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Abstract: Sports analysis has gained paramount impor-
tance for coaches, scouts, and fans. Recently, computer
visionresearchershave takenonthechallengeofcollecting
the necessary data by proposing several methods of auto-
matic player and ball tracking. Building on the gathered
tracking data, dataminers are able to perform quantitative
analysis on the performance of players and teams. With
this survey, our goal is to provide a basic understanding
for quantitative data analysts about the process of creat-
ing the input data and the characteristics thereof. Thus,
we summarize the recent methods of optical tracking by
providing a comprehensive taxonomy of conventional and
deep learning methods, separately. Moreover, we discuss
the preprocessing steps of tracking, the most common
challenges in this domain, and the application of track-
ing data to sports teams. Finally, we compare the methods
by their cost and limitations, and conclude the work by
highlighting potential future research directions.

Keywords: deep learning; image processing; optical track-
ing; player tracking; soccer; sports analytics.

1 Introduction
The success in every team sport significantly depends on
the analysis of the semantics. Most team sports, such as
football, basketball, and ice hockey, involve very com-
plex interactions between players. Researchers and data
analysts propose various methods for modeling these
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interactions. For this aim, they need to follow the move-
ments of players and the ball from the video. However, this
task is strenuous due to the large speed of players and of
the ball in the playfield, and tracking usually fails in the
cases of overlaps, poor light conditions, and low quality
of the videos. During the past decades, computer vision
researchers developed several optical tracking algorithms
by analyzing video image pixels and by extracting the fea-
tures of the objects of interest, such as players and the ball.
On this data, themovement, action, intention, and gesture
of the players can be analyzed.

The most common analysis is performed over player
and ball tracking data, also known as trajectory data. The
distilled knowledge canhelp coaches and scouts in several
aspects, such as game strategy and tactics, goal analysis,
pass and shot prediction, referee decisions, player eval-
uation, and talent identification. In order to automatize
the end-to-end analytics procedure, the tracking meth-
ods require visual data (video frames) as the data source
and produce tracking data (player and ball trajectories)
for further data mining. The proposed methods majorly
contribute to effectively evaluate the performance at indi-
vidualand teamlevels in teamsports. E.g., at the individual
level, the characteristic style of a player, while at the team
level, the combination of all players’ trajectories can be
evaluated.

The work in this paper is motivated by the follow-
ing observations. First, researchers in sports analytics are
continuously searching for the most accurate, but a cost-
effective method for the player and ball tracking. The
above-mentioned goals of tracking prove the importance
of opting for an accurate method for extracting player and
ball trajectories in sports analytics. Second, player and
ball tracking are one of the broadest areas for research
in sports analytics. In the literature, there are many pub-
lished works without proper classification. Recently, the
automatic feature extraction capability of deep learning
in computer vision encourages sports analysts to exper-
iment with neural networks for player and ball tracking
tasks. Thus, awider range of tracking options are available
to the researchers and this survey helps them to choose
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their suitable method depending on the task at hand.
Furthermore, understanding all these methods requires
deep knowledge of computer vision for quantitative ana-
lysts in sports, which is not realistic. Therefore, in this
paper, we have the following goals: to provide a robust
classification of methods for the two tasks of detection
and tracking and to give insights about the applied com-
puter vision techniques of extracting trajectories to the
quantitative analysts in sports.

Several papers made attempts to present the myr-
iad of state-of-the-art object tracking algorithms. A broad
description of object tracking methods was given in Yil-
maz, Javed, and Shah (2006), and a more recent one in
Reddy, Priya, and Neelima (2015). Moreover, Dhenuka,
Udesang, and Hemant (2018) presented a survey on mul-
tiple object tracking (MOT) methods, while a survey for
solving occlusion problems was published in Lee et al.
(2014). The first survey on the application of deep learning
models in MOT is presented in Ciaparrone et al. (2019). All
these surveys cover the description of tracking methods of
generic objects, such as humans or vehicles. It was inMan-
afifard, Ebadi, and Abrishami (2017b) where the authors
summarized the state-of-the-art player tracking methods
focusing on soccer videos. Although, these surveys show
the following shortcomings. Most of these papers are not
dedicated to team sports and survey all kinds of object
tracking algorithms. On the other side, the sport dedicated
survey like Manafifard, Ebadi, and Abrishami (2017b), is
too technical, suitable only for computer vision analysts,
and dedicated to tracking.

This survey contributes to the state-of-the-art player
and ball tracking methods as follows. First, the methods
in detection and tracking tasks are classified separately.
Second, this paper is not only listing the methods but also
gives an insight about the computer vision techniques to
the quantitative analysts in sports, who need the extracted
trajectories for their quantitative models. Third, the appli-
cation of deep learning in team sports is surveyed for the
first time in the literature. Fourth, we provide a cost anal-
ysis of the methods according to their computational and
infrastructure requirements.

This paper is organized as follows. In Section 2 we
explain our paper collection process and the camera setup
requirements of the published works. We list the methods
for theplayer andball detection inSection3, and theplayer
and ball tracking in Section 4.We evaluate the categorized
techniques in terms of their applied theoretical methods
andanalyze their cost inSection 5, andfinally,weconclude
the work in Section 6.

2 Eligibility and data collection
This survey is conducted to help quantitative sports ana-
lysts choose the best method to create their own tracking
data from sports videos. For this task, the eligible papers
are collected from Science Direct, Google Scholar, Scopus
databases, and ACM, IEEE, Springer digital libraries using
the following keywords for filtering papers and minimiz-
ing bias: “sports analytics”, “soccer”, “player tracking”,
“ball tracking”, “playerdetection”, “ball detection”, “deep
learning for tracking”, “fixed camera”, “moving camera”,
“broadcast sports video”. In the first round of collection,
125 papers have been identified andwe carefully inspected
their contributions in terms of (1) detection or tracking, (2)
camera setup, and (3) deep learning-based or traditional
methodologies. In order to make the best structure of this
survey, we excluded the papers in which tracking was not
the main focus. An example is a method called DeepQB
in American football proposed by Burke (2019). This paper
proposes a deep learning approach applied to player track-
ingdata to evaluate quarterbackdecisions,which is clearly
not a direct contribution in player tracking methods. As a
result of filtering those papers and focusing on player or
ball detection and tracking, 50 papers were eligible for
this survey. Furthermore, we also classified eligible papers
according to their camera setup as follows.

