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Abstract: A finite mixture latent trajectory model is devel-
oped to study the performance and strategy of runners in a 
24-h long ultra running race. The model facilitates cluster-
ing of runners based on their speed and propensity to rest 
and thus reveals the strategies used in the race. Inference 
for the adopted latent trajectory model is achieved using 
an expectation-maximization algorithm. Fitting the model 
to data from the 2013 World Championships reveals three 
clearly separated clusters of runners who exhibit different 
strategies throughout the race. The strategies show that 
runners can be grouped in terms of their average moving 
speed and their propensity to rest during the race. The 
effect of age and gender on the probability of belonging to 
each cluster is also investigated.

Keywords: clustering; expectation-maximization algo-
rithm; non-ignorable drop-out; ultra running.

1  Introduction
The International Association of Ultrarunners (IAU) 
24-Hour World Championships were held in Steenbergen, 
The Netherlands, from May 11th to 12th, 2013. In this race, 
299 competitors ran for 24 h on a course that had a 2.314 
km lap. The runners had a chip on their shoe, so their lap 
count could be recorded automatically and so that time 
that they finished each lap was also recorded. At the end of 
the 24-h time period, an alarm is sounded and all runners 
must stop running immediately. Then, the fraction of the 
final lap is recorded for each runner. Throughout the race, 
during any of these laps a runner can continue running, 
rest for a while and, obviously, he/she can leave the com-
petition before the end. The strategy and performance of 

the runners in the event are potentially very different due 
to the age and gender of the participants.

In this paper, we study these data to uncover the 
strategies used by the runners in the race. We anticipate 
that the runners will fall into clusters depending on how 
their strategy might evolve throughout the race. The study 
of the pacing strategies used allows for comparing the 
strategies used to those in races over shorter distances. 
Further, the influence of age and gender on performance 
can be assessed.

In order to analyze these data and, in particular, 
cluster runners according to the adopted strategy, we 
introduce a latent trajectory model in the spirit of Roeder, 
Lynch, and Nagin (1999); see also (e.g. Muthén and 
Shedden 1999; Muthén 2004; Bollen and Curran 2006). 
In practice, the approach is based on a finite mixture of 
linear and multinomial logit regressions models. The 
linear regression component is for the speed observed 
at every lap completed by the runner as response vari-
able. The multimonial logit regression component is for 
a categorical response variable that, again for every lap, 
indicates if the subject is regularly running, resting, or 
leaves before completing the lap. In this way we account 
for a form of non-ignorable drop-out.

The proposed model accounts for a number of 
aspects of modeling race duration data that have not 
been accounted for in many previous studies. In fact, pre-
vious studies aggregate the runner pace data over fixed 
distance intervals and analyze the data using analysis 
of variance methods (e.g. Hanley 2015). This approach 
removes important information when the aggregation is 
used and the analysis of variance does not account for the 
temporal dependence in the pacing data throughout the 
race. Our model accounts for the temporal dependence 
in the runner speeds within the race. We explicitly model 
the runner resting or stopping, which is a feature of ultra 
running data that does not appear in races over shorter 
distances. Thus, the clustering of the runners into distinct 
strategies is determined by the runner speed and pro-
pensity to stop rather than their speed alone which can 
vary hugely if resting is not explicitly accounted for in the 
model.

The paper is structured as follows. In Section 2 
we introduce the data from the IAU 24-Hour World 
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Championships and discuss previous studies on race 
pacing. In Section 3 we develop the model for analyz-
ing the runners’ strategies and discuss issues to do with 
model fitting and model selection. The results of fitting 
the model are presented in Section 4 and the paper con-
cludes by discussing the analysis and the methodology 
in Section 5.

We make the data and the R code that we used to fit 
the model available to the reader upon request.

2  Preliminaries
In the following we provide more details on the back-
ground and the data studied in this article.

2.1  Background

The IAU 24-Hour World Championships were held in 
Steenbergen, The Netherlands, in 2013. Over the 24-h 
period a total of 299 competitors ran on a course that 
had a 2.314 km lap. The athletes in the race were selected 
from their home country using qualification criteria set by 
their home ultrarunning association, thus most partici-
pants would be considered to be elite ultrarunners with 
experience in events that are challenging in distance and 
duration.

