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Abstract: The availability of pitch-tracking data has led
to increased scrutiny of Major League Baseball umpires.
While many studies have attempted to rate umpires based
on their conformity to the rule book strike zone, players
and managers tend to accept deviations from this zone,
provided that umpires establish consistent zones within a
game. Using tools from computational geometry, we pro-
pose new metrics for assessing the consistency and accu-
racy of an umpire’s ball and strike calls over the course
of a game. We apply these metrics to pitch-tracking data
on all ball and strike calls made during the 2017 MLB reg-
ular season, giving some characterizations of the varia-
tion in performance ofMLB umpires. This analysis demon-
strates that measures of consistency can complement cur-
rent accuracy-based evaluations of umpires.

Keywords: α-convex hull; convex hull; kernel density esti-
mation; principal component analysis.

1 Introduction
Since 2009,Major League Baseball has been usingmodern
pitch-tracking data to evaluate and train its umpires (Mills
2017). While the instant public availability of this data
has prompted some calls for electronic automation of ball
and strike calls, there is evidence that MLB’s Zone Evalua-
tion system has led to an improvement in umpire accuracy
(Davis and Lopez 2015).

The Zone Evaluation system focuses on fidelity to the
rectangular front of rule book zone, but actual strike calls
in practice conform to the patterns shown in Figure 1.
These plots suggest that pitches on corners of the rule
book zone are likely to be called balls, forming an
accepted “consensus” strike zone that is rounded andnon-
rectangular. In addition, it appears that pitches off the
plate away from the batter are more likely to be called
strikes than pitches off the plate inside, suggesting that
consensus zones differ for left- and right-handed batters.
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To more accurately assess umpires within the context of
accepted practices, measures of strike zone accuracy can
be adapted to account for these consensus zones (Roegele
2017).

However, measures of accuracy alone fail to assess
umpire consistency within a game. In this paper, we pro-
pose several new ways to measure an umpire’s consis-
tency, apart from accuracy. We relax the requirement of a
rectangular zone, andwe allow for variations based on the
handedness of the batter. Since factors such as the style of
the starting pitchermay influence the shape of anumpire’s
zone from game to game, wemeasure consistencywithin a
game and average over all games in the 2017 season, rather
than aggregating the call data and taking a single mea-
surement. We also investigate the relationships between
consistency, accuracy, and other umpire tendencies.

2 Inconsistency
Over the course of a game, an umpire establishes a region
of pitches that are called strikes. Ideally, this established
strike zone will have a predictable shape, and no pitches
that fall inside of it will ever be called balls. In this section,
we propose four metrics for assessing the consistency of
calls relative to the strike zone that the umpire establishes.

Each of these metrics depends on the chosen geom-
etry of the established strike zone. First, we consider
the consequences and limitations of a simple rectangu-
lar established strike zone, and propose a refinement to
address these limitations. Next, we relax our geomet-
ric assumptions to consider non-rectangular established
zones, requiring only that these zones be convex.

Throughout this paper, we use publicly-available data
from MLB Advanced Media for the 2017 regular season
(MLBAM 2018). Ball and strike data are posted as (px,
pz) pairs, indicating the horizontal and vertical posi-
tion (in feet) of the ball as it crosses the front of home
plate, where the center of the plate at ground level cor-
responds to the point (0, 0). Since the vertical limits of
the strike zone depend on the height and and stance of
the batter, MLBAM also provides parameters sz_top and
sz_bot, which estimate the top and bottom of the strike
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Figure 1: All ball (blue) and strike (red) calls made in the 2017 MLB season, for left- and right-handed batters, from the umpire’s perspective.
The rectangle indicates the rule book strike zone. Vertical positions have been scaled based on the height and stance of the batter.

zone for each batter. We use these parameters to normal-
ize the vertical positions pz so that the top of the zone
corresponds to pz = 3.5 and the bottom of the zone cor-
responds to pz = 1.5:

normalized pz =
2(pz − sz_top)

sz_top − sz_bot
+ 3.5

All of the strike zone plots in this paper show px on
the horizontal axis and this normalized value of pz on the
vertical axis.