One of the most important criteria for the evalua-
tion of the methods in this work is the required camera
setup. Depending on the camera setup, the frame extrac-
tion methods are different. Several studies in sports video
analytics are limited to a single fixed camera. In these
methods preprocessing steps are simpler and faster, as
they do not require time and location synchronization.
However, as they need to cover the whole playfield, the
frames are mostly blurry and difficult to use for detection
(Arbues, Ballester, and Haro 2019; Needham and Boyle
2001; Rodriguez-Canosa et al. 2012; Sabirin, Sankoh, and
Naito 2015). An alternative setting to improve resolution
and accuracy is to use multiple fixed cameras. In these
videos occlusion problems can be handled easily, as the
occluded player or ball in one frame can be recognized
with the frame captured by another camera from other
angles (Ren et al. 2008, 2009; Wu 2008; Yazdi and Bouw-
mans 2018). Another option is to use multiple moving
cameras, which makes the video processing more com-
plex, but it provides more flexibility in the analysis. These
types of video require significant synchronization effort,
but finally, they produce longer trajectories, as the cam-
eras try to follow ball controllers (Agelet Ruiz 2010; Alavi
2017; Xu, Orwell, and Jones 2004; Mondal 2014). In this
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paper, we classify each of the cited papers according to
their required video inputs in terms of the cameras being
fixed or moving, and of their cardinality in the arena.

3 Player and ball detection
Tracking data, i.e., the exact location of the players and
the ball on the field at each moment of the match, is the
most important data for a quantitative model developer.
Player and ball detection methods are computer vision
techniques that allow the analyst to identify and locate
players and the ball in a frame of a sports video. Detection
methods provide the input to tracking, which would be a
simple task if all players and the ball were totally visible
in each frame and there were no occlusion. However, in
real-world videos, most frames are blurry and continuous
tracking fails due to e.g., occlusion, poor light, or posture

changes. Therefore, thedetection task shouldbe combined
with an appropriate tracking method to accurately track
the players and the ball (see Figure 1).

In this section, we focus on detection methods that
aim to find the bounding box of the players and the
ball, and to localize the different detection features inside
each bounding box. Bounding boxes are imaginary boxes
around players and the ball (see Figure 1) that are used to
separate each player and ball from other objects in a video
frame. We classify detection methods into the categories
of traditional and deep learning-basedmethods. As Figure
2 shows, while in the traditional methods the features of
the input objects need to be described and extracted by
the analyzer and depend on the detection algorithms, a
deep learningmethod performs this process automatically
through the layers of a neural network. Therefore, data
quality, computational power, domain expertise, training
time, and required accuracy specify the selection of the

Figure 1: Player detection (top) and tracking (bottom) results from Xu, Orwell, and Jones (2004).

Figure 2: Player and ball detection workflow.
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suitable choice of method to apply. We briefly describe
each group of methods separately, and give a summary
of published research papers, along with their important
attributes, in Table 1.

3.1 Traditional methods for detection
In the traditional methods of detection, the features of
players, ball, and playfield must be precisely described
and extracted by the analyzer. In this section, we classify
the methods according to their description of the features,
and their extraction types.

3.1.1 Histogram of oriented gradients

Histogramof oriented gradients (HOG) is a feature descrip-
tor and is essentially used to detect multiple objects in an
image by building histograms of pixel gradients through
different parts of the image. HOG considers these ori-
ented gradients as features. An example of a calculat-
ing histogram of gradients is illustrated in Figure 3. As
the first step, the frame is divided into 8 × 8 cells. For
each cell, the gradient magnitude (arrows’ length) and
gradient direction (arrows’ direction) will be identified.
Consequently, the histogram containing nine bins corre-
sponding to angles 0, 20, 40, . . . , 160 is calculated. This
feature vector can be used to classify objects into different
classes, e.g., player, background, and ball. This method
is used by Mackowiak et al. (2010) and Cheshire, Hu, and
Chang (2015).

In these methods, the court lines can be detected with
Hough transform, another feature extraction technique
that searches for the presence of straight lines in an image.
This algorithm fits a set of line segments to a set of image
pixels.

3.1.2 Background modelling

Background modeling is another method for detecting
players and the ball, and is a complex task as the back-
ground in sports videos frequently changes due to camera
movement, shadows of players, etc. Most of the meth-
ods in the background modeling domain consider image
pixel values as the features of the input objects. In the
domains of player and ball detection, the following two
methods are proposedby researchers for backgroundmod-
eling: Gaussian mixture model (GMM) and Pixel energy
evaluation.

Gaussian mixture model (GMM): GMM is proposed
by Ming, Guodong, and Lichao (2009) where playfield
detection is performed first by taking the peak values of
RGB histograms through the frames. This is because they
assume the playfield is the largest area in the frames. Then
each of these extracted background pixels is modelled by
k Gaussian distributions; different Gaussians are for differ-
ent colors. Thus, the probability of a pixel having value Xt
can be calculated as:

P(Xt) =
k∑
i=1

𝜔i𝜂(Xt) (1)

where 𝜔i is the weight for the ith component (all sum-
ming to 1), and 𝜂(Xt) is a normal distribution density
function. Based on these probabilities and by setting arbi-
trary thresholds on the value of the pixels, the background
pixels can be subtracted and the players or the ball will
be detected. This algorithm cannot recognize players in
shadows.

Pixel energy evaluation: Another backgroundmodel
is proposed by Mazzeo et al. (2008). In this method, the
energy information of each point is analyzed in a small
window: first, the information, i.e., mean and standard
deviation, of the pixels at each frame is calculated. Then,
by subtracting the information of the first image of thewin-
dow and each subsequent image, the energy information
of each point can be identified. Consequently, the slower
energy points (static ones) represent the background, and
higher energy points (moving ones) represent the players
or the ball.