The weather over the two race days averaged 10°C 
which was 3°C lower than the mean temperature for that 
time of year in the region. Further, there was a considera-
ble amount of precipitation, 8.8 mm of rain over the 2 days 
which included the race, and the winds were about 6 m/s 
with gusts as strong as 17 m/s. So, the race conditions were 
considered to be very difficult. These weather conditions 
increased the necessity to stop and change strategy during 
the race and contributed to the high drop-out rate due to 
injury, hypothermia, exhaustion and other factors during 
the 24 h.

A number of factors have been shown to influence the 
performance of a runner and their probability of comple-
tion in extreme ultrarunning events of the type being ana-
lyzed herein. Zingg et al. (2013) found that 40–44-year-old 
men and 35–39-year-old women had the fastest pace in 
24-h races. Further, they found that female athletes have 
an average speed that is approximately 10% slower than 
male athletes. Lambert et al. (2004) studied the decrease 
in pace in 100 km ultra races and showed that the top 
runners were able to maintain their speed for 50 km but 
declined by 15% from their starting speed by the finish; 

however, in the IAU 24-h race data the runners tend to 
cover much greater distances than those studied therein. 
Further, Kao et  al. (2008) found that runners in a 24-h 
race lose 5.05±2.28% of their body weight, so the nutri-
tional and hydration demands of such events are crucial 
and thus the races can have high attrition throughout.

A significant amount of research has been com-
pleted on pacing in athletic events including running, 
cycling, swimming, speed skating and triathlon. Abbiss 
and Laursen (2008) review the strategies used and 
characterize them into: negative pacing (where speed 
increases throughout the event), all-out pacing (where 
there is an initial burst of speed followed by a slowly 
decreasing speed), positive pacing (where there is a grad-
ually decreasing speed), even pacing (where the speed is 
constant), parabolic pacing (where the speed gradually 
decreases through an event but increases at a later stage 
in the event) and variable pacing (where the speed varies 
throughout an event, usually due to external factors like 
geography or environment). Within the parabolic pacing 
strategy, three shapes were characterized, a U-shaped 
(with a symmetric pacing profile), a J-shaped (where a 
small pacing decrease is followed by a steep rise in pace) 
and reverse J-shaped (where a strong pacing decrease is 
followed by a small rise in pace). Hanley (2015) studied 
pacing in the IAAF World Half Marathon (21.1 km) champi-
onships and found that the top runners maintained a con-
stant speed for 15 km followed by a small decrease from 15 
to 20 km and a strong increase in speed for the final 1.1 km 
whereas other runners had a gradual decrease in speed 
over the first 20 km followed by an increase for the final 
1.1 km. Lima-Silva et al. (2010) did a similar analysis for a 
10 km running race and observed similar pacing profiles 
where the pace was constant or slowly decreasing for the 
first 9600 m followed by a sudden increase for the final 
400 m. Further, March et  al. (2011) and Santos-Lozano 
et al. (2014) found similar pacing profiles in races over the 
marathon distance.

There have been fewer studies of pacing within 
ultra marathon events. However, Lambert et  al. (2004) 
showed that in a race over 100 km, the pace of athletes 
tends to decrease over the duration of the event; they did 
not observe a strong increase at the end of the race, but 
this may because their data are aggregated over 10 km 
intervals.

Therefore, the performance in terms of speed, mini-
mizing resting and avoiding dropping out are dictated by 
a number of factors for runners in ultra running events of 
long duration. Thus, it is of great interest to investigate 
the strategies used and to see how different clusters of 
runners utilize different strategies during such an event. 
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This will also allow for comparison of the pacing strate-
gies in 24-h ultra races with races of a shorter duration.

2.2  Data

For each of the n  =  299 runners we have a record of the lap 
time for each completed lap until the 24-h period was com-
pleted. Overall, 219 of the runners were still running at the 
end of the 24-h period and 80 runners finished running a 
significant time period before the end of the 24-h period.

