRA and NYTHA.

The contributions of this paper are three-fold. First, we
estimate within-race competitor-specific coefficients which
vary smoothly over the course of the race and separate these
effects from both observed race-level coefficients such as
jockey and track effects as well as intra-race factors such
as drafting and other dynamic effects. Second, we show
how these models can be used to generate computationally
feasible posterior predictive simulations of entire races for
any starting positions and competitors for which we have
suitable data. These simulations can be used to generate
instantaneous notions of value analogous to those available
through the EPV framework in continuous sports like bas-
ketball and soccer. Measures of continuous value can then
be further analyzed to study tactics or to attribute value
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to competitor decisions for example. Finally, the generative
nature of the models allows one to simulate counter-factual
scenarios to understand probable results given alternative
strategies not observed in actual competitions or to study
race effects such as our lane effect case-study. This can be
especially powerful in collaboration with domain experts
who are able to adequately describe potential strategies or
research questions of interest.

The proposed class of generative models is sufficiently
general to apply to any multi-competitor race where there is
available tracking data and competitor motion is adequately
represented by forward and lateral movements such as
most track based events. This is not to say that adaptation
to other race settings can be done without care. One of the
desirable features of many horse races is the combination
of high sampling rate of the data (~4 hz) and the relatively
short nature of many events (e.g. the canonical one-mile
event takes on the order of 90 s and 350—400 frames). High
sampling rates allow one to accurately capture instanta-
neous features such as drafting and relatively short overall
races make simulations computationally feasible to gener-
ate. Some multi-competitor races will not have access to
this level of data or may be significantly longer that sim-
ulations on this scale of granularity may not be possible.
For example, a Tour de France stage is often on the order
of several hundred kilometers and may take many hours
to complete. Such cases will require some adaptations to be
feasible.

There are two broad classes of solutions to these prob-
lems — sampling schemes and emulators which may be used
in combination with each other. The most natural solution to
dealing with races which are an order of magnitude larger
in terms of number of frames (or number of competitors or
both) is to coarsen the sampling until it is a manageable size.
In some races it may be necessary to make the coarsening
quite significant. The trade-off with coarsening is that fea-
tures like drafting cease to be instantaneous measures and
additionally this lack of granularity may show up in some
measures of uncertainty and impact the granularity of the
questions that can be answered by the simulation. In some
cases, some of the drawbacks may be partially overcome
by coarsening over meaningful subsections of the race. In
road cycling, for example, stages are often classified into
particular subsections of flats, hills, and descents. It may be
sufficient to capture things like rider ability and average
drag over these subsections (or further divisions thereof)
to generate meaningful inferences, predictions, and simula-
tions. The subsections need not be overly coarse, however.
Aswe demonstrated in our canonical example we were able
to simulate feasibly on the order of 400 frames and in many
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cases dividing a race into several hundred subsections may
not be overly restrictive. Another sampling approach can
involve down-sampling and interpolating over these sub-
sections rather than modelling the subsections as a distinct
unit. Coarsening and down-sampling approaches may also
be combined when appropriate.

The problem of needing to lower the computational
burden of inferences and predictions based on computa-
tionally intensive simulations is hardly unique to sports and
the tracking data context. Emulators, that is models which
approximate the outputs of complex simulations are, in fact,
common in physical and social sciences such as physics
(Kataoka et al. 2023), biology (Stolfi and Castiglione 2021),
and fields like economics or sociology where agent based
modelling is employed (Angione et al. 2020). In practice,
models like Gaussian processes and neural networks are
trained based on outcomes which are some function of the
simulation results. In some cases Bayesian methods are pre-
ferred when one is interested in capturing the underlying
uncertainty in the simulations rather than simply point esti-
mates of expectations (Vernon et al. 2022), however there
is an emerging literature aiming to quantify the epistemic
and model uncertainty of deeper machine learning methods
in the context of emulators (Thiagarajan et al. 2020). The
emulator still requires some number of full simulations to
be conducted to develop a sufficient training set for the task
at hand to ensure the key features of the richer simulation
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framework is learned effectively. It is also important to note
that several different emulation models may need to be
developed to model different outputs for the simulation. For
example, returning to the canonical horse racing example,
one may need to build a different emulator for predicting
race finishing times than if one is investigating the impor-
tance of lane assignment on lateral movement in the early
stages of the race.
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Appendix A

A.1 Covariates table

Table 2: All covariates and effects used in proposed forward and lateral movement models for each combination of horse and jockey during active

races.

Feature Type Description

n_horses_inside DWR Number of horses to the inside (left)

n_horses_outside DWR Number of horses to the outside (right)

n_horses_forward DWR Number of horses in front

n_horses_backward DWR Number of horses behind

nearest_inside DWR Nearest horse on the inside, in terms of lateral distance

nearest_outside DWR Nearest horse to the outside, in terms of lateral distance
nearest_inside_euclid DWR Nearest horse on the inside, in terms of Euclidean distance
nearest_outside_euclid DWR Nearest horse to the outside, in terms of Euclidean distance

nearest_forward DWR Nearest horse in front, in terms of forward distance

prev_lat_movement DWR Lateral distance travelled in previous frame (LMO)

is_drafting DWR An indicator for whether the horse is drafting in the current frame
prop_energy_saved DWR Total proportion of energy saved due to drafting

is_turn DWR An indicator for whether the horse is going around a turn

is_home_stretch DWR Horse is in the home stretch of the race (LMO)

turn_to_home_stretch DWR Horse is in the first 10 m of the home stretch coming out of turn (LMO)
race_context RE A combination of track type (dirt, turf) and surface condition (fast, good, sloppy, or muddy)
jockey RE A simple random effect for the jockey

horse_spline RE A hierarchical B-spline describing the movement pattern of each horse (FMO)

DWR, dynamic within-race feature; RE, random effect; LMO, lateral model only; FMO, forward model only.
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A.2 Clustering dendrogram
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Figure 10: A hierarchical clustering dendrogram based on all horses with 5 or more 1 mile races. Red borders are used to divide clusters.
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