3.1.3 Edge detection

Edge detection is a method for detecting the boundaries of
objects within frames as the features. This method works
by detecting discontinuities in brightness. The researchers
who choose this method for players and ball detection,
mostly utilize the following two operators: Canny edge
detector, and Soble filtering. Figure 4 demonstrates the
edge detection methods on a sample frame of a player.

Cannyedgedetection: Is apopularmethod inOpenCV
for binary edgedetection (Figure 4(b)). Direkoglu, Sah, and
O’connor (2018) proposed using the Canny edge detection
method for extracting image data and features. However,
there might be missing or disconnected edges, and it does
not provide shape information of the players and the ball.
Thus, given a set of binary edges, they solve a particu-
lar heat equation to generate a shape information image
(Figure 4(c) and (d)). In mathematics, the heat equation
is a partial differential equation that demonstrates the
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Table 1: Review of playfield and player detection methods.

Reference Playfield detection Player detection Team sport & camera type Evaluation

Mackowiak et al.
(2010)

Hough transform for
court line detection

HOG descriptor Football video
broadcast

Performs well in SD
and HD test
sequences, different
light condition, and
various positions of
the cameras; 78%
precision

Cheshire et al.
(2015)

Hough transform Pedestrian
detection with HOG
& color-based
detection

Basketball video
broadcast

Miss rate: 70% for
pedestrian detection

Ming, Guodong, and
Lichao (2009)

Peak value of RGB Adaptive GMM Football video with
single moving
camera

Powerful
segmentation
result, but only in
the absence of
shadows

Mazzeo et al. (2008) Background
subtraction

Moving object
segmentation by
calculating energy
information for each
point

Football video with
single stationary
camera

Copes with light
changes by
proposing pixel
energy evaluation

Direkoglu, Sah, and
O’connor (2018)

Binary edge
detection of court
line with Canny edge
detector

Using shape
information of an
object by solving
heat diffusion
equation

Hockey video with
single stationary
camera

Highly accurate
method between 75
and 98%, but
computationally
less efficient in time
required for
detection

Naushad Ali,
Abdullah-Al-Wadud,
and Lee (2012), Rao
and Pati (2015)

RGB color extraction
if G> R> B

Sobel gradient
algorithm

Football video
broadcast

Accurately detects
the ball when it is
attached to the
lines; but in crowded
places, it fails to
detect the player

Markoski et al.
(2015) –

Face recognition
with adaboost

Basketball video
with single moving
camera

Detection accuracy:
70%

Zhu et al. (2006) GMM SVM for player
classification

Soccer, hockey,
American football
video broadcast

Detection accuracy:
91%

Chengjun (2018) Background
subtraction

One-class SVM Football video
broadcast

Proposes automatic
labeling of training
dataset that
significantly
reduces cost and
training time

GerkeKarsten and
Schäfer (2015) –

CNN for number
recognition

Football video
broadcast

Number level
accuracy: 83%

Li et al. (2018)
–

CNN for
classification &
spatial transformer
network for
localization of Jersey
numbers

Live football video
with single moving
camera

Number level
accuracy: 87% &
digit level accuracy:
92%
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Table 1: (continued)

Reference Playfield detection Player detection Team sport & camera type Evaluation

Liu and Bhanu
(2019)

Region proposal
network

R-CNN for digit
localization and
classification

Footbal video with
single pan-tilt
zooming camera

Number level
accuracy: 92% &
digit level accuracy:
94%

Figure 3: Calculating histogram of gradients.

Figure 4: Edge detection methods: (a) Original frame, (b) binary edges with Canny method, (c) shape information image (Direkoglu, Sah, and
O’connor 2018), (d) colored shape information image (Direkoglu, Sah, and O’connor 2018), (e) horizontal Sobel operator, (f) vertical Sobel
operator.

evolution of a quantity like heat (here heat is considered
as binary edges) over time. The solution of this equation
is filling the inside object shape. This information image
removes the appearance variation of the object, e.g., color
or texture, while preserving the information of the shape.
The result is the unique shape information for each player,
which can be used for identification. This method works
only for videos recorded with fixed cameras.

Sobel filtering: In themethod byNaushadAli, Abdul-
lah-Al-Wadud, and Lee (2012) and Rao and Pati (2015), the
Sobel gradient algorithm is used to detect horizontal and
vertical edges (Figure 4(e) and (f)). The gradient is the
vector with the components of (x,y) and the direction is
calculated as tan−1(Δy∕Δx). Due to the similar color of the
ball and the court lines, if the Sobel gradient algorithm is
applied for background elimination instead of color seg-
mentation, overlapping of the ball and court lines will

not be a problem.However, general overlapping problems,
e.g., playerocclusion, cannotbehandledwith thismethod.

3.1.4 Supervised learning

In many proposed methods a robust classifier is trained
to distinguish positive samples, i.e., players and/or ball,
and negative samples, i.e., other objects or parts of the
playfield. Any classification method, such as Support
Vector Machine or Adaboost algorithms, can be trained
for accurate detection of the players. Some examples
of positive and negative sample frames are given in
Figure 5.

Support vectormachine: Several related works state
that the advantages of SVM compared to other classi-
fiers include better prediction, unique optimal solution,
fewer parameters, and lower complexity. In the method
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Figure 5: Positive (bottom) and negative (top) samples for training
classifier.

of Zhu et al. (2006), the playfield is subtracted with a
GMM. The results of background subtraction are thou-
sands of objects, which SVM can help to classify into
player and not player objects. However, in this method,
the training dataset is manually labelled, which is time-
consuming. Inorder to solve this problem,Chengjun (2018)
proposed fuzzy decisionmaking for automatic labelling of
the training dataset.

Adaboost algorithm: Adaboost, short for Adaptive
Boosting is used to make a strong classifier by a linear
combination ofmanyweak classifiers to improve detection
accuracy. The main idea is to set the weights of the weak
classifiers and to train on the data sample in each itera-
tion until it can accurately classify the unknown objects.
Markoski et al. (2015) used this algorithm for basketball
players’ face and body parts recognition. Although, they
concluded that Adaboost is not accurate enough for object
detection in sports events. Furthermore, Lehuger, Duffner,
and Garcia (2007) showed that deep learning methods
outperform the Adaboost algorithm for player detection.