In Table 1 we report some summary statistics for the 
runners: age at the start of the race, the number of com-
pleted laps, number of laps completed in a non-standard 
way (e.g. resting during the lap), speed per lap and average 
speed per athlete (km/h). In these summaries, we con-
sider a lap to be completed in a non-standard way when 
the lap speed is below 4 km/h which indicates that the 
runner may have stopped during the lap or commenced 
walking during the lap. Further, 68% of the participants in 
the race were male and 32% were female. In order to prop-
erly read the table, note that the column “Speed” refers to 
single laps, whereas the column “Av. Speed” is referred to 
athletes and then it happens that the maximum average 
speed is lower than the maximum speed and the minimum 
average speed is higher than the minimum speed.

The only covariates available for the runners are age 
and gender. Whilst the performance of the runners may 
depend on many other factors including training, experi-
ence and nutrition, this information is not available for 
modeling purposes. However, the event is one for elite 
athletes selected by their home nation, so the athletes 
need to be experienced and well prepared to participate 
in the event.

The main variables of interest in this study are the 
runner’s speed per lap and a categorical variable that 
records the runner’s behavior (or status) during a lap (i.e. 
if the subject is running, resting, or leaves the race in a 

Table 1: Descriptive statistics for the runners, the lap count and the 
lap speed data for the participants in the race.

 
 

Age 
 

N. laps 
 

N. laps
(not running)

 
 

Speed
(km/h)

 
 

Av. speed
(km/h)

Min.   21.0  14.000  0.000  4.000  4.133
1st Qu.   39.0  55.000  0.000  8.106  8.312
Median  45.0  80.000  0.000  9.450  8.998
Mean   45.5  74.550  1.087  9.184  8.965
3rd Qu.  51.0  92.000  2.000  10.440  9.708
Max.   72.0  116.000  13.000  13.930  11.390

certain lap). The trajectory of the speed and of the categor-
ical variable throughout the race are displayed in Figure 1.

The overall appearance from Figure 1 is that the speed 
has a convex shaped behavior with respect to the lap 
number. Different explanations may be conjectured for 
this shape. A natural explanation is that runners tend to 
decrease the speed during the first part of the competition 
but they increase the speed when the end of the race is 
getting close. However, there is a drop-out effect due to 
the race being run for a fixed time (24 h) rather than a 
fixed distance. Thus, faster runners complete more laps, 
whereas slower runners complete fewer laps and they are 
not considered in the computation of the average speed 
when the lap number is large. Moreover, there is one 
further form of drop-out due to a runner leaving the race 
before the end of the competition and this may have a 
similar effect on the shape of the average lap speed.

We also note that the proportion of subjects still 
running dramatically decreases after the 50th lap and this 
is again due the two forms of drop-out mentioned above. 
On the other hand, we have a parabolic behavior for the 
proportion of subjects resting in a certain lap with the pro-
portions being very low for low lap numbers and decreas-
ing again for high lap numbers.

Thus, appropriate statistical modeling of the race data 
will need to account for the features found in this explora-
tory data analysis; the development of such a model is 
given in Section 3.

3  The statistical model
For the sample of n runners, let Li denote the random vari-
able for the number of laps completed by runner i before 
the end of the race, with i  =  1, …, n. Moreover, let Bil be 
the discrete random variable for the behavior (or status) 
of runner i during lap l, with l  =  1, …, li, where li is the 
realization of Li (the convention of using lower-case letters 
for realizations of random variables or vectors is used 
throughout the article). In particular, Bil  =  0 stands for 
a standard run lap, Bil  =  1 for a lap in which the runner 
rests, and Bil  =  2 denotes that subject i leaves before the 
end of the race during lap l. For a runner with a good 
performance we expect to observe all values of Bil equal 
to 0 (or almost all values equal to 0). Finally, we denote 
the speed at which runner i completed lap l by Yil. The 
observed speed, yil, is available for i  =  1, …, n and l  =  1, …, 
li and when Bil  =  0; when Bil  =  1 the observed speed, yil, is 
not relevant in our analysis and when Bil  =  2 no speed is 
observed because the runner is finished running.
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Figure 1: The top panel shows trajectories of speed for the individual runners (one every five) and the average speed per lap in red; the middle 
panel shows the proportion of subjects still running in a certain lap; the bottom panel shows the proportion of runners resting in a certain lap.

