DE GRUYTER

J. Quant. Anal. Sports 2015; 11(4): 193-203

Francesco Bartolucci* and Thomas Brendan Murphy

A finite mixture latent trajectory model for
modeling ultrarunners’ behavior in a 24-hour race

DOI 10.1515/jqas-2014-0060

Abstract: A finite mixture latent trajectory model is devel-
oped to study the performance and strategy of runners in a
24-h long ultra running race. The model facilitates cluster-
ing of runners based on their speed and propensity to rest
and thus reveals the strategies used in the race. Inference
for the adopted latent trajectory model is achieved using
an expectation-maximization algorithm. Fitting the model
to data from the 2013 World Championships reveals three
clearly separated clusters of runners who exhibit different
strategies throughout the race. The strategies show that
runners can be grouped in terms of their average moving
speed and their propensity to rest during the race. The
effect of age and gender on the probability of belonging to
each cluster is also investigated.

Keywords: clustering; expectation-maximization algo-
rithm; non-ignorable drop-out; ultra running.

1 Introduction

The International Association of Ultrarunners (IAU)
24-Hour World Championships were held in Steenbergen,
The Netherlands, from May 11th to 12th, 2013. In this race,
299 competitors ran for 24 h on a course that had a 2.314
km lap. The runners had a chip on their shoe, so their lap
count could be recorded automatically and so that time
that they finished each lap was also recorded. At the end of
the 24-h time period, an alarm is sounded and all runners
must stop running immediately. Then, the fraction of the
final lap is recorded for each runner. Throughout the race,
during any of these laps a runner can continue running,
rest for a while and, obviously, he/she can leave the com-
petition before the end. The strategy and performance of
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the runners in the event are potentially very different due
to the age and gender of the participants.

In this paper, we study these data to uncover the
strategies used by the runners in the race. We anticipate
that the runners will fall into clusters depending on how
their strategy might evolve throughout the race. The study
of the pacing strategies used allows for comparing the
strategies used to those in races over shorter distances.
Further, the influence of age and gender on performance
can be assessed.

In order to analyze these data and, in particular,
cluster runners according to the adopted strategy, we
introduce a latent trajectory model in the spirit of Roeder,
Lynch, and Nagin (1999); see also (e.g. Muthén and
Shedden 1999; Muthén 2004; Bollen and Curran 2006).
In practice, the approach is based on a finite mixture of
linear and multinomial logit regressions models. The
linear regression component is for the speed observed
at every lap completed by the runner as response vari-
able. The multimonial logit regression component is for
a categorical response variable that, again for every lap,
indicates if the subject is regularly running, resting, or
leaves before completing the lap. In this way we account
for a form of non-ignorable drop-out.

The proposed model accounts for a number of
aspects of modeling race duration data that have not
been accounted for in many previous studies. In fact, pre-
vious studies aggregate the runner pace data over fixed
distance intervals and analyze the data using analysis
of variance methods (e.g. Hanley 2015). This approach
removes important information when the aggregation is
used and the analysis of variance does not account for the
temporal dependence in the pacing data throughout the
race. Our model accounts for the temporal dependence
in the runner speeds within the race. We explicitly model
the runner resting or stopping, which is a feature of ultra
running data that does not appear in races over shorter
distances. Thus, the clustering of the runners into distinct
strategies is determined by the runner speed and pro-
pensity to stop rather than their speed alone which can
vary hugely if resting is not explicitly accounted for in the
model.

The paper is structured as follows. In Section 2
we introduce the data from the IAU 24-Hour World
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Championships and discuss previous studies on race
pacing. In Section 3 we develop the model for analyz-
ing the runners’ strategies and discuss issues to do with
model fitting and model selection. The results of fitting
the model are presented in Section 4 and the paper con-
cludes by discussing the analysis and the methodology
in Section 5.

We make the data and the R code that we used to fit
the model available to the reader upon request.

2 Preliminaries

In the following we provide more details on the back-
ground and the data studied in this article.

2.1 Background

The IAU 24-Hour World Championships were held in
Steenbergen, The Netherlands, in 2013. Over the 24-h
period a total of 299 competitors ran on a course that
had a 2.314 km lap. The athletes in the race were selected
from their home country using qualification criteria set by
their home ultrarunning association, thus most partici-
pants would be considered to be elite ultrarunners with
experience in events that are challenging in distance and
duration.

