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Abstract: We present a one parameter family of ratings
and rankings that includes the Markov method, as well as
the methods of Colley and Massey as particular cases. The
rankings are based on a natural network diffusion process
that unites the methodologies above in a common frame-
work and brings strong intuition to how and why they
differ. We also explore the behavior of the ranking family
using both real and simulated data.
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1 Introduction

Ranking items based on objective criteria is a natural prob-
lem with a rich history of diverse applications (Kendall and
Smith 1940; Langville and Meyer 2012). A particular appli-
cation that has garnered much attention is the ranking
of teams or players in sports. The nature of some sports,
like NCAA football and basketball, with a small season
of games relative to the number of teams involved, poses
interesting challenges with respect to rankings. In these
so-called uneven paired competitions, we are charged
with ranking teams, often without the benefit of head-to-
head results or even common opponents between teams.
Running the gamut in a weak conference, for instance,
is arguably less indicative of an exceptional team than is
a season with only a few losses in an elite conference.
Naturally, mathematical approaches to the ranking prob-
lem have been developed and adopted in various contexts
(Stefani 2011).

Our focus is three of the most well-known and
widely studied ranking methodologies in sports: Massey’s
method (Massey 1997), Colley’s method (Colley 2002), and
the Markov method. The methods of Massey and Col-
ley were both ingredients in the BCS rankings in college
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football, while the Markov method serves as the founda-
tion for Google’s PageRank algorithm.

While the similarities between the methods — espe-
cially those of Colley and Massey — have been extensively
noted, less has been written about why these approaches,
each with their own distinct motivations, result in such
similar linear systems. Since the ranking problem is a fun-
damentally unsupervised one — there is no ground truth
against which to evaluate outcomes — a sound intuition
for how methods are similar and how they differ is espe-
cially important in comparing results and choosing an
approach to a particular application. One important tool
that is widely used in comparing ranking methods is based
on an axiomatic approach. Here, desirable properties of
a ranking methodology are laid out explicitly as axioms,
and proposed methodologies are compared with respect to
how they satisfy or violate these axioms. Many of the rank-
ing methods we discuss here are explored in this way in
Gonzalez-Diaz, Hendrickx, and Lohmann (2014) and Vaziri
et al. (2018).

In this paper we present an intuitive, unifying frame-
work in which to understand the ranking methods of Col-
ley, Massey, and Markov. Our entry point is a simple diffu-
sion process on a network. Using this process we define
a family of rankings that depends on a single, natural
parameter, and show that this family effectively interpo-
lates between the methodologies above. This helps bring
insight to how each of the methodologies processes input
information, and clarifies the underlying similarities and
differences. Moreover, the family of methods defined pro-
vides context and intuition for choosing a ranking method-
ology based on objective a priori criteria rather than simply
the observed result of the rankings themselves. We also
explore the resulting rankings and the extent to which they
agree and disagree with detailed examples on both real
and simulated data.

2 Ranking methods

2.1 Massey

Massey’s method was introduced by Kenneth Massey in
Massey (1997). The method is based on the premise that
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the difference in two teams’ ranks should predict the point
differential in a game between those teams. If we wish to
rank n teams involved in m games, we get a linear system,

Xr =y, @)

where r is the desired rating vector in R", and y is a vec-
tor of point differentials whereby the k-th component of y
is the true point difference in game k. The only nonzero
entries in the k-th row of X are a 1 in the column of the
winning team, i, and a -1in the column of the losing team, j.
Thematrix Xism  n. Since mis larger than n in practice,
the system will almost always be inconsistent and Massey
proceeds via the usual least-squares approach:

XTxr = xTy. )

LetM = X"Xandletp = X"y. If n;is the number of games
between teams i and j and N; is the total number of games
played by team i, then the matrix M has the following form:

nj; lfl&]

M;; = )
TOON ifi=j

G

The vector p gives the aggregate point differential over all
games for each team. Massey’s system,

Mr = p, (4)

however, is rank deficient (the rows of M all sum to 0). As
a final fix, Massey replaces the last row of M with a row of
ones, and similarly replaces the last entry of p with 0. This
forces the ratings to sum to zero and gives the modified sys-
tem, M’r = p’, a unique solution. We note that the same
end can be achieved by simply augmenting the Massey
system in (4) to the block system