3.1  Model assumptions

We adopt a latent trajectory model (Muthén and Shedden 
1999; Roeder et al. 1999; Muthén 2004; Bollen and Curran 
2006) that accounts for different possible strategies 
in running and at the same time facilitates clustering 
runners according to the adopted strategy by consider-
ing that for certain laps they may be running normally 
(Bil  =  0), also they may have a rest (Bil  =  1), they may 
finish before the end of the race (Bil  =  2), or they finish 
because the 24-h time limit is reached. Essentially differ-
ent lap performances are grouped into a finite number of 
possible states and different strategies are represented by 
specific probabilities for these states. Also the runners are 
clustered in finite number of latent classes according to 
their overall performance and the a priori probabilities to 
belong to each cluster are allowed to depend on individ-
ual covariates.

Let Ui denote a latent variable for the overall perfor-
mance of runner i and let k denote the number of its pos-
sible values, labeled from 1 to k, with the corresponding 
mass probabilities indicated by πiu  =  p(ui  =  u) where πiu 
may depend on runner-specific covariates. Each of the 
values (u) identifies a cluster of runners. The model is 
based on the following assumptions for every runner i 
given that he/she is in cluster u:

–– on the first lap (l  =  1), Bil has a generalized Bernoulli 
distribution with probabilities parametrized on the 
basis of multinomial logits, that is,
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where xl is a function of l; in particular, every xl is a 
column vector containing the terms of an orthogonal 
polynomial (Kennedy and Gentle 1980) of order r, 
which in our application is fixed equal to 3. If Bil  =  0, 
then we assume the following model for the lap speed:

	 µ σ µ= = = ′∼ 2| 0, ( , ), .il il i lu lu l uY B U u N x β � (2)

If Bil  =  1 then the distribution of Yil is left unspecified 
whereas if Bil  =  2 then the process is stopped. The 
process is also stopped if the distance between the 
time of the lap (depending on the speed) is close to the 
end. Parameter vectors γ1u, γ2u, and βu and cluster spe-
cific, whereas the variance σ2 is common to all clusters.

–– for the following laps (l  >  1) and provided that the run-
ner is still in the competition, Bil and Yil are assumed 
to have the same distribution as above. Again, if the 
overall time is close to the end of the race or Bil  =  2, 
then the precess is stopped as the runner leaves the 
competition.

Note that there are two forms of drop-out. The first is due 
to the overall time of the race which is non-informative 
as it deterministically depends on the previous values of 
response variables. The second, for the runner leaving 
the competition before the end, is informative and it is 
explicitly accounted in by the multinomial logistic regres-
sion model (1). Also note that, according to assumption 
(2), the lap speeds are conditionally independent given 
latent class and running normally. This assumption needs 
to be carefully checked on the basis of the corresponding 
residuals as we will show in Section 4.

Additionally, we allow for individual covariates to 
affect the distribution of the latent variables Ui. In par-
ticular, we adopt a parametrization based on multinomial 
logits of the following type:

	

π

π

=
= = =′

=
…

1
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p U
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where zi is the vector of covariates (including a constant 
term for the intercept) for individual i, which are consid-
ered as fixed and given and δu is the corresponding vector 
of regression parameters for being in the u-th category 
instead of the first category. In the context of this race 
we have the age and gender of each runner available and 
these are included as covariates.

The labeling on the clusters is arbitrary and thus 
the model is only identifiable up to a permutation of the 
cluster labels. This problem is known as the label-switch-
ing problem in mixture models (Redner and Walker 1984). 
When studying the fitted models we label the clusters in 

terms of increasing race performance so that the results 
are presented in an intuitive manner.