The weather over the two race days averaged 10°C
which was 3°C lower than the mean temperature for that
time of year in the region. Further, there was a considera-
ble amount of precipitation, 8.8 mm of rain over the 2 days
which included the race, and the winds were about 6 m/s
with gusts as strong as 17 m/s. So, the race conditions were
considered to be very difficult. These weather conditions
increased the necessity to stop and change strategy during
the race and contributed to the high drop-out rate due to
injury, hypothermia, exhaustion and other factors during
the 24 h.

A number of factors have been shown to influence the
performance of a runner and their probability of comple-
tion in extreme ultrarunning events of the type being ana-
lyzed herein. Zingg et al. (2013) found that 40—-44-year-old
men and 35-39-year-old women had the fastest pace in
24-h races. Further, they found that female athletes have
an average speed that is approximately 10% slower than
male athletes. Lambert et al. (2004) studied the decrease
in pace in 100 km ultra races and showed that the top
runners were able to maintain their speed for 50 km but
declined by 15% from their starting speed by the finish;
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however, in the IAU 24-h race data the runners tend to
cover much greater distances than those studied therein.
Further, Kao et al. (2008) found that runners in a 24-h
race lose 5.05+2.28% of their body weight, so the nutri-
tional and hydration demands of such events are crucial
and thus the races can have high attrition throughout.

A significant amount of research has been com-
pleted on pacing in athletic events including running,
cycling, swimming, speed skating and triathlon. Abbiss
and Laursen (2008) review the strategies used and
characterize them into: negative pacing (where speed
increases throughout the event), all-out pacing (where
there is an initial burst of speed followed by a slowly
decreasing speed), positive pacing (where there is a grad-
ually decreasing speed), even pacing (where the speed is
constant), parabolic pacing (where the speed gradually
decreases through an event but increases at a later stage
in the event) and variable pacing (where the speed varies
throughout an event, usually due to external factors like
geography or environment). Within the parabolic pacing
strategy, three shapes were characterized, a U-shaped
(with a symmetric pacing profile), a J-shaped (where a
small pacing decrease is followed by a steep rise in pace)
and reverse J-shaped (where a strong pacing decrease is
followed by a small rise in pace). Hanley (2015) studied
pacing in the IAAF World Half Marathon (21.1 km) champi-
onships and found that the top runners maintained a con-
stant speed for 15 km followed by a small decrease from 15
to 20 km and a strong increase in speed for the final 1.1 km
whereas other runners had a gradual decrease in speed
over the first 20 km followed by an increase for the final
1.1 km. Lima-Silva et al. (2010) did a similar analysis for a
10 km running race and observed similar pacing profiles
where the pace was constant or slowly decreasing for the
first 9600 m followed by a sudden increase for the final
400 m. Further, March et al. (2011) and Santos-Lozano
et al. (2014) found similar pacing profiles in races over the
marathon distance.

There have been fewer studies of pacing within
ultra marathon events. However, Lambert et al. (2004)
showed that in a race over 100 km, the pace of athletes
tends to decrease over the duration of the event; they did
not observe a strong increase at the end of the race, but
this may because their data are aggregated over 10 km
intervals.

Therefore, the performance in terms of speed, mini-
mizing resting and avoiding dropping out are dictated by
a number of factors for runners in ultra running events of
long duration. Thus, it is of great interest to investigate
the strategies used and to see how different clusters of
runners utilize different strategies during such an event.
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This will also allow for comparison of the pacing strate-
gies in 24-h ultra races with races of a shorter duration.

2.2 Data

For each of the n = 299 runners we have a record of the lap
time for each completed lap until the 24-h period was com-
pleted. Overall, 219 of the runners were still running at the
end of the 24-h period and 80 runners finished running a
significant time period before the end of the 24-h period.

In Table 1 we report some summary statistics for the
runners: age at the start of the race, the number of com-
pleted laps, number of laps completed in a non-standard
way (e.g. resting during the lap), speed per lap and average
speed per athlete (km/h). In these summaries, we con-
sider a lap to be completed in a non-standard way when
the lap speed is below 4 km/h which indicates that the
runner may have stopped during the lap or commenced
walking during the lap. Further, 68% of the participants in
the race were male and 32% were female. In order to prop-
erly read the table, note that the column “Speed” refers to
single laps, whereas the column “Av. Speed” is referred to
athletes and then it happens that the maximum average
speed is lower than the maximum speed and the minimum
average speed is higher than the minimum speed.

The only covariates available for the runners are age
and gender. Whilst the performance of the runners may
depend on many other factors including training, experi-
ence and nutrition, this information is not available for
modeling purposes. However, the event is one for elite
athletes selected by their home nation, so the athletes
need to be experienced and well prepared to participate
in the event.