PN (5)

thus forcing the ratings to sum to zero in the same way.
If point differentials are unknown or unwanted (as was
the case in the BCS ranking that prohibited the use of
point information), a vector based on wins and losses can
be substituted for the point differential vector p in (4).
Making this substitution also facilitates comparisons with
methodologies that do not use score information as we
will see below. We also note that this version of Massey’s
method with wins and losses in place of point differentials
has a long history that predates Massey’s approach and is
commonly referred to as the least squares ranking method.
See, for instance, the work of Horst (1932); Mosteller (1951),
and for more recent work, Csat6 (2015).
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One note on notation moving forward: We distinguish
between the rating vector r, which assigns a numerical
value to each team, and the resulting ranking, a permu-
tation of 1, 2, ... n, that r determines. For a ranking, we
specify that team team j is ranked above team i, and write
i jwheneverr; 1. If the context is clear, we can refer
to the ranking r as the ranking determined by the rating
vector r.

2.2 Colley

Colley’s method is introduced in Colley (2002). Colley uses
a modified winning percentage of the form 12::}’\,'/' for each
team i, where W; is the number of wins for team i and
N; is (as above) the total number of games played by i.
Each team begins the season with a rating of %, and while
the Colley ratings will change as games are played, they
will hover around an average value of % Colley’s choice
of this win-percentage proxy is based on Laplace’s rule of
succession and a particular assumption on the probability
density of ratings (Colley 2002). The method then updates
the modified win percentage based on the ratings of the
opposing teams played, and defines the vector r to be the
solution to the linear system

Cr=h, (6)
with
«
n;i if i
i = it @
2+N; ifi=j

andb; =1+ M where L; is the number of losses for
team i. The fact that a unique rating vector r exists follows
immediately from the fact that C is diagonally dominant
and hence invertible [see, for instance, Meyer (2000)].

Note that despite their different motivations, Colley
and Massey arrive at remarkably similar matrices. Letting
I be then n identity matrix, we have C = 21 + M, an
identity we return to below.

2.3 Markov

Markov chain methods are highly adaptable and find a
wide range of applications (Von Hilgers and Langville
2006). For ranking, one of the most well-known applica-
tions is the Google PageRank algorithm (Brin and Page
1998). Markov based methods are often tailored to a vari-
ety of applications in sports, including work in Kvam and
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Sokol (2006); Mattingly and Murphy (2010); Callaghan
et al. (2007). We consider an implementation of a Markov
ranking that is particularly natural in the context of
ranking teams.

Let each team be represented by a node in a network
with edges between teams that play one another. Let w;
be the number of wins for team i against team j when
i & j, and let W; be the total number of wins for team i.
Define a random walk on the nodes (teams) of the network
where the walker moves from team j to team i with prob-
ability proportional to the number of times that i beat j,
and stays put at team i with probability proportional to the
total number of wins accumulated by team i. Then n
transition matrix T for this walk is given by:

8
T..:<WW3’ ifi & j
AR TTESE

N; =J

The Markov rating r is a stable solution to Tr = r. That is,
r is an eigenvector of T corresponding to the eigenvalue
A = 1. The vector r can be interpreted as giving the long-
term probability that the walker is at each node in the
network. Since T is column stochastic, such a nonzero pos-
itive eigenvector is guaranteed to exist under mild assump-
tions. For instance, we cannot have a winless team (a row
of zeros in T), or two groups of teams where one group
always beats the teams in the other. Those familiar with
the PageRank algorithm will recognize these problems and
recall that they can be remedied by repairing dangling
nodes and using a teleportation matrix, but for simplicity
we will consider only the case where T is irreducible.
If we let

Wij lfl&]

Gij e (8)

w; ifi=j

and introduce the diagonal matrix
2 3
Ny
N,

N = . ’ (9)