3.2  Maximum likelihood estimation

In order to express the model likelihood, we have first to 
express the distribution of the response variables given 
the latent variables. In particular, for each subject i we 
observe the sequence bi  =  (bi1, …, bili)′; we also observe 
yi,obs which corresponds to all or a part of the sequence yi  =  
(yi1, …, yili)′. In particular, if all elements of bi are equal to 
0, then yi,obs and yi will coincide; if some elements of bi are 
equal to 1 or 2, then yi,obs will be a subvector of yi.

Based on the assumptions formulated in the previ-
ous section, the distribution of interest has the following 
density function:

φ
= = =
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where p(bil|Ui  =  u) is defined in (1), the second product is 
extended to all observed elements of yi, and φ(yil|Ui  =  u) 
denotes the density of the normal distribution defined 
according to assumption (2). As in a standard finite 
mixture model, the manifest distribution has density that 
may be obtained as

π
=

= =∑, ,
1

( , ) ( , | ).
k

i i obs iu i i obs i
u

f f U ub y b y

This is the basis for the model log-likelihood, which 
has expression

=
= ∑� ,

1
( ) log ( , ),

n

i i obs
i

f b yθ

where θ is a vector containing all model parameters, that 
is, βu, γ1u, γ2u, δu, for u  =  1, …, k, and σ2.

In order to maximize ℓ(θ) with respect to θ, we rely 
on the Expectation-Maximization (EM) algorithm (Demp-
ster, Laird, and Rubin 1977). This algorithm has been used 
extensively for fitting mixture models (see McLachlan 
and Krishnan 1997; McLachlan and Peel 2000; Fraley and 
Raftery 2002) in the maximum likelihood framework.

The EM algorithm is based on alternating the follow-
ing two steps until convergence in the target function:

–– E-step: it consists of computing the conditional 
expected value, given the observed data and the cur-
rent value of the parameters, of the complete data log-
likelihood, which is defined as follows:
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In the above expression, ziu is an indicator variable 
equal to 1 if subject i belongs to cluster u (i.e. Ui  =  u), and 
to 0 otherwise.

–– M-step: the expected value resulting from the E-step 
is maximized with respect to θ and, in this way, this 
parameter vector is updated.

In practice, the E-step reduces to compute the (condi-
tional) expected value of each indicator variable ziu, 
denoted by ˆ ,iuz  by the following simple rule on the basis 
of the current value of the parameters:
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Regarding the M-step, we can use explicit solutions 
for the parameter vectors βu and for the common vari-
ance σ2:
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where oi is the dimension of yi,obs, that is, the number 
of regularly completed laps by runner i. On the other 
hand, updating the remaining parameters γ1u and γ2u in 
(1) requires an iterative algorithm of a Netwon-Raphson 
type. However, this is a simple algorithm since the objec-
tive function being maximized is of the same form as the 
objective function used when fitting a standard multino-
mial logit model with weights by maximum likelihood. 
The same Netwon-Raphson algorithm is also applied to 
update the parameters δu in (3) that affect the distribu-
tion of each latent variables Ui on the basis of the indi-
vidual covariates. In the case where the πiu probabilities 
are assumed to be equal for all subjects (i.e. πiu  =  πu), 
we have an explicit solution for the maximization of the 
expected complete-data log-likelihood with respect to the 
πu probabilities:

π
=

= =∑ …
1

1 ˆ , 1, , .
n

u iu
i

z u k
n

It is important, as for any other iterative algorithm, that 
the EM algorithm described above is suitably initialized; 
this amount to guessing starting values for the parame-
ters in θ. We suggest to use both a simple rule providing 

sensible values for these parameters and a random rule 
which allows us to properly explore the parameter space. 
Just to clarify, we choose the starting values for the mass 
probabilities πiu as 1/k for u  =  1, …, k under the first rule, 
which is equivalent to fix the same size for all clusters. The 
corresponding random starting rule is instead based on 
first drawing each parameter πiu from a uniform distribu-
tion between 0 and 1 and then normalizing these values.