2.1 Rectangular metrics

A natural definition for the established strike zone is
the smallest rectangular region containing all the strikes.
Figure 2 shows an example of these established strike
zones for left- and right-handed batters for a particu-
lar MLB game. Any called ball inside these rectangles is

inconsistent. For a given game, we define the one-rectangle
inconsistency index IR1 as

IR1 =
number of inconsistent balls
total number of called balls .

In the game shown in Figure 2, out of 110 called
balls, 2 were inconsistent to left-handed batters
and 13 were inconsistent to right-handed batters, so
IR1 = (2 + 13)/110 ≈ 0.136.

While the one-rectangle inconsistency index is natu-
ral to define and easy to compute, it is highly sensitive
to a single outlying strike call. For example, in the right-
handed plot in Figure 2, if we remove the lowest strike
at (0.26, 1.27), the lower border of the established strike
zone moves up to the next-lowest strike, eliminating three
inconsistent balls. Had this single low strike been called
a ball, the index IR1 would have been (2 + 10)/110 ≈ 0.109
instead of (2 + 13)/110 ≈ 0.136.
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Figure 2: The smallest rectangle containing all the strikes. Balls are drawn as blue circles, and strikes as red diamonds. Note that the center
of the circle or diamond must lie on or inside the rectangle to be considered inside the rectangular region.
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Another weakness of the one-rectangle index is that it
can fail to account for multiple bad strike calls in the same
location. Again using the right-handed plot in Figure 2, we
see that eliminating the strike at (−0.93, 2.94) has no effect
on IR1, because the resulting rectanglewill still enclose the
same number of called balls. While this strike call seems
inconsistent given the five called balls around px = −0.6,
the measure IR1 fails to reflect this inconsistency.

We canmitigate these limitations in the one-rectangle
inconsistency index by using more rectangles. As with the
definition of IR1, the first rectangular region is the small-
est one that contains all the strikes; that is, it is the rect-
angle determined by the smallest and largest values of
both px and pz for the set of called strikes. The second
rectangle is then determined by the second-smallest and
second-largest values of these coordinates. Continuing in
this manner, taking the ith smallest and ith largest coor-
dinates, we can form rectangles R1, R2, . . . , Rn for both
left- and right-handed hitters, for some choice of n. (Once i
becomes large enough to exhaust all of the called strikes,
takeRi to be the empty set.) Let s(i) be the number of called
balls inside the two Ri’s. Define the n-rectangle inconsis-
tency index as

IRn =
s(1) + s(2) + · · · + s(n)

total number of called balls

The rectangles used to calculate IR10 are shown in
Figure 3. Versus left-handed batters, rectangle R1 is the
only rectangle containing called balls. However, versus
right-handed batters, R1 contains 13 called balls (as
above), R2 contains 11, R3 contains 7, R4 contains 1, and
the remaining rectangles contain none. Therefore,

IR10 =
(2 + 13) + (0 + 10) + (0 + 6) + (0 + 1)

110 ≈ 0.29.

Notice that, in this example, IR10 = IR9 = · · · = IR4,
illustrating that the value of this index eventually stabi-
lizes, given enough rectangles. In practice, 10 rectangles
is plenty for most MLB game data sets.

Since Ri+1 ⊆ Ri, inconsistent balls are weighted
according to how many rectangles they are contained in.
Balls that are inconsistent due to a single outlying strike
will only have weight 1, while egregiously bad ball calls
will lie inside several rectangles, increasing their contri-
bution to IRn. Therefore, compared to the one-rectangle
index, the n-rectangle index is less sensitive to a single
outlying strike call.