Nn

1

then the Markov rating satisfies GN ‘r = r, or equiva-

lently,
(N G)N 'r=o. (10)
The matrix N G has the form:
wy ifi6&j
N Gy= . (11)
L; ifi =j
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where L; is the number of losses for team i. In order to com-
pare teams having potentially played different numbers of
games, we normalize r by the number of games played,
and take the vector v = N !r as the rating vector. This
replaces the fraction of time spent at i, with the fraction
of time spent at i per edge of i, a value that can be readily
compared across nodes. Equation (10) then becomes

(N Gwv=Do. (12)

3 Diffusion

3.1 Graph diffusion |

Building on the notation in Section 2.3, suppose the nodes
of an undirected network have been labeled from 1 to N.
Following Newman (2010), we define a discretized diffu-
sion process on the network as follows. Suppose that a
fixed quantity of a substance that we call rank, thought
of as a gas or liquid, is distributed over the nodes of the
network. At each time step, we allow a quantity of rank to
move along the network’s edges. We dictate the physics of
the system so that rank flows from higher pressure nodes
to lower pressure nodes. In one time step, therefore, we
specify that the quantity of rank flowing from node j to
node i is proportional to the difference in the rank at those
nodes. Let v' be the vector whose i-th component v} is
the quantity of rank at node i at time t. It follows that in
one time step the change in rank at vertex i is given by
summing over all vertices:

t > t
AVi = kA ij (V}
j

vi), (13)

where kis called the diffusion constant, and Aj; is the entry
in the i-th row, j-th column of the adjacency matrix, indi-
cating whether or not there is an edge between i and j that
would allow rank to flow. Expanding the sum we can write:

t =< t ¢
Avi =k (Aijvj) kVi Aij (14)
>]< t t}
=k (Aijvj) kdivl- (15)
>]( ¢ t
=k (Aijvj 6,'jdjV]-), (16)
j
where §;; is the Kronecker delta,
(O ifi&j
if i
§i= o7, (a7)
1 ifi=j
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P
andd; = Aj is the degree of vertex i.
Asking that the long-term net change in rank be zero
for all nodes, Equation (16) leads to the matrix equation

(D Awv=o0, (18)

where D is the diagonal matrix whose i-th diagonal entry
is the degree of node i, and v is called a stable solution (or
equilibrium). The matrix (D  A) is the well-known graph
Laplacian (Cvetkovic, Doob, and Sachs 1980). The continu-
ous version of (16) yields a differential equation governing
the rate of flow between nodes of the network, which is
solvable in closed form in terms of the eigenvalues of the
Laplacian.

3.2 Graph diffusion Il and the Markov
ranking

Next consider a variant of the above diffusion process
where the network is weighted and directed. Assume that
for i & j the fraction of rank-flow from vertex j to vertex
i is proportional to given weights b;;. The total weighted
degree of vertex i, or total flow through i, is given by

din (i) + dout(i) = Nj, (19)
where
X
din(i) = bjj, and
*
dout(d) = bki~
k

Finally, we specify that rank that does not flow out of
vertex i stays at i, and set B; = di,(i). A stable solution to
this diffusion process is then a rating vector r such that the
total flow into vertex i is equal to the flow out of i. Thus, for
eachi,

Xby _ N B

—r. =
j
N;

N]‘ ri. (20)

j
If we let B be the weighted adjacency matrix with (i, j)-
entry equal to b; fori & jand B; fori = j, and let N be the
diagonal matrix with N; on the diagonal in the i-th row,

the system of equations defined by (20) gives the matrix
equation:
(N BN 'r=o. 1)

The matrix (N B) is a weighted version of the graph
Laplacian of (18) on the directed network, and (21) again
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asks that the net change in rank be zero at all vertices.
Settingv = N lr, we write (21) as

(N B)v=o0. (22)

Note that (21) and (22) take precisely the same form
as (10) and (12). The Markov ranking, therefore, especially
the form in (12), is equivalent to a diffusion process on the
connection network of teams. This equivalence between a
random walk (Markov process) and a diffusion process is
well known (Newman 2010). Here, the fraction of flow into
team i from team j is given by the number of wins i has
against j, and the flow out of i is given by the total num-
ber of losses. Equation (12) asks that the net flow through
all vertices be zero. Also note that the net-flow-zero solu-
tion is given, as in (18), by a vector in the nullspace of the
associated graph Laplacian.