We recall that trying different starting values for the 
EM algorithm is important to face the problem of multi-
modality of the likelihood function that may arise in finite 
mixture models and combining different initialization 
rules (deterministic and random) is an effective strategy 
in this regard.

3.3  Model selection

Given that our application is focused on the clustering of 
individuals in separate groups, the main selection crite-
rion we use for the number of these groups is the Normal-
ized Entropy Criterion (NEC; Celeux and Soromenho 1996; 
Biernacki, Celeux, and Govaert 1999). This criterion is 
based on the following index:

1 1

1

ˆ ˆlog 
NEC , 2,ˆ ˆ

n k
iu iui u

k
k

z z
k= =

−
= ≥

−
∑ ∑

� �

with NEC1  =  1, where the numerator corresponds to 
the entropy and the denominator to the difference in 
maximum log-likelihood between the model with k 
classes and with 1 class. According to this approach, the 
value of k corresponding to the minimum of NECk has to 
be preferred, as it corresponds to the model being the best 
compromise between separation of the classes (as meas-
ured by the entropy) and goodness-of-fit (measured by the 
log-likelihood).

For completeness, we mention that another impor-
tant criterion for selecting the number of components of a 
mixture model is the Bayesian Information Criterion (BIC; 
Schwartz 1978; Kass and Raftery 1995), which is based on 
the minimization of the index

= − +�̂BIC 2 log( )(#par ),k k n

where #par is the number of free parameters in the 
model; for an illustration see McLachlan and Peel (2000), 
Chapter  6. However, it is known that this criterion typi-
cally leads to a less parsimonious model than the model 
selected with NEC and, in particular, with classes not well 
separated. Therefore, given the target of our application, 
we prefer to rely on NEC.
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4  Results
The proposed model was fitted, using maximum likeli-
hood, for increasing values of k from 1 to 5. For each model 
fit, the value of the maximized likelihood, the entropy, 
NEC and BIC values were computed; the results are shown 
in Table 2.

Considering that our primary aim is the clustering of 
runners into distinct states, we rely on the NEC criterion 
and choose k  =  3 clusters, corresponding to the minimum 
of the corresponding index. In any case, we have very 
good separation (low entropy) between the clusters under 
any choice of k; thus the model clearly separates runners 
into clusters and does this in a definitive manner.

For the selected model, with k  =  3, the parameter esti-
mates together with corresponding standard errors are 
reported in the Tables 3–5. The clusters have been labeled 
according to the average speed, with the lowest speed 
cluster labeled as Cluster 1 and the highest speed cluster 
labeled as Cluster 3.

In order to interpret the clusters according to the 
estimated parameters, in Figure 2 we show the mean lap 
speed and the probability of Bil  =  0 and the conditional 
probability of Bil  =  1 given Bil > 0. These curves are based on 
the estimated parameters, but the represented points are 
obtained by a Monte Carlo simulation, in order to account 
for the non-informative drop-out due reaching the race 
time deadline of 24 h. This procedure amount to randomly 
draw a large number of trajectories for each cluster and 
then computing the average trajectory. In practice, each 
simulated trajectory is obtained as of series of values 
randomly drawn from the conditional distribution of the 
response variables Yil and Bil given the cluster.

Interestingly, all of the clusters are characterized by a 
decreasing speed profile but with a rise in speed prior to 
the end of the race. The rise is particularly strong in Cluster 
1 but this can be explained by the fact that a number of 
runners from this cluster drop out and the remaining 
runners have a higher average speed than those in the 
laps prior to when they dropped out. Further, Clusters 2 
and 3 initially have a flat speed profile before the profile 

Table 2: Model summaries for the choice of the appropriate number 
of strategies (k).

k   Log-likelihood   #par   BIC   Entropy   NEC

1  −42559.12   12   85186.65   0.0000   1.000000
2  −37979.32   27   76112.55   3.0549   0.000667
3  −36073.36   42   72386.13   3.7283   0.000575
4  −35054.75   57   70434.43   5.9694   0.000795
5  −34539.12   72   69488.67   8.2349   0.001027

Table 3: Estimates of the parameters βu, with standard errors in 
parentheses.