Furthermore, when several bad strike calls lie in the
same location, the n-rectangle indexwill reflect this incon-
sistency, since the successive rectangles will not shrink
until these strike calls are exhausted. In Figure 3, the
called balls around px = −0.6 are weighted more heav-
ily because of the strike at (−0.93, 2.94), in contrast to the
situation in Figure 2, where we saw that this strike had no
effect on the one-rectangle index.

2.2 Convex hull metrics

Since rectangles are used to construct the inconsistency
index IRn, it measures inconsistency under the assump-
tion (stipulated in the rules of baseball) that the true strike
zone is a rectangle. However, as we will see in Section 3,
strike zones in practice tend to be rounded at the corners.
In this section we will introduce inconsistency measures
that relax the assumption of a rectangular zone. Instead,
we assume that a consistent zone will have the property
that any pitch landing between two called strikes will also
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Figure 3: Successive rectangles enclose inconsistent balls. The more inconsistent called balls lie within more rectangles.
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be a called strike. In other words, we assume that the
established strike zone is convex.

Given a discrete set P ⊆ R2 representing the locations
of called strikes during a game, there is a natural geomet-
ric definition for the established strike zone, namely, the
convex hull of P. We can define the convex hull S as the
intersection of all closed half planes that contain P:

S =
⋂︁

{Hl |Hl∩P=∅}

Hc
l ,

where Hc
l denotes the complement of the open half-plane

bounded by the line l.
Using the convex hull as our established strike zone,

we can define the convex hull inconsistency index ICH
analogously to the one-rectangle inconsistency index.
Now an inconsistent ball is one that lies within the convex
hull of strikes, and ICH is given by

ICH =
number of inconsistent balls
total number of called balls .

For example, see Figure 4. There were five inconsis-
tent balls versus left-handed batters, and one versus right
handed batters, out of a total of 118 called balls. Therefore
ICH = (5 + 1)/118 ≈ 0.051.

Like the one-rectangle index, the convex hull incon-
sistency index can fail to account for multiple bad strikes
in the same location. It can also be unaffected by outly-
ing strikes, depending on their location. For example, in
Figure 4 versus right-handed batters, the strike at (−0.01,
1.31) has no effect on ICH; removing this pointwould shrink
the convex hull without changing the number of called
balls enclosed. However, this call seems inconsistent,

given its proximity to several called balls. The problem is
that a vertex of the convex hull can lie in a region pop-
ulated by called balls, yet fail to enclose any. Creating
smaller convex hulls inside the first (as we did to define
IRn) will not address this issue.

To account for this phenomenon, we can use the loca-
tions of called balls to define a called-ball region. Instead
of counting called balls within the established strike zone,
we canmeasure the area of the overlap between the called-
ball region and the convex hull of strikes.

Unlike the established strike zone, the called-ball
region will typically not be convex, or even simply con-
nected. Given a set Q ⊆ R2 representing the locations of
called balls during a game, and given some radius α > 0,
define

X =
⋂︁

{Bx,α |Bx,α∩P=∅}

Bc
x,α ,

where Bc
x,α denotes the complement in the plane of the

open disk of radius α centered at the point x. The region X,
which will serve as our called-ball region, is called the α-
convex hull ofQ (Pateiro-López andRodrıguez-Casal 2010).
Note that the α-convex hull is not convex, in general.

Let aL and aR be the areas of the intersection of
the convex hull of called strikes and the α-convex hull
of called balls, for left-handed and right-handed batters,
respectively. We define the α-convex hull inconsistency
index IACH to be a weighted average of these two areas.
Let nL be the number of called pitches thrown to left-
handed batters, and let nR be the number of called pitches
to right-handed batters. Then

IACH =
nLaL + nRaR

nL + nR
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Figure 4: The established strike zone is the convex hull of called strikes.



D.J. Hunter: Umpire metrics | 163

Figure 5 shows the ball and strike calls for the same
game as Figure 4, along with the α-convex hull of called
balls, using α = 0.7. In this case, IACH = 0.127. Notice that
the called strike at (−0.01, 1.31) nowhas a significant effect
on IACH , since it causes a large region of overlap between
the convex hull and the α-convex hull, which contains the
nearby called balls.