3.3 Aone parameter ranking family

Given the equivalence of the Markov rating of (12) and the
diffusion process of (22), we define a family of rankings
that depends on a single parameter and has a natural inter-
pretation as a diffusion process. Suppose there are n teams
to rank, and define win and loss matrices

w; ifi6&j
Wi = v ] (23)
L; ifi=j
and
I ifi6j
Lj= v ],, (24)
w; ifi=j

where w;; and I are, respectively, the number of wins and
losses for team i against team j, and W; and L; are the total
number of wins and losses for team i. For p a parameter

withO p 1, define
Sy =W+ pL, (25)
and take
2 3
W, L
w, L,
s = . . (26)
Wn Ln

We begin by trying to define a rating vector v, as a solution
to

ZpX = ps. @7)
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When p = 0, note that we get precisely the Markov equa-
tion in (12), or equivalently, the net-flow-zero equation of
(22). Requiring that x = v be a probability vector, there-
fore, recovers the Markov rating when p = 0.

Also note that for p > 0, any rating vector satisfying
(27) will be a scalar multiple of a rating vector satisfying
Zpx = s. From the perspective of the underlying ranking
problem, therefore, we can define

(O if 0
1 =
S'p = p . (28)
s ifp>0
and rewrite (27) as
Lpx = §'p. (29)

Finally, note that when p > 0 the columns of .Z,, are
still linearly dependent, so a constraint is still required
to identify a rating vector. While the particular constraint
choosen is irrelevant from the perspective of the resulting
ranking, we follow the common convention [and the one
used in (5)] that the rankings sum to O:

(30)

Thus, taking X = v, to be the rating vector solving (30),
and letting .Z; and sp be, respectively, the augmented
matrix and right-hand-side in (30), the rating equation can
be more succinctly written as
L vp = sp. €3]
For p > 0, the system (31) is still interpreted using the
diffusion paradigm of Section 3.2. As before, the (i, j)-entry
of the matrix .#) represents the flow from j to i [compare
with the left hand side of (22)]. Now, however, the flow
is not determined solely by wins for i versus j. Indeed,
in this more generous process even losses to team j con-
tribute some flow to team i as regulated by the parameter
p. Thus, increasing p from 0 moves the diffusion process
away from a pure meritocracy, toward a ranking where
teams get some credit for simply playing against other
teams, and especially for playing against other good teams
(with high rankings). As p grows we weaken the impor-
tance of the result of the interaction between teams from
the perspective of rank flow. To compensate, we introduce
a measure of overall team success based on aggregate out-
comes and represented by the vector s, on the right hand
side of (31). Continuing the diffusion analogy, the vector sp
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represents an external infusion of rank (possibly negative)
at each vertex i.

The particular choice for the infusion of rank here
is a win percentage proxy given by wins minus losses,
though there is no reason why other choices could not
be made. (Massey’s original method, for example, uses
cumulative point differential and would be a natural
choice.) The rank infusion vector can be considered an
external success metric in that it is not network depen-
dent: two teams with the same record will get the same
infusion regardless of which teams they played. The net-
work dependent rank-flow update to s, is given by the
left-hand-side of (31). With this s, note that the rank-
ings obtained by solving .Zyx = 0 in the Markov method
are the same as the rankings from solving Zox ='s
(though the ratings are different). This is specific, how-
ever, to this particular choice of s and wouldn’t hold
for other infusion vectors like Massey’s point differential.
The choice of infusion used here will clarify the connec-
tion with Colley’s and Massey’s methods as seen below,
while still giving a continuous family of ratings. Finally,
we also note that the ranking problem as described here
bears a strong resemblance to problems of current flow
on electrical networks as described in Doyle and Snell
(2000).