3.2 Deep learning methods for detection
In the task of player detection, researchers usually use
deep learning to recognize and localize jersey numbers.
Most of the works in this area use a convolutional neu-
ral network (CNN) which is a deep learning model. The
general architecture of CNN for digit recognition is illus-
trated inFigure 6.As thefirst step, players’ boundingboxes
should be detected. Then digits inside each bounding box
should be accurately localized. These localized digits will
be the input of CNN. Several convolution layers in CNNwill
assign importance to various features of the digits. Conse-
quently, the neurons in the last layer will classify the digits
from 0 to 9 classes. In this area, different works propose
the following methods for improving the performance of
detection: (1) how to localize digits inside each frame, (2)
how to recognize multiple digits, (3) how to automatically
label the training dataset, i.e., which benchmark dataset
to use.

The first CNN-based approach for automatically rec-
ognizing jersey numbers from soccer videos was proposed
by GerkeKarsten and Schäfer (2015). However, thismethod
cannot recognize numbers in case of perspective distor-
tion of the camera. To solve this problem, Li et al. (2018)
used a spatial transformer network (STN) to localize jersey
numbers more precisely. STN helps to crop and normal-
ize the appropriate region of the numbers and improves
the performance of classification. Another digit localiza-
tion technique is region proposal network (RPN), which
is a convolutional network that has a classifier and a
regressor, and is trained end-to-end to generate high-
quality region proposals for digits. RPN is used by Liu and
Bhanu (2019) for classification and bounding-box regres-
sion over the background, person, and digits. While these
methods canbemore accurate than some traditionalmeth-
ods for player detection and they eliminate the necessities
ofmanual feature description and extraction, they are also
more expensive due to more computation and training

Figure 6: Neural network architecture for digit localization and detection.
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time. Most of these methods require special versions of
GPUs to be applied. Moreover, training and testing CNNs
might be more time-consuming than running traditional
methods.

4 Player tracking
Detection methods calculate the location of each player
and the ball at each frame of the videos. There are always
some frames for which the detection fails due to the blur-
riness of the frame, poor light conditions, occlusions, etc.
In these cases, the detection methods cannot provide the
location of the same player and ball in consecutive frames
to construct continuous trajectories. Therefore, a player
trackingmethod is needed to associate the partial trajecto-
ries, and toprovide long tracking informationof eachof the
players and the ball (see Figure 1). Player tracking involves
the design of a tracker that can robustly match each obser-
vation to the trajectory of a specific player. This tracker
can be designed for a single object or for multiple objects.
The biggest challenge in tracking is the overlapping of
players, namely the occlusion. Several studies suggested
solutions for making a unique, continuous trajectory for
each player by solving the occlusion problem. Thosemeth-
ods mostly follow filtering and data association. However,
each method follows a different description for interest
points (features) forfiltering,anddataassociationdepends
on the custom definition of probabilistic distributions. In
this section, we survey the tracking methods classified by
whether they are based on traditional or deep learning
models.

4.1 Traditional methods for tracking
Same as the previously mentioned traditional detection
models, the traditional tracking algorithms also require
manual extraction and description of the player and ball
features. The main categories of tracking methods in the
literature of sports analytics are the following: point track-
ing, contour tracking, silhouette tracking, graph-based
tracking, and data association methods.

4.1.1 Point tracking

The methods using point tracking mostly consider some
points in the shape of the player and ball as the features,
and choose the right algorithm (e.g., point distribution

model (PDM), Kalman filter, particle filter) to associate
those points through consecutive frames (see Figure 7).

PointDistributionModel: In thesemethods, the idea
is to describe the statistical models of the shape of players
and ball, called PDM. This method is used by several stud-
ies such asMathes and Piater (2006); Hayet et al. (2005); Li
and Flierl (2012). The shape is interpreted as the geometric
information of the player, which is the residue once loca-
tion and scaling are removed. As the first step, they extract
the vector of features using two methods: Harris detector,
or scale invariant feature transform (SIFT). Harris detector
is the corner detection operator to extract corners and infer
features of an image. Example results of Harris detector are
shown as some points in Figure 7. SIFT is a feature detec-
tor algorithm to describe local features in images. These
extracted features are detectable evenundermodifications
inscale,noise,and illumination.Then,by learning thespa-
tial relationships between these points, they construct the
PDM to concatenate all feature vectors, i.e., interest points,
of players (Figure 8). We provide a review and comparison
of point tracking methods in Table 2.

Particle filter: All particle filter tracking systems aim
to estimate the state of a system (xt), given a set of noisy
observations (z1:t). Thus the goal is to estimate P(xt|z1:t). If
we consider this problem as a Markov process, the solu-
tion can be found if the system is assumed to be linear
andeachconditionalprobabilitydistribution isbeingmod-
eled as a Gaussian. However, these assumptions cannot be
made, as they decrease the accuracy of prediction. Par-
ticle filtering can help to eliminate the necessity of extra
assumptions. This method approximates the probability
distribution with a weighted set of N samples:

P(x) ∼
N∑
i=1

𝜔
i(x − xi), (2)

where𝜔i is the weight of the sample xi. Now the questions
are how to assign the weights, and how to sample the
particles. Several studies suggested different methods for
these questions.

Figure 7: Point tracking.
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Figure 8: Describing shape by PDM from Mathes and Piater (2006).

Table 2: Review of tracking methods with PDM.