One limitation to this choice of inconsistency metric
is that there is no canonical choice for the constant α.
Figure 6 illustrates the issues involved. If the radius α is
too small, the α-convex hull will contain isolated points
and small disconnected regions. Large values of α (such
as α = 0.9 in this example) will produce a single, simply-
connected α-convex hull, making the called-ball region
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Figure 5: The established strike zone is the convex hull of called strikes (in red), and the called-ball region is the α-convex hull of balls (in
blue), where α = 0.7.
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Figure 6: Six different called-ball regions (α-convex hulls) for different choices of α.
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completely cover the established strike zone. Generally
speaking, the larger the value of α, the tougher the metric
IACH is on the umpires.

In the analysis that follows, we have chosen to use
α = 0.7, based largely on qualitative inspections of vari-
ous game examples, as in Figure 6. A correlation analysis
can lend some empirical support to this choice. Table 1
gives the pairwise correlations for IACH computed over all
2017 regular season games using six different values of α
between 0.4 and 0.9, in increments of 0.1. For these six
values, the greatest correlation is between α = 0.6 and
α = 0.7, and we observe that once α exceeds 0.7, the corre-
lations between adjacent values begin to decrease. These
results confirm the observation that choosing α in the
range0.6 ≤ α ≤ 0.7 tends to give similarmeasures of IACH .

2.3 Statistical properties of the
inconsistency metrics

All four inconsistency measures are sensitive to a single
outlying called strike, and the n-rectangle and α-convex
hull indices are sensitive to an egregiously bad called
ball in the middle of the strike zone. This sensitivity is
by design, to avoid penalizing umpires who make slightly
inconsistent calls as much as those who make clearly bad
calls. However, a consequence of this feature is that these
metrics are also sensitive to the number of pitches called.
As thenumber of calledpitches increases, the chances that
an umpire will make an egregious call increases, and once
such a call is made, the inconsistency index will remain
high.

Figure 7 investigates the association between num-
ber of pitches called and inconsistency index. The top
row shows scatter plots of the four indices versus num-
ber of pitches called in the game, for all regular-season
games with between 50 and 300 called pitches. (Only 2
of 2425 games in our sample fall outside this range.) For
each index, there is a slight discernible upward trend. The
correlation coefficient r is approximately 0.2 in all four
cases.

The smoothed density estimates in Figure 8 show that
the distributions of IR1, IR10, ICH , and IACH are all skewed
right. Such skewness may be a feature of the metrics,
or it may indicate that major league umpires are, on the
whole, very good at calling games consistently. To assess
sensitivity in the tails of these distributions, the second
row of scatter plots in Figure 7 considers only “high-
inconsistency games,” where IR10 + IACH > 0.3. For these
games, and for this range of pitches called, there does not
appear to be a strong association between the inconsis-
tencymeasures and the number of called pitches (|r| < 0.1
in all cases).

In this sectionwe have considered two simplemetrics,
IR1 and ICH , along with extensions IR10 and IACH , respec-
tively, which attempt to address deficiencies in the simple
metrics. Figure 8 shows that the tails of the distributions
of the extended metrics are substantially thicker, suggest-
ing that these metrics are better at differentiating between
higher levels of inconsistency.

The pairwise correlation coefficients for the four met-
rics are given in Table 2. The two extended metrics IR10
and IACH are correlated, but not very strongly, indicating
that theymeasure different aspects of inconsistency. Some
of the difference may be due to the shape of the strike
zone that an umpire tends to call. For example, among
the 79 umpires who called at least 20 games behind home
plate in 2017, Chad Whitson was the 17th most consistent
umpire when measured using IACH , but ranked 51st when
measured using IR10. The methods that we will present in
Section 3.1 reveal that Whitson’s zone tends to be quite
rounded at the corners, rather than rectangular, so it is
not surprising that he ranks higher when judged using the
convex hull metrics. By comparison, Pat Hoberg, whose
zone is somewhat less rounded, has the 6th best IR10, but
ranks 34th according to IACH . See Figure 9.