4 Connections

The connection between the diffusion ranking withp = 0,
£y, and the Markov ranking is already established. Now
take p = 1 and consider the diffusion ranking
&, 1+ Vi = Sq. (32)
With flow from losses turned fully on, a win and a loss are
of equal value with respect to rank-flow. Thus, the head-
to-head results of games are relevant only in that they
occurred, and provide a strength-of-schedule update to
the rank-infusion vector s; as determined by the team’s
overall aggregate record. Furthermore, note that .#;
The rank-diffusion Laplacian .#; is precisely the Massey
matrix M in (3). On the other hand, the right-hand-side vec-
tor s; is related to the Colley right-hand-side b from (6) by
1+3% =h.
As noted earlier, the Colley matrix C satisfies
C = 21 + M, where M is the Massey matrix. The Colley
rating r in (6) can thus be written

QI+Mr=1+ %1 (33)
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or in our new notation

QI+ A)r=1+ 52; (34)
Leaving behind Colley’s original motivation, the 2T on
the left hand side of (33) and the 1 on the right serve the
two-fold purpose of making the Colley matrix invertible
and normalizing the ratings so that they have an aver-
age value of % From the perspective of the diffusion pro-
cess, however, this might feel somewhat artificial. The Col-
ley method increases the rate of flow by adding two vir-
tual games to each team, and then adjusts with a uniform
infusion of 1 on the right-hand-side. But this normaliza-
tion could be accomplished equally well with any other
number of virtual games. The equation
S1
QkI+ My =k + 5 (35)
also gives a rating where the average value is % for any non-
zero real number k. In general, using (bl + M)Y' = a + s,
gives a rating with average value %. Thus, we can think
of the Colley method as determining a family of ratings
and rankings determined by the choice of k in (35), all of
which produce ratings that hover around the average value
%. The number of virtual games one uses to achieve the
desired average rating, aside from being a somewhat arbi-
trary choice, is also nontrivial: Different values of k yield
different (though similar) rankings, as we show below.

A natural choice in light of the diffusion interpretation
would be to not manipulate the rank-flow at all, and let
k = 0. Doing so (and dropping the %) brings us back to
(31):

$1+V1 = S1. (36)

It is worth making note of another interpretation for
Colley’s method. Though not part of his original presenta-
tion, Colley’s rating can be recast as a regularized regres-
sion by applying a ridge penalty to the Massey matrix X in
(1). See Glickman and Stern (2017) for details. The param-
eter that controls the regularization penalty here is the 2
on the left hand side of (33), though usually this parame-
ter is chosen in a more rigorous way via cross validation.
We address validation of both the choices of k in (35) and
p in (31) below.

The modified Colley (m-Colley) method of (36) with
k = 0, and the Massey method, differ only in their choice
of normalization of the ranking vector, and their choice
of the right-hand-side. Obviously the choice of the right-
hand-side infusion vector is a fundamental one. If for
purposes of comparison, however, we choose the same
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right-hand-side s; from (26) then the methods are, in fact,
identical.

One can also consider the so-called Colleyized Massey
(C-Massey) method where the Colley right hand side is
used in place of point-differentials along with Massey’s
Matrix (Langville and Meyer 2012). In light of the dis-
cussion above, one might prefer to use s;, the m-Colley
right-hand-side (taking k = 0) for the infusion vector.

In the notation of (32) this can all be summarized as
follows:

m-Colley,—, : 2, Vi = s (37)
C-Massey: .Z;'vy = 1+ %1 (38)
Markov: %vo = so (39)
General : %, vp = sp, (40)

where we consider the +1 on the right hand side of (38)
as optional depending on the form of Colley’s method you
choose to consider.

5 Examples

In order to explore the behavior of the .%," v, = s, family
of rankings, we consider the example of a perfect season
marred by a dramatic upset as in Chartier et al. (2011).
Imagine a league consisting of n teams labeled 1 to n,
where each team plays every other team exactly once.
Further assume that each team defeats all others with a
higher label than their own. Team one, therefore, is unde-
feated, team two loses to team one and defeats teams three
through n, etc. Finally, team n is winless. The ranking of
teams in this context is uncontroversial across methods
(though the particular rating vectors are of interest) and is
discussed in Chartier et al. (2011) (In particular, the Markov
method needs an adjustment to produce a rating here).
Now change the result of the contest between team 1 and
team n by allowing team n to upset team 1. It is worth a
moment’s consideration as to how you would expect (or
want) the rankings to change in order to reflect this result.