The main variables of interest in this study are the
runner’s speed per lap and a categorical variable that
records the runner’s behavior (or status) during a lap (i.e.
if the subject is running, resting, or leaves the race in a

Table 1: Descriptive statistics for the runners, the lap count and the
lap speed data for the participants in the race.

Age N. laps N. laps Speed  Av. speed

(not running)  (km/h) (km/h)

Min. 21.0 14.000 0.000 4.000 4.133
1st Qu. 39.0 55.000 0.000 8.106 8.312
Median  45.0 80.000 0.000 9.450 8.998
Mean 45.5 74.550 1.087 9.184 8.965
3rdQu. 51.0 92.000 2.000 10.440 9.708
Max. 72.0 116.000 13.000 13.930 11.390
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certain lap). The trajectory of the speed and of the categor-
ical variable throughout the race are displayed in Figure 1.

The overall appearance from Figure 1is that the speed
has a convex shaped behavior with respect to the lap
number. Different explanations may be conjectured for
this shape. A natural explanation is that runners tend to
decrease the speed during the first part of the competition
but they increase the speed when the end of the race is
getting close. However, there is a drop-out effect due to
the race being run for a fixed time (24 h) rather than a
fixed distance. Thus, faster runners complete more laps,
whereas slower runners complete fewer laps and they are
not considered in the computation of the average speed
when the lap number is large. Moreover, there is one
further form of drop-out due to a runner leaving the race
before the end of the competition and this may have a
similar effect on the shape of the average lap speed.

We also note that the proportion of subjects still
running dramatically decreases after the 50th lap and this
is again due the two forms of drop-out mentioned above.
On the other hand, we have a parabolic behavior for the
proportion of subjects resting in a certain lap with the pro-
portions being very low for low lap numbers and decreas-
ing again for high lap numbers.

Thus, appropriate statistical modeling of the race data
will need to account for the features found in this explora-
tory data analysis; the development of such a model is
given in Section 3.

3 The statistical model

For the sample of n runners, let L; denote the random vari-
able for the number of laps completed by runner i before
the end of the race, with i = 1, ..., n. Moreover, let B; be
the discrete random variable for the behavior (or status)
of runner i during lap [, with [ = 1, ..., [, where [; is the
realization of L; (the convention of using lower-case letters
for realizations of random variables or vectors is used
throughout the article). In particular, B; = 0 stands for
a standard run lap, B; = 1 for a lap in which the runner
rests, and B; = 2 denotes that subject i leaves before the
end of the race during lap L. For a runner with a good
performance we expect to observe all values of B; equal
to O (or almost all values equal to 0). Finally, we denote
the speed at which runner i completed lap I by Y;. The
observed speed, y;, is availablefori=1,...,nandl=1, ...,
I; and when B;; = 0; when B; = 1 the observed speed, y;, is
not relevant in our analysis and when B; = 2 no speed is
observed because the runner is finished running.
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Figure 1: The top panel shows trajectories of speed for the individual runners (one every five) and the average speed per lap in red; the middle
panel shows the proportion of subjects still running in a certain lap; the bottom panel shows the proportion of runners resting in a certain lap.

3.1 Model assumptions

We adopt a latent trajectory model (Muthén and Shedden
1999; Roeder et al. 1999; Muthén 2004; Bollen and Curran
2006) that accounts for different possible strategies
in running and at the same time facilitates clustering
runners according to the adopted strategy by consider-
ing that for certain laps they may be running normally
(By = 0), also they may have a rest (B; = 1), they may
finish before the end of the race (B; = 2), or they finish
because the 24-h time limit is reached. Essentially differ-
ent lap performances are grouped into a finite number of
possible states and different strategies are represented by
specific probabilities for these states. Also the runners are
clustered in finite number of latent classes according to
their overall performance and the a priori probabilities to
belong to each cluster are allowed to depend on individ-
ual covariates.

Let U; denote a latent variable for the overall perfor-
mance of runner i and let k denote the number of its pos-
sible values, labeled from 1 to k, with the corresponding
mass probabilities indicated by 7;, = p(y; = u) where x;,
may depend on runner-specific covariates. Each of the
values (u) identifies a cluster of runners. The model is
based on the following assumptions for every runner i
given that he/she is in cluster u:

— on the first lap (I = 1), B; has a generalized Bernoulli
distribution with probabilities parametrized on the
basis of multinomial logits, that is,

1
p(B<=O|U-=u)= , ’, 4
il ! 1+exp( x[y,,) +exp( Xxjy,,)
eXp(xl’ylu)
p(B;=1|U;=u) = ; ; ’ 1
i ! 1+exp( x[y,,) +exp(x{y,,) M
exp( x7
o(By=2| Uy =)= XPOX{Y 2,)

