Home A generative Markov model for bowling scores
Article
Licensed
Unlicensed Requires Authentication

A generative Markov model for bowling scores

  • Douglas VanDerwerken EMAIL logo and Franklin Kenter
Published/Copyright: September 5, 2018

Abstract

We create a data-driven Markov model for generating 10-pin bowling scores from the Professional Bowlers Association. The model incorporates insights from the hot hand literature and makes use of Bayesian shrinkage. For realistic sample sizes, the proposed approach is superior to modeling via the empirical distribution. Investigation of player-specific model components allows for a richer comparison of players than is possible using raw game scores alone. An additional feature of the model is that it can be used for in-game prediction.

Acknowledgement

The authors would like to thank Ben Blatt and Yaari Gur for providing us with the data they used in their analyses. The data set we ended up using for this paper was the one provided by Mr. Blatt.

8 Appendix

Table 5:

Posterior means for Tk’s with Bayesian shrinkage.

XXXXXXXXXX
Amleto Monacelli0.5590.5700.5720.5840.5890.6020.6160.630
Bill O’Neill0.5450.6040.5910.6120.6030.6160.6200.636
Bob Learn Jr.0.5420.5840.5870.6070.6070.6060.6180.632
Brad Angelo0.5740.6050.6050.5910.6010.6100.6170.634
Brian Himmler0.5300.5710.5910.6020.5990.6070.6220.641
Brian LeClair0.5130.6060.6160.5970.5800.5960.6130.623
Brian Voss0.5340.5860.6180.6200.6150.6110.6210.655
Brian Kretzer0.5580.5640.5600.5730.5900.5860.6090.616
Chris Barnes0.5650.5940.5700.6220.6240.6350.6240.657
Chris Collins0.5580.5680.5670.6030.5990.6030.6140.657
Chris Johnson0.5450.5410.5590.6070.5980.6090.6200.622
Chris Loschetter0.5030.5940.5760.5930.5900.6230.6170.638
Danny Wiseman0.5340.6030.5930.6060.6080.6190.6180.632
Dave D’Entremont0.5480.5510.5330.5860.5830.5930.6180.627
David Traber0.5510.5810.6450.6210.6080.6030.6250.645
Dick Allen0.5490.5690.5820.5950.5940.6190.6160.658
Doug Kent0.5440.5830.5610.6050.5790.6210.6050.643
Eugene McCune0.5620.5900.5750.6030.5870.6210.6230.649
Hugh Miller0.5470.5770.5630.6070.5950.6020.6180.629
Jack Jurek0.5510.5770.5910.6000.6080.5970.6100.637
Jason Couch0.5600.5680.6420.6260.6160.6110.6240.647
Jason Hurd0.5310.5950.6130.5870.6000.6040.6130.634
Jeff Carter0.5380.5730.5730.6080.6030.6100.6140.642
Joe Ciccone0.5080.5700.5600.6010.5950.5990.6080.635
Lonnie Waliczek0.5390.5680.5770.5980.6010.6190.6180.631
Michael Haugen Jr.0.5470.5610.5700.6060.6020.6080.6110.649
Michael Machuga0.5270.5580.5730.5930.6070.6290.6290.660
Mika Koivuniemi0.5400.5880.5810.6160.6010.6170.6310.648
Mike DeVaney0.5220.5610.5870.5910.5940.6040.6170.638
Mike Edwards0.5560.5760.5810.6130.5990.6160.6220.650
Mike Fagan0.5540.5710.5640.6100.6200.6070.6220.629
Mike Scroggins0.5530.6030.6100.6130.6120.6240.6120.652
Mike Wolfe0.5630.5850.6240.6270.6140.6200.6170.636
Norm Duke0.5330.6100.5770.6040.6110.6170.6180.654
Parker Bohn III0.5720.6090.6060.6230.6210.6250.6300.659
Patrick Healey JR0.5610.5490.5970.5990.6050.6140.6180.631
Patrick Allen0.5810.6040.5920.6220.6110.6260.6160.648
Paul Fleming0.5300.5340.5750.5960.6050.6140.6150.624
Pete Weber0.5540.5830.5860.6080.6010.6120.6140.641
Rick Lawrence0.5520.5560.5770.5920.6090.6040.6250.622
Rick Steelsmith0.5490.5800.6130.5910.6090.6070.6090.634
Robert Smith0.5480.5540.5820.6130.5910.6120.6160.657
Ryan Shafer0.5410.5590.6100.5880.6030.6110.6120.646
Sean Rash0.5570.5760.5840.5980.6000.6120.6140.639
Steve Jaros0.5420.6030.6170.5950.6030.6140.6150.625
Steve Wilson0.5500.6000.6000.6130.5980.6160.6210.617
Tim Criss0.5520.6040.5640.5800.5870.6170.6240.597
Tom Baker0.5410.5710.5750.5940.5860.6000.6180.614
Tommy Delutz Jr.0.5520.5860.5730.6120.6060.5980.6130.647
Tommy Jones0.5630.5920.5890.6040.5970.6150.6080.651
Tony Reyes0.5320.5810.5920.6080.5810.6000.6150.639
Walter Ray Williams Jr.0.5560.5940.6190.6260.6200.6310.6310.663
Wes Malott0.5400.5920.5930.6030.6120.6260.6200.653
Table 6:

Posterior means for Tk’s with no Bayesian shrinkage, i.e. the empirical tranisition probabilities.

XXXXXXXXXX
Amleto Monacelli0.6000.5480.5550.5600.5710.5760.6020.607
Bill O’Neill0.5330.6960.5950.6230.6030.6250.6360.628
Bob Learn Jr.0.5140.6000.5850.6130.6180.5870.6180.609
Brad Angelo0.6350.6360.6130.5840.6000.6070.6150.629
Brian Himmler0.4720.5480.5930.5990.5950.5950.6430.642
Brian LeClair0.3260.7380.6590.5850.5350.5370.5600.551
Brian Voss0.4940.6020.6470.6360.6290.6080.6380.671
Brian Kretzer0.5810.5380.5410.5480.5780.5440.5720.578
Chris Barnes0.6100.6140.5580.6340.6400.6600.6420.668
Chris Collins0.6450.5190.5270.6020.5900.5660.5730.707
Chris Johnson0.5410.4000.5120.6110.5880.5980.6410.576
Chris Loschetter0.3670.6280.5650.5800.5730.6460.6140.632
Danny Wiseman0.5050.6470.5970.6070.6130.6290.6200.624
Dave D’Entremont0.5520.4960.4800.5640.5560.5450.6210.598
David Traber0.5860.5810.7240.6440.6190.5810.6710.652
Dick Allen0.5570.5300.5730.5800.5770.6400.6040.703
Doug Kent0.5400.5860.5420.6060.5590.6340.5590.646
Eugene McCune0.6100.6090.5640.6020.5690.6380.6500.658
Hugh Miller0.5510.5650.5220.6120.5820.5660.6210.594
Jack Jurek0.5740.5680.5940.5950.6160.5640.5560.630
Jason Couch0.6000.5440.6770.6390.6260.6090.6440.652
Jason Hurd0.4660.6450.6450.5640.5970.5810.5740.622
Jeff Carter0.5000.5490.5500.6140.6040.6050.5910.645
Joe Ciccone0.4240.5520.5360.5980.5880.5750.5670.626
Lonnie Waliczek0.5140.5320.5620.5900.6000.6370.6190.611
Michael Haugen Jr.0.5480.5060.5490.6090.6030.5980.5730.663
Michael Machuga0.4880.5230.5620.5850.6120.6510.6680.675
Mika Koivuniemi0.5300.5990.5770.6230.6010.6220.6730.654
Mike DeVaney0.4750.5310.5860.5820.5860.5920.6130.634
Mike Edwards0.5890.5650.5750.6220.5960.6230.6470.662
Mike Fagan0.5730.5560.5490.6150.6340.6000.6370.617
Mike Scroggins0.5670.6390.6230.6180.6180.6360.5980.661
Mike Wolfe0.6230.5960.6570.6480.6270.6320.6160.630
Norm Duke0.5000.6520.5700.6030.6180.6220.6190.665
Parker Bohn III0.6440.6590.6180.6350.6360.6410.6680.671
Patrick Healey JR0.5980.4960.6030.5950.6080.6160.6180.620
Patrick Allen0.6610.6350.5940.6310.6160.6390.6110.652
Paul Fleming0.4840.4070.5580.5840.6100.6190.5960.586
Pete Weber0.5690.5870.5840.6100.5990.6120.6010.641
Rick Lawrence0.5740.4780.5620.5740.6210.5810.6760.575
Rick Steelsmith0.5640.5790.6390.5750.6180.5960.5600.621
Robert Smith0.5520.5000.5760.6220.5790.6110.6070.676
Ryan Shafer0.5330.5320.6200.5800.6030.6100.5970.650
Sean Rash0.6190.5590.5760.5880.5960.6090.5830.634
Steve Jaros0.5280.6390.6340.5890.6040.6160.6050.608
Steve Wilson0.5810.6980.6240.6290.5880.6280.6470.545
Tim Criss0.5680.6520.5450.5550.5700.6260.6530.531
Tom Baker0.5290.5550.5650.5860.5680.5790.6170.580
Tommy Delutz Jr.0.5710.5960.5580.6190.6090.5730.5880.656
Tommy Jones0.5900.6060.5890.6040.5940.6170.5840.658
Tony Reyes0.4770.5840.5960.6140.5480.5670.5940.636
Walter Ray Williams Jr.0.5780.6160.6360.6370.6320.6500.6640.677
Wes Malott0.5260.6100.5960.6020.6190.6430.6280.663
Table 7:

Shrunken estimates of most probable (across all players) non-strike frame breakdown probabilities (columns 1–5) and probability of spare (column 6).

(9,1)(8,2)(7,3)(8,1)(7,2)Any spare
Amleto Monacelli0.5370.1420.0600.0650.0570.774
Bill O’Neill0.5610.1250.0640.0580.0500.779
Bob Learn Jr.0.5950.1240.0520.0530.0480.810
Brad Angelo0.5590.1120.0710.0580.0480.778
Brian Himmler0.5800.1110.0630.0600.0520.786
Brian LeClair0.5340.1290.0670.0620.0510.769
Brian Voss0.5850.1200.0640.0520.0510.795
Brian Kretzer0.5520.1260.0650.0660.0530.781
Chris Barnes0.6240.1240.0390.0590.0480.810
Chris Collins0.5440.1240.0640.0660.0450.768
Chris Johnson0.5320.1140.0840.0600.0550.763
Chris Loschetter0.5420.1350.0740.0690.0520.782
Danny Wiseman0.6110.1040.0560.0580.0490.804
Dave D’Entremont0.5210.1190.0760.0610.0590.753
David Traber0.6460.1110.0450.0580.0320.828
Dick Allen0.5380.1330.0700.0580.0520.777
Doug Kent0.5970.1170.0570.0600.0430.801
Eugene McCune0.5600.1200.0690.0600.0440.789
Hugh Miller0.5760.1430.0560.0590.0590.798
Jack Jurek0.5660.1120.0720.0630.0540.777
Jason Couch0.6050.1150.0590.0550.0520.808
Jason Hurd0.5380.1210.0740.0640.0490.763
Jeff Carter0.5310.1260.0680.0670.0510.763
Joe Ciccone0.5560.1290.0540.0570.0510.780
Lonnie Waliczek0.5690.1130.0580.0650.0490.775
Michael Haugen Jr.0.6180.1160.0550.0490.0490.816
Michael Machuga0.5540.1240.0650.0610.0480.777
Mika Koivuniemi0.5940.1070.0680.0560.0530.800
Mike DeVaney0.5550.1210.0680.0660.0480.785
Mike Edwards0.5750.1200.0680.0640.0500.795
Mike Fagan0.5550.1220.0560.0610.0450.775
Mike Scroggins0.6230.1220.0490.0520.0490.818
Mike Wolfe0.5910.1180.0590.0600.0460.796
Norm Duke0.6530.1080.0480.0550.0410.835
Parker Bohn III0.6180.1010.0510.0640.0500.792
Patrick Healey JR0.5840.1080.0570.0590.0490.779
Patrick Allen0.6190.1110.0540.0530.0490.815
Paul Fleming0.6000.1320.0520.0530.0470.816
Pete Weber0.5700.1190.0770.0560.0480.800
Rick Lawrence0.6000.1240.0590.0580.0390.812
Rick Steelsmith0.5850.1140.0570.0610.0470.788
Robert Smith0.5700.1240.0680.0590.0440.789
Ryan Shafer0.5870.1210.0590.0630.0560.794
Sean Rash0.5430.1150.0780.0620.0560.766
Steve Jaros0.6020.1230.0540.0570.0550.811
Steve Wilson0.5870.1260.0550.0590.0480.799
Tim Criss0.5920.1230.0550.0620.0550.795
Tom Baker0.6000.1140.0610.0590.0500.810
Tommy Delutz Jr.0.5950.1150.0610.0590.0510.801
Tommy Jones0.5490.1290.0650.0660.0590.772
Tony Reyes0.5760.1210.0620.0610.0520.790
Walter Ray Williams Jr.0.6910.1000.0440.0480.0400.852
Wes Malott0.5820.1120.0590.0590.0480.784
Table 8:

Unshrunken (i.e. empirical) estimates of most probable (across all players) non-strike frame breakdown probabilities (columns 1–5) and probability of spare (column 6).

(9,1)(8,2)(7,3)(8,1)(7,2)Any spare
Amleto Monacelli0.5190.1490.0600.0660.0600.767
Bill O’Neill0.5490.1260.0660.0570.0500.771
Bob Learn Jr.0.6010.1260.0480.0490.0470.818
Brad Angelo0.5540.1100.0720.0580.0480.773
Brian Himmler0.5780.1080.0640.0610.0520.782
Brian LeClair0.5060.1330.0710.0640.0510.754
Brian Voss0.5850.1190.0660.0490.0520.796
Brian Kretzer0.5430.1270.0660.0670.0540.775
Chris Barnes0.6320.1250.0350.0590.0470.813
Chris Collins0.5180.1260.0660.0710.0420.750
Chris Johnson0.5030.1100.0960.0600.0570.744
Chris Loschetter0.5260.1400.0790.0720.0520.777
Danny Wiseman0.6170.0990.0550.0570.0480.805
Dave D’Entremont0.4960.1170.0800.0610.0610.734
David Traber0.6770.1060.0380.0570.0230.844
Dick Allen0.5140.1380.0750.0560.0530.767
Doug Kent0.5990.1160.0560.0610.0420.802
Eugene McCune0.5530.1200.0720.0600.0420.786
Hugh Miller0.5720.1550.0540.0580.0640.799
Jack Jurek0.5590.1080.0770.0640.0560.770
Jason Couch0.6090.1130.0580.0530.0520.809
Jason Hurd0.5160.1200.0790.0660.0480.748
Jeff Carter0.5060.1290.0720.0700.0520.747
Joe Ciccone0.5480.1310.0520.0560.0520.775
Lonnie Waliczek0.5610.1090.0570.0670.0490.765
Michael Haugen Jr.0.6330.1140.0530.0450.0480.825
Michael Machuga0.5460.1240.0660.0610.0470.772
Mika Koivuniemi0.5950.1040.0690.0550.0540.800
Mike DeVaney0.5480.1210.0690.0670.0480.782
Mike Edwards0.5720.1200.0710.0650.0500.794
Mike Fagan0.5480.1220.0550.0610.0440.768
Mike Scroggins0.6300.1220.0460.0500.0490.823
Mike Wolfe0.5920.1160.0590.0600.0450.795
Norm Duke0.6660.1050.0460.0540.0400.843
Parker Bohn III0.6240.0960.0490.0640.0500.790
Patrick Healey JR0.5840.1050.0560.0590.0490.774
Patrick Allen0.6250.1090.0530.0520.0490.819
Paul Fleming0.6070.1360.0480.0510.0470.824
Pete Weber0.5660.1180.0800.0550.0470.799
Rick Lawrence0.6070.1260.0590.0570.0340.819
Rick Steelsmith0.5860.1110.0550.0610.0460.785
Robert Smith0.5660.1250.0700.0590.0420.788
Ryan Shafer0.5860.1210.0580.0630.0570.793
Sean Rash0.5190.1120.0870.0640.0590.748
Steve Jaros0.6070.1230.0520.0560.0560.815
Steve Wilson0.5890.1300.0510.0590.0460.802
Tim Criss0.5940.1240.0530.0620.0560.796
Tom Baker0.6050.1130.0620.0590.0510.813
Tommy Delutz Jr.0.5990.1130.0610.0590.0520.803
Tommy Jones0.5420.1300.0660.0660.0610.767
Tony Reyes0.5730.1210.0630.0620.0530.788
Walter Ray Williams Jr.0.7110.0960.0410.0460.0380.863
Wes Malott0.5790.1100.0580.0580.0480.779