Power 
 

Cluster (u)

1  2  3

0   9.524  9.235  10.014
  (0.209)  (0.042)  (0.016)

1   27.970  2.482  −6.514
  (2.975)  (0.606)  (0.228)

2   29.615  16.135  6.697
  (2.126)  (0.497)  (0.229)

3   5.619  6.702  4.480
  (0.874)  (0.278)  (0.190)

Table 4: Estimates of the parameters γ1u and γ2u.

Cluster (u) 
 

Bil

Power  1  2

1   0  −12.088  −12.189
    (2.829)  (0.603)
  1  −113.806  −88.901
    (39.343)  (2.426)
  2  −82.106  −71.177
    (25.082)  (3.915)
  3  −18.031  −14.235
    (9.989)  (5.665)

2   0  −6.120  −7.022
    (0.431)  (0.747)
  1  2.824  11.623
    (10.856)  (19.827)
  2  −27.313  −23.202
    (4.749)  (8.282)
  3  2.789  9.233
    (5.842)  (10.780)

3   0  −8.199  −7.644
    (2.163)  (0.863)
  1  33.418  11.216
    (39.297)  (19.556)
  2  −37.100  −24.525
    (21.962)  (9.541)
  3  1.834  3.251
    (16.060)  (11.213)

The standard error of the estimates are given in parentheses.

drops and eventually rises. Thus, the speed profiles of the 
groups can be characterized as a mix of those outlined in 
Abbiss and Laursen (2008). Most runners follow an even 
pacing initial phase for the early laps but this is followed 
by a reverse-J pacing phase. The athletes in the higher per-
forming groups are able to maintain the even pacing for 
more laps than the lower performing groups.

It is also worth noting that the effect of the runner 
covariates, gender and age, as shown in Table 5 are only 
minor. The possibility of including higher order regression 
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Table 5: Estimates of the parameters δu with standard errors in 
parentheses.

Covariate  
 

Cluster (k)

2  3

Intercept   1.135  0.777
  (0.227)  (0.240)

Gender   −0.298  −0.512
  (0.320)  (0.345)

Age   −0.003  −0.034
  (0.024)  (0.025)
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Figure 2: The top panel shows the estimated mean trajectories given the cluster; the middle panel shows the trajectories of the conditional 
probability that a subject is still running in a certain lap; the lowest panel shows the proportion of a subject resting in a certain lap. The 
solid line corresponds to the first group, the dashed line to the second group, and the dotted line to the third group.

terms was considered but these terms had little effect on 
the model, so they are omitted. The fitted cluster probabil-
ities can also be seen in Figure 3 where the probability of 
each cluster membership is shown for males and females 
and the range of ages of the participants in the race; the 

probabilities are approximately constant with respect to 
the covariates. In addition, it is clear that Cluster 2 is the 
most prevalent, followed by Cluster 3 and Cluster 1. Thus, 
the cluster of slowest runners is the least prevalent one 
within the set of competitors.

As already noticed in the entropy calculations from 
Table 2, the clustering divides the runners into very dis-
tinct clusters. In fact, the maximum a posteriori prob-
abilities are almost all very close to 1, with a mean value 
of 0.9933. Thus, the model has effectively clustered the 
runners into different and distinct strategies.

The trajectories of the runners in each cluster are 
reported in Figure 4. The plot of the trajectories and the 
mean trajectory shows that the model fits the data very well 
and the differences between the clusters are highlighted. 
In particular, the speed trajectory for each cluster is quite 
similar but the runners in different clusters are running 
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Figure 3: Probability of belonging to each cluster for each gender and age. The pink lines show the probabilities for females and the blue 
lines for males. The probability of belonging to Cluster 1 is shown as solid line, Cluster 2 as a dashed line and Cluster 3 as a dotted line.
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Figure 4: Trajectories of the runners assigned to each cluster with corresponding mean (solid) and estimated mean on the basis of the 
parameters (dashed).

at different average speeds (increasing from Cluster 1 to 
Cluster 3). Further, the clusters are also characterized by 
the rate of resting and dropping out with these behaviors 
being less prevalent and later as the cluster number goes 
from 1 to 3.