Reference Tracking method Point extraction method Input video stream Evaluation

Li and Flierl (2012) Features tracking in
consecutive frames

SIFT features Football video with
multiple stationary
cameras

Average reliability of tracking,
i.e., the number of correctly
tracked players divided by the
number of players in each
frame is 99.7%; occlusion can
be handled by comparing
different viewpoints of
cameras

Hayet et al. (2005) Matching points of
the PDM

Harris detector Football video
broadcast

Copes with the problem of
rotating & zooming cameras by
continuous image-to-model
homography estimation;
occlusion can be handled by
interpolation in the PDM

Mathes and Piater (2006) Points matching by
maximum-gain
using Hungarian
algorithm

Harris detector Football video
broadcast

Can only track the non-rigid
but textured objects in
crowded scenes; occlusion can
be handled by tracking sparse
sets of local features

In themethodsbyKataokaandAoki (2011)andManafi-
fard, Ebadi, and Abrishami (2017a), particles are players’
positions. Linear uniform motion is used to model the
movement of particles, and the Bhattacharyya coefficient
is applied for assigning weights, i.e., likelihood to each
particle. In statistics, Bhattacharyya coefficient (BC) is a
measure for the amount of overlap between two statistical
samples (p, q) over the same domain x, and is calculated
as BC(p, q) = ∑

x
√
p(x)q(x). In the works by Petsas and

Kaimakis (2016) and Yang and Li (2017), each particle is
estimated by the updated location of the player, knowing
the last location plus a noise: xk = xk−1 + 𝑣k, which noise
𝑣k is assumed to be i.i.d. following a zero-mean Gaussian
distribution. Moreover, in Yang and Li (2017), particles
are created based on color and edge features of players,
and the weight of each particle is computed by contrast

to the similarity between the particles and targets. Dear-
den, Demiris, and Grau (2006) introduced sample impor-
tance resampling to show that the shape of a player can be
represented by a set of particles, e.g., edge, center of mass,
and color pixels. Also, those points can represent a prob-
abilistic distribution of the state of the player (Figure 9).
Another method is proposed by de Pádua et al. (2015), in
which players are detected by adaptive background sub-
traction method based on a mixture of Gaussians, and
each detected player is automatically tracked by a sep-
arate particle filter and weighted average of particles. We
show the above-mentionedmethods for particle filtering in
Table 3.

Kalman filter: (KF) method is mostly used in systems
with the state-space format. In the state-space models, we
have a set of states evolving over time. However, the obser-
vations of these states are noisy and we are sometimes
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Figure 9: Particle filtering from Dearden, Demiris, and Grau (2006).

unable to directly observe the states. Thus, state-space
models help to infer information of the states, given the
observations, as new information arrives. In player and
ball tracking, the observations of two inputs, i.e., time and
noisy position measurements, continuously update the
tracker. The role of KF is to estimate the xt, given the initial
estimate of x0, and time-series of measurements (observa-
tions), z1, z2,… , zt. The KF process defines the evolution
of state from time t − 1 to t as:

xt = Fxt−1 + But−1 +𝜔t−1, (3)

where F is the transition matrix for state vector xt−1, B is
the control-input matrix for control vector ut−1, and 𝜔t−1
is the noise following a zero-mean Gaussian distribution.
A typical KF process is shown in Figure 10. As we can
see, the Kalman filter and particle filter are both recur-
sively updating an estimate of the state, given a set of noisy
observations.Kalmanfilterperforms this taskby linearpro-
jections (3), while the Particle filter does so by estimating
the probability distribution (2).

The following studies use Kalman filter for player and
ball tracking: Makandar and Mulimani (2018), Kim and
Kim (2009), and Liu, Liu, andHuang (2011).We summarize
the KF methods in Table 4.

4.1.2 Contour tracking

Contour tracking for dynamic sports videos provides basic
data, such as orientation and position of the players, and
is used when we have deforming objects, i.e., players and

Figure 10: Typical Kalman filter process.

Table 3: Review of particle filtering methods.

Reference Particles type Weight assignment method Input video stream Evaluation

Kataoka and Aoki
(2011)

Players’ position &
center of gravity

Bhattacharyya
coefficient

Football video with
single swing motion
camera

Tracking rate for players: 83%
& ball: 98%; occlusion
handling by combining particle
filter and real AdaBoost

Petsas and Kaimakis
(2016)

Players’ position Weighted average of
particles

Football video with
single stationary
camera

Not real-time; occlusion
cannot be handled

Yang and Li (2017) Color & edge
features

Bhattacharyya
coefficient

Football video
broadcast

Occlusion handling by
comparing color & edge
features

Dearden, Demiris,
and Grau (2006)

Edge points, center
of mass, color pixels

Sample importance
resampling

Football video from
single moving
camera

Overcomes the problem of
non-linear and non-Gaussian
nature of the noise model

Manafifard, Ebadi,
and Abrishami
(2017a)

Ellipse surrounded
by the player
bounding box

Bhattacharya
coefficient

Football video
broadcast

92% of accuracy; occlusion can
be handled by combination of
particle swarm optimization &
multiple hypothesis tracking
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Table 4: Summary of player and ball tracking methods with Kalman filter.

Reference KF type KF inputs Input video stream Evaluation

Makandar and
Mulimani (2018)

KF with
motion
information

Players motion
information (moving or
static)

Volleyball video
broadcast

Non-linear & non-Gaussian noise
are ignored, which decreases the
accuracy of tracking

J.-Y. Kim and T.-Y.
Kim (2009)

Dynamic KF Position & velocity of
state vector

Football video
broadcast

Copes with the problem of
player-ball occlusion in KF

Liu, Liu, and Huang
(2011)

Kinematic
model of KF

Position state from
mean-shift algorithm

Basketball video
broadcast

KF is used to confirm the target
location to empower mean-shift
algorithm for ball tracking

ball, over consecutive frames. Figure 11 shows some exam-
ples of such contours. Many methods have been proposed
to track these contours. In an easy approach, the centroid
of these contours plus the bounding box of players will be
obtained, and the player can be traced (Beetz et al. 2007;
Hanzra and Rossi 2013). Researchers in this area tried to
propose several methods for assigning a suitable contour
to the players and the ball. Patil et al. (2018) find player’s
contoursas curves, joiningall thecontinuouspoints (along
the boundary), having the same color or intensity. So
they could track these contours and decide whether the
player is in an offside position or not. Another method by
Lefèvre et al. (2000, 2002), andLin (2018) suggests snake or
active contour tracking, which does not include any posi-
tion prediction. In such methods, the algorithm fits open
or close splines (i.e., a special function defined piecewise
by polynomial) to lines or edges of the players. An active
contour can be represented as a curve: [xt, yt], t ∈ [0, 1]
segmenting players from the rest of the image, which can
be closed or not. Then this curve should be iteratively
deformed and converged to target contour (Figure 12) to
minimize anenergy functionand tofit the curve to the lines
or edges of the players. The energy function is presented
as physical properties of the contours, i.e., the shape of
the contour, plus the gradient and intensity of the pixels
in the contour. A review of contour representation of the
above-mentioned tracking methods is in Table 5.