As a compromise, in some of our analysis, we use the
sum IR10 + IACH as a general measure of inconsistency.
Notice that IR10 typically takes larger values than IACH , so
the 10-rectangle metric is effectively weighted more than
the α-convex hull metric in this sum. Over all 2423 games,
the mean of the sum IR10 + IACH is 0.191 with standard
deviation 0.142, and its median is 0.156.

Table 1: Correlation matrix for IACH calculated with different values of α over all games in the 2017 season.

α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

α = 0.4 1.00 0.85 0.73 0.63 0.45 0.35
α = 0.5 1.00 0.91 0.79 0.60 0.46
α = 0.6 1.00 0.92 0.74 0.56
α = 0.7 1.00 0.82 0.62
α = 0.8 1.00 0.67
α = 0.9 1.00

Correlations between adjacent values are shown in italics.
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Figure 7: Scatterplots of the four inconsistency indices, IR1, IR10, ICH, and IACH, versus the number of called pitches in the game. The top row
shows the data for all games with between 50 and 300 called pitches, while the bottom row includes only games with high inconsistency
indices. The blue curves show the smoothed conditional means.
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Table 2: Correlation matrix for the four inconsistency indices.

IR1 IR10 ICH IACH
IR1 1.00 0.82 0.73 0.48
IR10 1.00 0.78 0.68
ICH 1.00 0.64
IACH 1.00
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Figure 9: Zone tendencies for Chad Whitson and Pat Hoberg. Whitson is more consistent according to IACH, while Hoberg is more consistent
according to IR10. The method for constructing these contours is discussed in Section 3.1.
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3 Zone accuracy
While consistency of ball and strike calls is an important
aspect of neutral officiating, it is also expected that home
plate umpires conform to established definitions andprac-
tices. The official rules of baseball (MLB 2018) define the
strike zone as “that area over home plate the upper limit of
which is a horizontal line at the midpoint between the top
of the shoulders and the top of the uniform pants, and the
lower level is a line at the hollow beneath the kneecap.”
It is often expedient to use the rectangular front of this
pentagonal prism as a two-dimensional approximation of
the rule book strike zone. The width of the front of home
plate is 17 inches, establishing the horizontal limits of this
rectangle. Our data has been normalized so that the ver-
tical limits go from 1.5 to 3.5 feet above the ground. Since
the rules also state that a pitch should be called a strike if
“any part of the ball passes through any part of the strike
zone,” we add one-half the width of a baseball to each of
these limits to obtain the rectangle with opposite corners
at (−0.8308, 1.3775) and (0.8308, 3.6225). This rectangle is
pictured in Figure 1.

As Figure 1 illustrates, the rectangular rule-book strike
zone differs from how the strike zone is officiated in actual
games. However, spray charts of called strikes are not
appropriate for estimating the borders of the called strike
zone, since they show only where called strikes are likely
to occur, which is biased according to where pitchers tend
to throw. For example, Figure 1 indicates that called strikes
occur less frequently on the inside corners than on the out-
side corners, but this effect could simply be a consequence
of pitchers’ reluctance to throw inside.

Using a grid of one-inch squares in the plane at the
front of the plate, (Roegele 2018) describes a consensus
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Figure 10: The smooth curves are the boundaries of the consensus zones computed using kernel density estimation. The shaded squares
show the result of computing the consensus zone using the discrete method of (Roegele 2018).

strike zone determined by the squares on this grid inwhich
pitches are more likely to be called strikes than balls. In
this section, we give amore accuratemethod for obtaining
the borders of the consensus strike zone using kernel den-
sity estimation (Venables and Ripley 2010). We can also
apply this technique to calls made by individual umpires,
giving ways to assess conformity and zone size.