References

PBA. 2017. “Earnings: 2017 Season.” https://www.pba.com/SeasonStats [Online; accessed 16-Dec-2017].Search in Google Scholar

Abrevaya, J. 2002. “Ladder Tournaments and Underdogs: Lessons from Professional Bowling.” Journal of Economic Behavior and Organization 47:87–101.10.1016/S0167-2681(01)00171-8Search in Google Scholar

Blatt, B. 2015. “What’s the Hardest Shot in Bowling.” http://www.slate.com/articles/sports/sports_nut/2015/02/hardest_shot_in_bowling_it_s_not_the_7_10_split_it_s_the_greek_church.html [Online; accessed 13-April-2017].Search in Google Scholar

Chen, W. 1991. An Analysis of Bowling Scores and Handicap Systems. Master’s thesis, Simon Fraser University, British Columbia, Canada.Search in Google Scholar

Chen, W. and T. Swartz. 1994. “Quantitative Aspects of Five-Pin Bowling.” The American Statistician 48:92–98.10.1080/00031305.1994.10476031Search in Google Scholar

Cooper, C. and R. Kennedy. 1990. “A Generating Function for the Distribution of the Scores of all Possible Bowling Games.” Mathematics Magazine 63:239–243.10.1080/0025570X.1990.11977528Search in Google Scholar

Crockett, Z. 2014. “The Rise and Fall of Professional Bowling.” https://priceonomics.com/the-rise-and-fall-of-professional-bowling/ [Online; accessed 9-May-2017].Search in Google Scholar

Dorsey-Palmateer, R. and G. Smith. 2004. “Bowlers’ Hot Hands.” The American Statistician 58:38–45.10.1198/0003130042809Search in Google Scholar

Frame, D., E. Hughson, and J. C. Leach. 2003. “Runs, Regimes, and Rationality: The Hot Hand Strikes Back.” Working paper.Search in Google Scholar

Gelman, A., G. Roberts, and W. Gilks. 1996. “Efficient Metropolis Jumping Rules.” in Bayesian Statistics 5, edited by J. Bernardo, J. Berger, A. Dawid, and A. Smith. Oxford: Clarendon Press.10.1093/oso/9780198523567.003.0038Search in Google Scholar

Keogh, S. and D. O’neill. 2012. “A Statistical Analysis of the Fairness of Alternative Handicapping Systems in Ten-Pin Bowling.” The American Statistican 66:209–213.10.1080/00031305.2012.726933Search in Google Scholar

Martin, D. 2006. “Hot-Hand Effects in Sports and a Recursive Method of Computing Probabilities for Streaks.” Computers and Operations Research 33:1983–2001.10.1016/j.cor.2004.09.023Search in Google Scholar

McCarthy, D. 2011. “Estimating Different Sources of Variation and Predicting Tournament Outcomes in Professional Bowling.” Chance 24:37–46.10.1080/09332480.2011.10739873Search in Google Scholar

Yaari, G. and G. David. 2012. “‘Hot Hand’ on Strike: Bowling Data Indicates Correlation to Recent Past Results, Not Causality.” PLoS ONE 7:e30112.10.1371/journal.pone.0030112Search in Google Scholar PubMed PubMed Central

Published Online: 2018-09-05
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jqas-2017-0081/html
Scroll to top button