1+ exp( Xfyy) +exp(xy,)’
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where x; is a function of [; in particular, every x; is a
column vector containing the terms of an orthogonal
polynomial (Kennedy and Gentle 1980) of order r,
which in our application is fixed equal to 3. If B; = 0,
then we assume the following model for the lap speed:

Yy | By =0, Uy=u~N(uy, 0), uy, = XiB,- )

If B; = 1 then the distribution of Y} is left unspecified
whereas if B; = 2 then the process is stopped. The
process is also stopped if the distance between the
time of the lap (depending on the speed) is close to the
end. Parameter vectors y,,, ¥,,, and 8, and cluster spe-
cific, whereas the variance o2 is common to all clusters.

- for the following laps (I > 1) and provided that the run-
ner is still in the competition, B; and Y; are assumed
to have the same distribution as above. Again, if the
overall time is close to the end of the race or B; = 2,
then the precess is stopped as the runner leaves the
competition.

Note that there are two forms of drop-out. The first is due
to the overall time of the race which is non-informative
as it deterministically depends on the previous values of
response variables. The second, for the runner leaving
the competition before the end, is informative and it is
explicitly accounted in by the multinomial logistic regres-
sion model (1). Also note that, according to assumption
(2), the lap speeds are conditionally independent given
latent class and running normally. This assumption needs
to be carefully checked on the basis of the corresponding
residuals as we will show in Section 4.

Additionally, we allow for individual covariates to
affect the distribution of the latent variables U;. In par-
ticular, we adopt a parametrization based on multinomial
logits of the following type:

1og PU=W _1oe Tiu _ 2

=log—*%=2%,,u=2, ..., k, 3
(U =1 "8 =B 3)

where z; is the vector of covariates (including a constant
term for the intercept) for individual i, which are consid-
ered as fixed and given and d,, is the corresponding vector
of regression parameters for being in the u-th category
instead of the first category. In the context of this race
we have the age and gender of each runner available and
these are included as covariates.

The labeling on the clusters is arbitrary and thus
the model is only identifiable up to a permutation of the
cluster labels. This problem is known as the label-switch-
ing problem in mixture models (Redner and Walker 1984).
When studying the fitted models we label the clusters in
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terms of increasing race performance so that the results
are presented in an intuitive manner.

3.2 Maximum likelihood estimation

In order to express the model likelihood, we have first to
express the distribution of the response variables given
the latent variables. In particular, for each subject i we
observe the sequence b; = (b, ..., by)’; we also observe
Vi.0ps Which corresponds to all or a part of the sequence y; =
/s ---» Ya)'- In particular, if all elements of b; are equal to
0, then y; . and y; will coincide; if some elements of b; are
equal to 1 or 2, then y; ,,s will be a subvector of y;.

Based on the assumptions formulated in the previ-
ous section, the distribution of interest has the following
density function:

l
f( b," Yiobs | U; =u) =|:Hp(bil | U; =u):|[
=1

u=1,...,k,

ki
H ¢(in | U; =u)‘|,

I=1:b;=0

where p(by|U; = u) is defined in (1), the second product is
extended to all observed elements of y;, and ¢(y;|U; = u)
denotes the density of the normal distribution defined
according to assumption (2). As in a standard finite
mixture model, the manifest distribution has density that
may be obtained as

k
f(bi’ yi,obs) :zniuf(bi’ Yi,obs | Ui :u)'

u=1

This is the basis for the model log-likelihood, which
has expression

1(0) =108 f(by, ¥ 015,

i=1

where 0 is a vector containing all model parameters, that

iS, Bus P Yo O foru =1, ..., k, and o
In order to maximize /() with respect to 8, we rely

on the Expectation-Maximization (EM) algorithm (Demp-

ster, Laird, and Rubin 1977). This algorithm has been used
extensively for fitting mixture models (see McLachlan
and Krishnan 1997; McLachlan and Peel 2000; Fraley and

Raftery 2002) in the maximum likelihood framework.

The EM algorithm is based on alternating the follow-
ing two steps until convergence in the target function:

— E-step: it consists of computing the conditional
expected value, given the observed data and the cur-
rent value of the parameters, of the complete data log-
likelihood, which is defined as follows:
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n k
1(0) =Y. > ziloglwy f( by, ¥ os | Uy =]

i=1u=1

In the above expression, z;, is an indicator variable
equal to 1if subject i belongs to cluster u (i.e. U; = u), and
to O otherwise.