3.1 Kernel density estimation

Let s(x, y) be the two-dimensional probability density
function describing the distribution of called strikes in
the plane. That is, s(x, y) gives the density of the prob-
ability that a called pitch will cross the plate at location
(x, y), given that the pitch is called a strike. In order to
describe the consensus zone, we would like to compute
the reverse conditional probability, that is, the probabil-
ity density f (x, y) that a called pitch will be called a strike,
given that it crosses that plate at location (x, y). Let ŝ(x, y)
be a two-dimensional kernel density estimate computed
on the (px, pz) coordinates of called strikes, and let ĉ(x, y)
be a two-dimensional kernel density estimate computed
on the coordinates of all called pitches. Then by Bayes’
theorem, an estimate for f (x, y) is given by

f̂ (x, y) =
p̂ · ŝ(x, y)
ĉ(x, y) ,

where p̂ is the proportion of called pitches that are strikes.
The 50% contour of f̂ (x, y) will then be the border of the
consensus zone.

Figure 10 shows the smooth contours produced using
this method, along with the discrete approximation of the
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Figure 11:Measured by symmetric difference with the consensus zone (in gray), Stu Scheurwater had the most conforming zone, while Rob
Drake’s zone was the least conforming.

methoddescribed in (Roegele 2018). In addition to improv-
ing the resolution of the zone boundary, the kernel den-
sity estimation method will work well for smaller sam-
ples of pitches. In particular, the kernel density estimation
method can produce 50% contours for each MLB umpire’s
calls over the course of a season, which can be used to
describe season-long tendencies.

For example, let X be the region in the plane bounded
by the 50% contour for a particular umpire, and let C
be the consensus zone described above. The symmetric
difference (X\C) ∪ (C\X) is the set of all points lying in
one zone and not in the other, and its area DS measures
the extent to which the umpire’s zone deviates from the
consensus zone. To illustrate the extent to which zones
can conform to the consensus zone, Figure 11 shows the
contour zones for the umpires with the greatest and least
values of DS for the 2017 season, along with the consensus
zone.

3.2 Contour-based zone accuracy and size

Given any pair of closed curves Zl ,Zr representing the
boundaries of strike zones versus left- and right-handed
batters, and any set of called pitches, let AZ denote the
proportion of correctly-called pitches, based on the strike
zonesZl andZr. LetCl andCr be the 2017 consensus zones
computed using the kernel density estimation method,
and let R = Rl = Rr be the rule-book rectangle described
above. For each MLB umpire who called at least 20 games
behind home plate in 2017, we compute the umpire’s con-
sensus accuracy AC and rule-book accuracy AR.

For each umpire, the individual contour zones yield a
convenientmeasure of an umpire’s zone size S. It has been
suggested (Roegele 2017) that accuracymeasurements can
function as a proxy for zone size, since inaccurate umpires
would tend to have larger strike zones. Our data and
measurements do not provide evidence for this assertion.

Figure 12 illustrates the associations between these two
measures of accuracy, AC and AR, along with zone size S.
The accuracy measures AC and AR are only moderately
correlated, and neither is strongly associated with zone
size S. The correlation between AC and S is even weaker
if the influential observation with the largest zone (Doug
Eddings) is removed.

4 Alternative umpire evaluations
Ball and strike calls have always been subject to the judg-
ment of the home plate umpire. While the MLB rule book
offers standards for the extent of the strike zone, Figures 1
and 10 illustrate that variations from the rule-book zone
are common, and probably widely accepted. Certainly,
it would represent a significant departure from current
norms if umpires (perhaps aided by technology) started
conforming their zones to the rule-book rectangle. Fur-
thermore, the zone as it is called today could very well
be the result of a consensus that has emerged over the
years between players and umpires. Therefore, a fair eval-
uation system for umpires should take history and current
accepted practice into account. In this sectionwe consider
how the measures of inconsistency and accuracy devel-
oped above can complement other measures of umpire
performance.