We show the results for n = 100 teams in Figure 1 with
p running from 0 to 1in steps of 0.10. In this case, the orig-
inal Colley method (not pictured) of (6) results in a change
in ranking for the first two and last two teams, respec-
tively. The no-longer undefeated team drops into a tie for
first place with the formerly second ranked team while the
formerly winless team now rises into a tie with the for-
merly penultimate team. Similarly the m-Colley (k = 0)
method (or Colleyized-Massey method) also results in a tie
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Figure 1: Rankings in a perfect season with maximal worst-beats-
best upset. Each team is represented by a fixed color, and it’s rank
is plotted across values of p ranging from p = 0 (Markov)top = 1
(m-Colley/Massey).

between both the top two and bottom two teams. This is
consistent with the intuition developed above. Since Col-
ley and Massey (without point differentials in the RHS)
only consider game outcomes in the aggregate of wins and
losses, and otherwise inform ratings using who-played-
whom strength of schedule (losses are turned fully on in
the diffusion), the top two teams (resp. bottom two teams)
have the same record and the same schedule, so there is
no other basis by which to differentiate them. A more rig-
orous explanation for this would invoke Proposition 5.3 of
Gonzalez-Diaz et al. (2014), and note that since the p=1
ranker satisfies the score consistency axiom of agreeing
with the ranking from winning percentages on round robin
tournaments, the resulting ranking must follow.

By contrast, the Markov method results in the for-
merly winless team rising all the way to 11th, with all
teams formerly ranked 11 or below dropping one place to
accommodate the change. The example also clearly shows
that the behavior of Markov and Colley/Massey reflect the
respective extremes of a continuum of results parameter-
ized by p and given by the appropriate rating of (31). As
p increases from zero (Markov), the formerly last ranked
team, having upset the top team, drops quickly in the rank-
ings. By p = 0.20 it has dropped from 11th (p = 0) to 90th.
This raises an interesting and debatable question of how
much the bottom team should be rewarded for an upset
of this magnitude. While stability of a ranking methodol-
ogy is indeed attractive, there is a philosophical appeal to
rewarding teams for beating the best opponents, at least
to some extent. See, for example, property 1in Vaziri et al.
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(2018). Intermediate values of p allow for a measure of
compromise. We consider a more principled approach for
choosing p by optimizing the prediction accuracy of the
ratings below.

The properties of the rating vectors as they pertain to
the stability of the actual rankings in the three methods
was discussed in detail in Chartier et al. (2011). In particu-
lar, while the Massey and Colley methods produce ratings
in the perfect season that are equally spaced and highly
stable, the Markov rating vector is highly non-uniform in
it’s distribution of values (and hence far less stable in the
face of perturbations). In Figure 2 we show that these prop-
erties also represent extremes in a continuum of behav-
iors, with ratings becoming more and more evenly spaced
as p increases from 0 until we arrive at the uniform spacing
ofp =1.

We also include a sample of the rankings for the 2016-
2017 NCAA basketball season according to each of the fam-
ily of rankings in (40), again with p running from 0 to
1 in steps of 0.10. In keeping with the results of Chartier
etal. (2011), one again sees that the most dramatic changes
occur as one moves from p = 0 (no rank-flow from losses)
to positive values of p (flow from losses turned on but
weighted by p).

It is interesting to note that Gonzaga is ranked first
by the Markov method. The Zags were 37-1 on the sea-
son and lost in the National Championship game (to North
Carolina). Because Gonzaga plays nearly half their games
in the mid-tier West Coast Conference, they suffer in rank-
ing methodologies where strength of schedule becomes
more important (larger p), and end up ranked below teams
like Villanova, Kansas, Arizona, Duke, North Carolina,
and Kentucky, all of which play in elite conferences. We
also include BYU, who provided the Zags with their only
regular season loss, in the Table 1. Not surprisingly BYU
fairs considerably better in rankings that weigh wins more
than losses (smaller p). BYU is technically a tournament
worthy team (top 64) for p < 0.40, but not for any larger
value of p.