Figure 11: Contour tracking.

4.1.3 Silhouette tracking

Whenthe informationprovidedbycontourandsimplegeo-
metric shapes are not enough for the tracking algorithm,
extracting the silhouette of the players and of the ball can
provide extra information on the appearance of the object
in consecutive frames. Unlike contours, the silhouette of a
player isnot a curvedshape. Thus, it doesnot requiredefor-
mation and convergence to the target shape of players and
the ball. Instead, this method proposes some aspect ratios
to describe the invariant shape. An example of this shape
extraction for a specific player is illustrated in Figure 13. In
such cases, shape analysis can help the tracking process
as follows.

Shape matching: In the literature, the shape of an
object is defined by its local features not determined or
altered by additive contextual effects, e.g., location, scale
and rotation. This method is mostly used for ball tracking.
The problem in this area is that the shape of the ball varies

Figure 12: Active contour model for fitting curves to the players’
edges and lines.
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Table 5: Summary of contour tracking methods.

Reference Contour representation Tracking method Input video stram Evaluation

Patil et al. (2018) A curve that joins all
continuous pixels

Contour filtering for
players & ball with
Gaussian blurring

Football video with
multiple stationary
cameras

Fast tracking; occlusion can be
handled by placing cameras on
both sides of the field

Lefèvre et al.
(2000, 2002)

Snake initialization Snake deformation Football video with
single moving camera

Robustly solves occlusion

Hanzra and Rossi
(2013)

Edge pixels form
contour boundaries

Contour centroid
tracking

Football video with 3
stationary and 1 moving
cameras

Handles occlusion by
comparing contour area of
player & mean of that for all
players

Beetz et al.
(2007)

K-means clustering
of pixels on marked
regions

Multiple hypothesis
tracker

Football video
broadcast

Tracks players up to 20 min
without getting lost; detection
rate is over 90%

Lin (2018) Motion curve of
shooting arm

Iterative convergence of
dynamic contour with
Lagrange equation

Basketball video
broadcast

Occlusion can be handled by
minimizing the potential
energy of the system image

Figure 13: Silhouette tracking.

significantly in each frame, and does not look like a cir-
cle at all (Figure 14). Different studies suggest some aspect
ratios, i.e., shape descriptors, to get the near-circular ball
images. Chakraborty and Meher (2013) suggest using the
degree of compaction Cd which is the ratio of the square
of the perimeter of the given shape to the area of the given
shape: Cd = P2∕4𝜋A. Therefore, if Cd > 50%, the shape
can be filtered as a ball. Another shape descriptor is eccen-
tricity, proposed by Naidoo and Tapamo (2006), and it is
defined as the ratio of the longest diameter to the short-
est diameter of a shape. The form factor indicates how
circular an object is, and if the result is between [0.2,
0.65] they will consider it as a ball. Besides these shape

descriptors, Huang, Llach, and Bhagavathy (2007) pro-
posed using skeletons to separate a shape’s topological
properties from its geometries. To extract the skeleton for
every foreground blob, they use the Euclidean distance
transform. Table 6 shows a review of shape analysis in
player and ball tracking methods.

4.1.4 Graph-based tracking

Some works explore graph-based multiple-hypothesis to
perform player tracking. In these cases, a graph is con-
structed that shows all the possible trajectories of players,
and it models their positions along with their transition
between frames. The correct trajectory is found with the
help of, e.g., similarity measure, linear programming,
multi-commodity network flow, or the problem is modeled
as a minimum edge cover problem. An example of graph
tracking in consecutive frames is shown in Figure 15. The
method shownbyFigueroa et al. (2004) builds the graph in
such away that nodes represent blobs and edges represent
the distance between these blobs. Then tracking of each
player is performed by searching the shortest path in the
graph. However, occlusion is difficult to be handled with

Figure 14: Shape of the moving ball from Chakraborty and Meher (2012).
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Table 6: Summary of shape analysis in player and ball tracking methods.

Reference Tracking method Input video stream Evaluation

Chakraborty and Meher
(2013)

Shape, size and
compaction filtering

Basketball video broadcast 93% of accuracy of ball detection and
tracking; occlusion can be handled by
trajectory interpolation with regression
analysis

Naidoo and Tapamo
(2006)

Moore-neighbour
tracing algorithm

Football video with single
stationary camera

Shape analysis in this method is failing in
case of the shadow of players or the ball

Huang, Llach, and
Bhagavathy (2007)

Euclidean distance
transform

Football video broadcast Occlusion cannot be handled

this method. Authors of Pallavi et al. (2008) used dynamic
programming to find the optimal trajectory of each player
in the graph. The proposed method by Xing et al. (2011)
builds an undirected graph to model the occlusion rela-
tionships between different players. In Chen, Chang, and
Hsiao (2017), the method constructs a layered graph for
detected players, which includes all probable trajectories.
Each layer corresponds to a frame and each node repre-
sentsaplayer.Twonodesofadjacent layersare linkedbyan
edge if their distance is less than a pre-defined threshold.
Finally, the authors used the Viterbi algorithm in dynamic
programming to extract the shortest path of the graph.
Ball tracking with graphs was proposed in Maksai, Wang,
and Fua (2015), where they build a ball graph to formulate
the Mixed Integer Programming model, and each node is
associated with a state, i.e., location of the ball at a time
instance. Table 7 shows a review of node and edge rep-
resentation, along with tracking methods defined on the
graph.

Figure 15: An example of weighted graph for player tracking in 4
consecutive frames.