4.1 Correlation and outliers

Ideally, any new metric should evaluate phenomena that
previous metrics ignore, since strongly associated mea-
sures can yield redundant information. However, it is
reasonable to expect that the best umpires are the best
at several aspects of the job, so there are likely to be
associations among different performancemeasurements.
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Figure 12: Pairwise correlations of AC, AR, and S, for each full-time umpire over the 2017 season. The curves down the diagonal show the
distributions of each measure. The scatterplots in the bottom row indicate that measures of accuracy are not strongly associated with zone
size.

Figure 13 summarizes the pairwise correlation coefficients
for the above measures on all MLB umpires who called at
least 20 games behind the plate in the 2017 season. The
four inconsistency measures IR1, IR10, ICH and IACH have
been averaged over all the games called by each umpire.
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Figure 13: Pairwise correlations for season averages of IR1, IR10, ICH,
IACH, along with AC, AR, DS, S, rW , rK, for MLB umpires with at least
20 games called in 2017.

Notice that these inconsistency indices are correlated pos-
itively with each other and negatively with the two accu-
racy measures AC and AR. The other measures consid-
ered, symmetric-difference nonconformityDS, zone size S,
walk rate rW, and strikeout rate rK, generally do not show
strong associations with the inconsistency and accuracy
measures.

The association between accuracy and inconsistency
is not surprising, but it is not strong. In particular, for
these umpires, average IR10 + IACH and AC have a correla-
tion coefficient of r = −0.58. The scatterplot in Figure 14
illustrates the negative relationship between consen-
sus zone accuracy AC and season-average inconsistency,
measured as the sum IR10 + IACH of the 10-rectangle and
α-convex hull indices. Notable in this graph are the out-
liers. For example, Carlos Torres, Tim Timmons, and Cory
Blaser stand out has having above-average consistency
but only average accuracy, suggesting that they would be
underrated if evaluated on the basis of accuracy alone.

4.2 Principal component analysis

Any single rating system for umpires can produce a rank-
ing of umpires. When combining several different metrics
for umpire performance, we can organize the information
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Figure 14: Scatterplot of consensus accuracy AC versus average inconsistency IR10 + IACH.
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Table 3: Principal component analysis for four measures of inconsistency, two measures of accuracy, zone size, and walk and strikeout rate.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

IR1 −0.45 0.08 −0.06 −0.09 0.05 −0.24 0.44 0.38 −0.62
IR10 −0.46 0.06 −0.05 0.05 −0.02 −0.29 0.04 0.40 0.73
ICH −0.44 0.10 −0.14 0.08 0.07 0.00 0.36 −0.79 0.12
IACH −0.35 −0.15 −0.28 0.63 0.21 0.15 −0.52 0.04 −0.20
AR 0.33 0.26 −0.38 0.49 −0.14 0.32 0.51 0.20 0.11
AC 0.37 −0.24 −0.08 0.33 0.20 −0.79 0.11 −0.13 −0.01
S −0.02 0.60 −0.04 0.10 −0.62 −0.33 −0.32 −0.12 −0.14
rW −0.01 −0.49 −0.69 −0.31 −0.43 −0.03 −0.04 −0.03 −0.01
rK 0.13 0.48 −0.52 −0.36 0.56 −0.07 −0.18 0.01 0.02

that accounts formost of the variation betweenumpires by
examining principal components.

Table 3 shows the coefficients for a principal com-
ponent analysis (Mardia, Kent, and Bibby 1980) of the
season-average inconsistency indices IR1, IR10, ICH , IACH ,
alongwith consensus accuracyAC, rule book accuracyAR,
zone size S, walk rate rW, and strikeout rate rK, each nor-
malized to have unit variance. The first two components,
PC1 and PC2, account for 68% of the variation in the data.
Component PC1 is dominated by the accuracy measures
(positive) and inconsistency measures (negative), so it
seems appropriate to designate it as “strike zone quality.”
Meanwhile, component PC2 is dominated by walk rate
(negative) and strikeout rate and zone size (positive), so
this component measures “pitcher friendliness.”