The last two rows of the table are the teams with
the greatest difference in ranking (negative and positive)
betweenp = 0 and p = 1. Indiana State, for example, had
an early season upset win against sixteenth ranked But-
ler that serves them well in the Markov method. That win,
however, loses its influence as the right-hand-side infu-
sion vector increases the importance of their 10-20 record
(against D1 opponents) on the season. By contrast, Lib-
erty’s ranking improves as their 18-14 (against D1 oppo-
nents) record gets more weight despite lacking any signa-
ture wins on the season. Neither team played a particularly
strong schedule.
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Figure 2: Values of the rating vector for given values of the parameter p in Equation (40), and applied to the perfect season with upset.

Table 1: Sample rankings for 20162017 men’s NCAA division one college basketball.

Team p

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
Gonzaga 1 2 3 3 3 4 5 6 7 7 7
Villanova 2 1 1 1 1 1 1 1 1 1 1
Kansas 3 3 2 2 2 2 2 2 2 2 2
Butler 4 4 7 9 9 11 12 12 13 14 14
Arizona 5 5 4 4 5 5 4 4 4 4 4
UCLA 6 6 8 8 8 8 8 8 9 10 10
Duke 7 7 5 5 7 7 7 7 6 6 6
North Carolina 8 8 6 6 6 6 6 5 5 5 5
Oregon 9 10 11 10 10 9 9 9 8 8 8
Baylor 10 12 12 11 12 12 11 11 11 11 11
Louisville 14 13 13 13 11 10 10 10 10 9 9
Kentucky 15 9 9 7 4 3 3 3 3 3 3
BYU 26 54 59 62 64 65 68 68 68 68 69
Indiana State 74 143 189 207 212 218 219 219 219 220 220
Liberty 263 221 208 203 195 189 185 182 181 178 175

6 Effect of virtual games

We briefly explore the effect of adding virtual games via
the choice of k in (35).

Figure 3 (left panel) shows the effect of varying k on
the rankings of the top twenty teams (as determined with
k = 0) in the 16-17 D-1 college basketball season. The right
panel shows a scatter plot of each team’s rank using k = 0
and k = 1 for each of the 351 NCAA D-1 teams. All rating
vectors have an average value of 0.50. While the rankings
are clearly similar, there is a nontrivial effect due to the
addition of the virtual games.

Figure 4 gives scatter plots for both the win percent-
age, and the number of games, respectively, versus the
difference in rankings with k = 0 and k = 1, again for
each of the 351 D-1 teams. The correlation between differ-
ence in rank and wins is r = 0.39, significant at the 0.001
level, while the correlation between difference in rank and
games played is r = 0.13, significant only at the 0.05
level, and not below. The intuition here is that the intro-
duction of virtual games in the original Colley method has
the effect of a slight watering down of the importance of
team record. By choosing k = 0, we effectively increase the
importance of win-loss record as indicated by the stronger
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Figure 3: Left: Rankings for 20 teams as k increases from 0 to 1. Right: Scatter plot of k = 0 ranking versus k = 1ranking for all 351 NCAA

D-1teams.
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Figure 4: Left: Scatter plot of rank-difference (k = 0 rank minus k = 1rank) versus team winning percentage (WP) for all 351 teams. Right:

Scatter plot of rank-difference versus games played.

correlation with wins and positive rank difference in the
left panel of Figure 4.

7 Validation

In this section we consider the values of the parameters
k in (35) and p in (40) using ten-fold cross validation. We
take data from the last 33 NCAA DI college basketball sea-
sons (1985-2017), and in each case, divide the season into
ten approximately equal sized sets of games. We hold out
one fold as a test set, and train the team rankings with
game results from the remaining nine folds. Once rank-
ings are obtained, we create predictions for the games in
the test set. Creating game predictions from ratings and
rankings is itself a broad subject of considerable interest,

but for our purposes we use the simplest possible method
and predict the higher ranked team regardless of any other
information like home or away status. This process is then
repeated so that each of the folds is used as the test set
once. Test set prediction accuracy for a season is recorded
as the average of the prediction accuracies on each of the
ten test sets.