4.1.5 Data association methods

Simulation-based approaches, including Monte Carlo
methods and joint probabilistic data association, are
usually used for solving multitarget tracking problems,
as these methods perform well for nonlinear and non-
Gaussian data models.

Markov chain Monte Carlo data association
(MCMC): Septier et al. (2011) compared several MCMC
methods, such as (1) sequential importance resampling
algorithm, (2) resample-move, (3) MCMC-based particle
method. The difference between these methods stems
from the sampling strategy from posterior by using
previous samples. Simulations show that the MCMC-
based Particle approach exhibits better tracking performa-
nce and thus clearly represents interesting alternatives to
SequentialMonte Carlomethods. The authors of Liu, Tong,
and Li (2009) designed a Metropolis-Hastings sampler for
MCMC, which increased the efficiency of the method.

Joint probabilistic data association (JPDA): The
JPDA method can be used when the mapping from tracks
to observations is not clear, and we do not know which
observations are valid and which are just noise. In these
cases, JPDAimplementsaprobabilisticassignment.Abbott
andWilliams (2009) used JPDA to assign the probability of
association between each observation and each track.

4.2 Deep learning-based tracking
Despite the effectiveness of traditional methods, they fail
inmany real-world scenarios, e.g., occlusion, and process-
ing videos from several viewpoints. On the other hand,
deep learning models benefit from the learning ability
of neural networks on large and complex datasets, and
they eliminate the necessities of features extraction by
the human/expert. Therefore, deep learning-based track-
ers are recently gettingmuch attention in computer vision.
These trackers are categorized intoonlineandofflinemeth-
ods: online trackers are trained fromscratchduring the test
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Table 7: Summary of graph-based player and ball tracking methods.

Reference Node representation Edge representation Tracking method Input video stream Evaluation

Figueroa et al.
(2004)

Blobs Distance between
blobs

Minimal path of
graph

Football video
with multiple
stationary
cameras

The algorithm is
tested for 3 players
of defender,
mid-fielder, and
forwarder, and
shows 88% of
solved occlusions

Pallavi et al. (2008) Probable player
candidates

Candidates link
between frames

Dynamic
programming with
acyclic graph

Football video
broadcast

93% of accuracy in
tracking & 80% of
solved occlusions

Xing et al. (2011) Player Relationship ratio
between 2 players

Dual-mode
two-way Bayesian
inference
approach

Football and
basketball video
broadcast

Uses undirected
graph to model the
occlusion
relationships &
reports 119 mostly
tracked trajectories
& 12 ID switches

Chen et al. (2017) Players position Degree of closeness
between players

Viterbi algorithm
to find shortest
path

Basketball video
broadcast

88% of precision in
player tracking;
occlusion is handled
by layered graph
connections

Maksai et al. (2015) Ball’s location State-time instant
connection

Mixed integer
programming

Football,
volleyball, and
basketball video
with multiple
cameras

97% of accuracy in
player tracking &
74% in ball tracking

and are not taking advantage of already annotated videos
for improving performance, while offline trackers train on
offline data.

Several recent studies have attempted to assess the
performance of deep learning methods in sports analyt-
ics. The core idea of all methods is to use CNN. However,
each study proposes a different structure of the network
and training method for increasing the performance. In
this section, we summarize the state-of-the-art networks
and their application in sports analytics. Table 8 is a brief
review of these methods.

Visualgeometrygroup (VGG):VGG-M isaCNNarchi-
tecture, designed by the VGG at the University of Oxford.
This network is used by several studies such as Kam-
ble, Keskar, and Bhurchandi (2019); Arbues, Ballester, and
Haro (2019). VGG-M is a small type of CNN, and its pre-
trained weights are publicly available. This network gets
the image as input, and classifies the detected object as
player, ball, or background, along with the probability of
the classes. The architecture of VGG-M CNN is illustrated
in Figure 16.

After the classification of the players and ball, the
metric called intersection over union (IOU) is used to track
them. IOU is the ratio of intersection of the ground truth
bounding box from the previous frame (BBA), and pre-
dicted bounding box in the current frame (BBB), and it is
calculated as in (4):

IOU = |BBA ∩ BBB|
|BBA ∪ BBB| , (4)

where ∩ and ∪ are intersection and union in terms of
the number of pixels. Thus, if the intersection is non-
zero between consecutive frames, the player or ball can
be traced.

Cascade-CNN: Is a novel deep learning architecture
consisting of multiple CNNs. This network is trained on
labeled image patches and classifies the detected objects
into the two classes of player and non-player. Football
and basketball player tracking using this method is sug-
gested by Lu et al. (2017). The illustrated pipeline in
Figure 17 shows the classification process and a dilation
strategy for accurate player tracking with the help of IOU
metric.
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Table 8: Summary of deep learning methods and application in team sports.

Reference Network structure Input video stream Required computational resource(s) Performance

Lu et al. (2017) Cascade CNN Football and basketball
video broadcast

Intel i7-6700HQ; NVIDIA
GTX1060

AUC of player
detection is 0.97

Kamble, Keskar, and
Bhurchandi (2019)

VGG-M Football video with
multiple stationary
cameras

MATLAB 2018a; intel i7;
NVIDIA GTX1050Ti

87% of accuracy in
player, ball, and
event detection

Long (2019) Full-convolution
siamese NN

Football video
broadcast

Matlab 2014a; intel i7;
NVIDIA GTX 960 M

Mean value of target
tracking effect of
SiamCNN is 60%

Yoon et al. (2019) YOLO Basketball video with
single moving camera

Intel i7; NVIDIA GeForce
GTX 1080Ti

74% of precision in
recognizing Jersey
numbers; MAPE is at
most 34%

Arbues, Ballester,
and Haro (2019)

VGG-19 Basketball video with
single moving camera –

Detection precision:
98%; MOTA of
tracking: 68%

Buric, Pobar, and
Ivasic-Kos (2019)

YOLO Handball video with
multiple stationary
cameras

12 core E5-2680v3 CPU;
GeForce GTX TITAN

mAP in players &
ball detection: 37%

AUC, area under curve; mAP, mean average precision; MAPE, mean absolute percentage error; MOTA, multi object tracking accuracy.