The principal components provide a way to sum-
marize the various umpire evaluations developed above.
Using the coefficients in each column of Table 3 to form
linear combinations of the normalized metrics, we obtain
component scores for each umpire. Figure 15 is a scatter
plot of the component scores for the first two principal
components, PC1 and PC2, labeled by umpire. The most
consistent and accurate umpires are those furthest right,
while themost neutral arbiters between pitcher and batter
are found along the horizontal axis.

5 Conclusions and discussion
The above results illustrate how geometric inconsistency
metrics can capture qualities of home plate umpiring not
assessed entirely by accuracy, even when measured prob-
abilistically by AC. We have also shown how the bor-
ders of the consensus zone and individual umpire zones
can be computed using kernel density estimation, provid-
ing efficient methods for comparing umpire tendencies.
Suchmetrics can inform the current debate on the efficacy
of human umpires.

While the evidence suggests that MLB umpires
are generally quite accurate and consistent, current
technology is capable of providing real-time information
that would take ball and strike calls out of the hands of
umpires and standardize the called strike zone to the rule
book rectangle. Doing so, however, would be a signifi-
cant departure from current practice, andwould eliminate
facets of the game that arguably contribute to its appeal.

For example, teams value catchers who excel at fram-
ing pitches to make them appear as strikes. It is possible
that good pitch framers cause umpires to be more incon-
sistent within a game (Fast 2011a). In addition, accurate
pitchers who consistently throw to their catcher’s target,
even beyond themargins of the zone, can receive favorable
strike calls. In such ways, human variation in strike call-
ing influences the way baseball is played, so strike zone
analysis can yield insight into aspects of the game beyond
umpire performance.

Much of the inconsistency and inaccuracy that we are
able to measure could be due to game circumstances. For
example, (Walsh 2010) and (Carruth 2012) use the dis-
crete grid method to demonstrate that the called strike
zone tends to be larger on 3-0 counts than on 0-2 counts.
Other factors, such as the age and experience of the pitcher
(Turkenkopf 2008) can influence umpire zones. Presum-
ably, such tendencies vary from umpire to umpire, and
could be studied using the tools presented here.

Questions for future investigation include the
following.
– Are certain pitch types harder to call consistently?
– What factors contribute to an umpire’s strikeout rate?

Do more consistent umpires show less variability
before and after two strikes have been called on the
hitter?

– How do umpire ratings correlate to an umpire’s public
profile, as measured by press and social media men-
tions? Are the best umpires those you have never
heard of?
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Figure 15: Plot of the first two principal components. The component on the horizontal axis is dominated by accuracy and consistency, des-
ignated as “strike zone quality,” where the average quality score is zero. The vertical axis component is dominated by walk rate (negative)
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– What has been the effect of the Zone Evaluation sys-
tem? Have umpires improved in some aspects but not
in others? Do the age and years ofmajor league service
influence how the strike zone is called?

– Pitch-tracking data has been shown to be noisy
(Schifman 2018) (Fast 2011b). In particular, the top
and bottom of the zone are estimated by the opera-
tor of the pitch-tracking system, based on each bat-
ter’s stance. Can inconsistency measures be adapted
to assess these variations?Can left/right inconsistency
be separated from up/down inconsistency?

– The α-convex hull and the n-rectangle indices
both generalize to higher dimensions, and the
three-dimensional path of a pitch can be approx-
imated using pitch-tracking data. Implement a
three-dimensional inconsistency index.

– Are there analogous situations (e.g. in manufactur-
ing), where a geometric measure of inconsistency
could be applied?

For reproducibility, data and R code used for the
analysis and figures in this paper are available at
https://github.com/djhunter/inconsistency.

Acknowledgment: The author thanks the anonymous ref-
erees for many helpful and constructive comments.
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