Figure 5 shows the mean prediction accuracy for each
value of k between k = 0 (m-Colley), and the traditional
Colley method with k = 1. Each point represents the aver-
age of the test set prediction accuracies over the past 33
seasons of NCAA Division I basketball. While the values
are certainly similar, there is a clear pattern of decreasing
accuracy with larger values of k. Along with the diffusion
intuition discussed above, and the results of Section 6,
this provides compelling evidence for k = 0 as a natural
choice in (35).
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Figure 5: Mean prediction accuracy for values of k. Each point is the
mean of the test set prediction accuracy over the last 33 seasons of
NCAA DI college basketball. The original Colley method (k = 1) is
labeled C.
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Figure 6: Mean prediction accuracy for values of p. Each point is the
mean test prediction accuracy over the last 33 seasons of NCAA DI
college basketball. The original Colley method is labeled C.

Moving to the choice of p, we employ the same cross
validation strategy, with results shown in Figure 6. The
mean prediction accuracy increases steadily with increas-
ing p, with a maximum value at p = 0.85. The prediction
accuracy, however, levels out around p = 0.65 and it is dif-
ficult to make a strong case for any one particular value of
p between p = 0.65 and p = 1. Notably, however, the tra-
ditional Colley method is not competitive with most of the
ranking methods given by (40). In 29 of the 33 seasons,
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the maximum value of the prediction accuracy occurs for
a value of p other than O or 1.

8 Conclusion

Equation (31) defines a one parameter family of rankings
that interpolates between the Markov method [(27) with
p = 0] and the (modified) methods of Colley and Massey
[(31) with p = 1]. The ratings have a natural interpretation
in the context of a diffusion process on a graph. The pro-
cess is determined by specifying the rank-flow from one
team to another in terms of head-to-head wins, weighted
by head-to-head losses, and a rank-infusion vector deter-
mined by the team’s overall record. This interpretation
allows us to realize similarities (and differences) between
the methods of Massey, Markov, and Colley, as particular
choices of parameters and normalizations made by each
method in the in the context of this unifying diffusion
paradigm.

The intuition of the diffusion process helps contex-
tualize these choices: if one desires head-to-head results
to be relevant in a team’s ranking (beyond their winning
percentage), then choose p < 1. If one prefers to empha-
size record and strength of schedule, choose p = 1. If the
Markov method’s instability seems too extreme to define a
reasonable ranking system, take p > 0. On the other hand,
if one uses the axiomatic considerations in Gonzalez-Diaz
et al. (2014) that were mentioned earlier, then the choice is
simpler. For instance, requiring that the rankings reverse
when game results are reversed (the so-called inversion
axiom), it is straightforward to show that the axiom is
satisfied if and only if p = 1.

We also explore a quantitative validation of the param-
eter p based on prediction accuracy using ten-fold cross
validation in Section 7. The results are interesting, but not
conclusive, and suggest several avenues for future work.
It would be interesting to consider other validation crite-
ria to see if there is a perspective which suggests an opti-
mal value of p, and whether that p is less than 1. Further,
it seems plausible that different sports (or even leagues)
might have different optimal p values for their rankings.
We used data from NCAA DI college basketball here,
but it would be interesting to consider data from other
sports with readily available data sets like the NFL, NHL,
NBA etc.

We also show that Colley’s method can be generalized
to a family of Colley-like ranking methods via Equation
(35). Moreover, we give strong evidence that the optimal
member of the family is not the traditional Colley method,
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but rather the diffusion ranker .i”f“vl = s;. Whether this
value of k remains optimal for different sports and leagues
is again an interesting question.

There are several other directions for future work.
First, the diffusion rankings use a particular infusion vec-
tor although other choices, like Massey’s original idea of
cumulative point difference, are possible and should be
studied.

Next, the diffusion paradigm gives an interpretation
of the ranking problem in terms of network dynamics, and
makes use of a graph Laplacian in the process. Other work
has also found interesting network interpretations of rank-
ing problems, notably Csatd (2015). Here too, the graph
Laplacian is front-and-center, and facilitates an iterative
calculation of the least-squares ranking method (called
Massey’s method here) using rankings of neighbors along
paths of increasing length in the network. Further explo-
ration of the connections between these methods is in
order.

Finally, one can consider variations on the Markov
method using different coefficient matrices, with one such
example in Kvam and Sokol (2006). It would be interest-
ing to interpret these approaches in the context of the
diffusion interpretation.
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