Finally, to check the conditional independence 
assumption in equation (2), we obtained the residuals 
for each athlete and lap as the difference between the 
observed speed and the predicted speed given the latent 
class assignment of the athlete. We then computed the 
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autocorrelation of the residuals for each athlete given that 
he/she is running normally, obtaining in this way n auto-
correlation coefficients. Table 6 shows the main descrip-
tive statistics for these autocorrelations. These results 
indicate that the aforementioned assumption of con-
ditional independence between lap speeds may be too 
restrictive. To overcome this limitation we suggest some 
possible extension in Section 5.

5  Discussion and conclusions
The running strategies of the runners in the 2013 Inter-
national Association of Ultrarunners 24-Hour World 
Championships has been investigated using a latent tra-
jectory model. The model was constructed to capture the 
changing speeds of the runners in the race and to facili-
tate modeling runners who rest or stop during the race 
duration.

The modeling strategy established that there were 
three distinct clusters of runners who differed in both 
their running speed and their prevalence to rest or stop 
running completely. In all clusters, the runners exhibited 
a gradual decrease in pace throughout the race; this is 
similar to the pacing observed by Lambert et al. (2004) in 
a 100 km race. However, interestingly, in all clusters the 
average speed of runners increased when the end of the 
race became closer; this is similar to what has been previ-
ously observed in a wide range of race distances as out-
lined in Section 2.

Further, the propensity to stop shows a peak towards 
the middle of the race only. The group of best perform-
ing runners had very little tendency to stop at any point 
during the race. The cluster membership was not strongly 
influenced by either gender or age. The middle speed 
runners form the largest cluster, faster runners forming 
the next largest cluster and slower runners forming the 
smallest cluster.

Likelihood-based inference for this model was 
achieved using the EM algorithm combined with model 
selection using the normalized entropy criterion, so that 
clearly separated clusters yielded.

Table 6: Descriptive statistics about the athlete-specific 
autocorrelations coefficients between residuals.

Minimum  1st Quartile  Median  Mean  3rd Quartile  Maximum

−0.3625   0.3091  0.4929  0.4681  0.6585  0.9583

Limitations of the proposed approach are mainly 
due to the structure of the data and, in particular, to the 
reduced number of covariates that are available. In fact, it 
would be of interest to dispose of more details about the 
athletes, such as previous performances in similar races. 
However, if available, this information may be easily 
included among the individual covariates affecting the 
probability of belonging to each cluster. Similarly, time-
varying covariates related, for instance, to the temporary 
weather conditions, could be included in the model, but 
this would require a suitable data manipulation to take 
into account that the outcomes are referred to each lap run 
by every athlete and the same lap number may correspond 
to different moments of the race for different athletes. This 
is mainly due to the variability of the performances in 
terms of lap speed.

The proposed approach assumes that, given the 
latent class, the probability of running normally at any 
time is independent of any other time. In addition, given 
the latent class and running normally, the speed at a 
particular time is conditionally independent of that at 
any other times. In particular, the diagnostic analysis 
illustrated at the end of previous section indicates that 
the second assumption is restrictive for the data at issue. 
A possibility to relax this assumption is to assume a 
mixed-effects model based on random intercepts and/or 
regression coefficients as in the approach of Muthén and 
Shedden (1999). This approach may result in more precise 
inferences and reduced bias by addressing the depend-
ence between consecutive laps.

Finally, it is also important recalling that a basic 
assumption of the proposed model is the independence 
between athletes in terms of behavior during the race. 
This assumption rules out possible interactions between 
runners which would be of interest to study. In particular, 
there might exist particular “group” strategies that lead to 
an improvement of the performance of certain athletes. 
This again would require a more complex data structure 
and, in particular, a much more sophisticated model 
having elements of a model for social networks that could 
be the object of future research.
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