Figure 16: VGG-M CNN architecture from Kamble, Keskar, and Bhurchandi (2019).

Figure 17: Classification process with
Cascade-CNN from Lu et al. (2017).

YOLO: This network is used by Buric, Pobar, and Iva-
sic-Kos (2019) for handball player and ball tracking, and
Yoon et al. (2019) for basketball player movement recog-
nition. YOLO applies a single neural network to the full

image. Then the network divides the image into cells and
predicts bounding boxes and probabilities for each cell.
The weights of the bounding boxes are the predicted prob-
abilities. Then IOU metric can help for tracking purposes



50 | P. Rahimian and L. Toka: A survey on optical tracking methods in team sports

Figure 18: Player and ball tracking with YOLO from Yoon et al. (2019).

and solving the occlusion problem of the players and the
ball (Figure 18).

SiamCNN: In this network, there are sister network
1 and sister network 2 with the same network structure,
parameters, and weights. The structure looks like VGG-M
except for the adjustment of the sizes of each layer. The
inputs of SiamCNN are 3-color channels (R, G, B) from
frames, and the output is the Euclidean distance between
the characteristics/features of the inputs. Long (2019) used
this network to extract players’ characteristics through
trajectories. Then they compare the similarities between
search areas and a target template, so players can be
tracked. The structure of this network is given in Figure 19.

5 Evaluation and model selection
If a clean set of tracking information is not provided to a
sports analyzer who is developing a quantitative model,
his/her core task is to choose the most suitable method for
tracking players and the ball, and construct the required Figure 19: SiamCNN network structure for player tracking.
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dataset for further analysis. In the detection and tracking
domains, model selection, i.e., DL or traditional, heavily
depends on the task at hand. The selection will be dif-
ficult by merely reviewing the performance metrics of the
methods, as the tracking performance relies on the specific
task at hand and the quality of the videos. However, there
are some concrete criteria in this domain, which can help
the analyst to rapidly choose the desired tracking method.
Figure 20 compares the number of publications in detec-
tion and tracking domains categorized by team sports.
Note that 74% of methods are applied on football videos,
whereas deep learning methods (i.e., CNN, VGG, Cascade,
Siam, Yolo) are covering only 20% of all publications. In
this section, we review the benefits and drawbacks of each
method, and compare them in terms of their estimated
costs.

5.1 Deep learning-based versus traditional
methods

In general, traditional methods are domain-specific, thus
the analyzer must specifically describe and select the fea-
tures (e.g., edge, color, points, etc.) of the ball, football
player, basketball player, background, etc. in detail. There-

fore, the performance of the traditional models depends
on the analyzer’s expertise and how accurate the features
are defined. DL methods, on the other hand, demonstrate
superior flexibility and automation in detection and track-
ing tasks, as they can be trained offline on a huge dataset,
and then automatically extract features of any object type.
In this case, the necessities of manual feature extrac-
tion are eliminated, and consequently, DL requires less
expertise from the analyzer. In another point of view, DL
models aremore like a black box on the detection tasks. On
the contrary, traditional methods provide more visibility
and interpretability to the analyzer on how the developed
algorithm can be performed in different situations such as
sports types, lighting conditions, cameras, video quality,
etc. So, traditional models can give a better opportunity
to improve the tracker accuracy, when the system compo-
nents are visible. Also in the case of failure, system debug-
ging are more straightforward in traditional models than
DL-based ones.

In addition to the pros and cons that are listed in this
survey for each method, few criteria can help sports ana-
lysts to choose their desired method. Table 9 lists these
criteria thatcanhelpanalyzers tochoose thesuitabledetec-
tion and tracking methods in the direction of DL-based or
traditional ones.

Figure 20: Number of the published papers for each method categorized by their application in team sports.
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Table 9:Model selection criteria.

Criteria Deep Learning Traditional

Availability of huge training
dataset

✓

Accessing to high computational
power

✓

Lack of storage ✓
Looking for cheaper solution ✓
Certainty and expertise in the
object features

✓

Less domain expertise ✓
Flexibility in terms of objects and
training dataset

✓

Flexibility of deployment on
different hardware

✓

Short training and annotation time ✓

5.2 Cost analysis
The cost of the method is one of the most important char-
acteristics of model selection for researchers and analysts:
they are looking for a method with maximum accuracy
and reasonable cost. Here we give an insight into the cost
of the state-of-the-art methods, both for infrastructure and
computation, and classify them into 3 categories: high,
medium, low. The classification is based on the following
facts. In the computational aspect, deep learningmethods
which require GPUs are more expensive than traditional
methods with only CPUs. From an infrastructure perspec-
tive, different methods require different sets of camera
settings to record the sports video. Methods that require
a set of moving or stationary camera(s) to be set up in the
arena are more expensive than the methods that can trace
players and theball onbroadcast video. Table 10 shows the
cost approximation of all methods along with their most
significant limitations.
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6 Conclusion and future research
directions

According to a large number of cited papers in this survey,
computer vision researchers intensively investigate robust
methods of optical tracking in sports. In this survey, we
have categorized the literature according to the applied
methods andvideo type theybuild on.Moreover,we elabo-
rated on the detection phase, as a necessary preprocessing
step for tracking by conventional and deep learning meth-
ods. We believe that this survey can significantly help
quantitative analysts in sports to choose themost accurate,
while cost-effective trackingmethod suitable for their anal-
ysis. Furthermore, the combination of traditional and deep
learning methods can be rarely seen in the literature. Tra-
ditional models are time-consuming and require domain
expertise due to some manual feature extraction tasks,
while deep learning models are quite expensive to run in
terms of computing resources. As possible future work,
research may aim to combine those methods to increase
the performance of tracking systems, alongwith the robust
quantitative evaluation of the games. Another avenue for
future work might be to minimize the computational costs
of tracking systems with the aid of sophisticated data pro-
cessing methods. We hope that this survey can give an
insight to sports analytics researchers to recognize the
gaps of state-of-the-art methods, and come up with novel
solutions of tracking and quantitative analysis.
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