— M-step: the expected value resulting from the E-step
is maximized with respect to 6 and, in this way, this
parameter vector is updated.

In practice, the E-step reduces to compute the (condi-
tional) expected value of each indicator variable z,
denoted by Z;,, by the following simple rule on the basis
of the current value of the parameters:

5 T f (By, ¥ ops | Ui = 1)
“ f(bi’ yi,obs)

Regarding the M-step, we can use explicit solutions
for the parameter vectors B, and for the common vari-
ance 0%

n ki - n ki
ﬂu:[zéiu z x,x{] Z‘%iu Z YaXpu=1, .., k,

i=1  I=1:b;=0 i=1  I=1:b;=0
S Y Eu o Vi)’
g2 = St iU £u]=1:h;=0 Vi~ M
= . ,

0;

i=1

where o; is the dimension of y;,,, that is, the number
of regularly completed laps by runner i. On the other
hand, updating the remaining parameters y,, and y,, in
(1) requires an iterative algorithm of a Netwon-Raphson
type. However, this is a simple algorithm since the objec-
tive function being maximized is of the same form as the
objective function used when fitting a standard multino-
mial logit model with weights by maximum likelihood.
The same Netwon-Raphson algorithm is also applied to
update the parameters é, in (3) that affect the distribu-
tion of each latent variables U; on the basis of the indi-
vidual covariates. In the case where the 7;, probabilities
are assumed to be equal for all subjects (i.e. 7, = m,),
we have an explicit solution for the maximization of the
expected complete-data log-likelihood with respect to the
7, probabilities:

18 .
Ty== Zyou=1, ., k.
My

Itisimportant, as for any other iterative algorithm, that
the EM algorithm described above is suitably initialized;
this amount to guessing starting values for the parame-
ters in 6. We suggest to use both a simple rule providing
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sensible values for these parameters and a random rule
which allows us to properly explore the parameter space.
Just to clarify, we choose the starting values for the mass
probabilities 5, as 1/k for u = 1, ..., k under the first rule,
which is equivalent to fix the same size for all clusters. The
corresponding random starting rule is instead based on
first drawing each parameter s;, from a uniform distribu-
tion between 0 and 1 and then normalizing these values.

We recall that trying different starting values for the
EM algorithm is important to face the problem of multi-
modality of the likelihood function that may arise in finite
mixture models and combining different initialization
rules (deterministic and random) is an effective strategy
in this regard.

3.3 Model selection

Given that our application is focused on the clustering of
individuals in separate groups, the main selection crite-
rion we use for the number of these groups is the Normal-
ized Entropy Criterion (NEC; Celeux and Soromenho 1996;
Biernacki, Celeux, and Govaert 1999). This criterion is
based on the following index:

n k A ~
- z; log z;
NECk= Zl—lgu—}} w lu, k22,
!

with NEC, = 1, where the numerator corresponds to
the entropy and the denominator to the difference in
maximum log-likelihood between the model with k
classes and with 1 class. According to this approach, the
value of k corresponding to the minimum of NEC, has to
be preferred, as it corresponds to the model being the best
compromise between separation of the classes (as meas-
ured by the entropy) and goodness-of-fit (measured by the
log-likelihood).

For completeness, we mention that another impor-
tant criterion for selecting the number of components of a
mixture model is the Bayesian Information Criterion (BIC;
Schwartz 1978; Kass and Raftery 1995), which is based on
the minimization of the index

BIC, = —2?,( +log(n)(#par),

where #par is the number of free parameters in the
model; for an illustration see McLachlan and Peel (2000),
Chapter 6. However, it is known that this criterion typi-
cally leads to a less parsimonious model than the model
selected with NEC and, in particular, with classes not well
separated. Therefore, given the target of our application,
we prefer to rely on NEC.
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4 Results

The proposed model was fitted, using maximum likeli-
hood, for increasing values of k from 1 to 5. For each model
fit, the value of the maximized likelihood, the entropy,
NEC and BIC values were computed; the results are shown
in Table 2.

Considering that our primary aim is the clustering of
runners into distinct states, we rely on the NEC criterion
and choose k = 3 clusters, corresponding to the minimum
of the corresponding index. In any case, we have very
good separation (low entropy) between the clusters under
any choice of k; thus the model clearly separates runners
into clusters and does this in a definitive manner.

For the selected model, with k = 3, the parameter esti-
mates together with corresponding standard errors are
reported in the Tables 3-5. The clusters have been labeled
according to the average speed, with the lowest speed
cluster labeled as Cluster 1 and the highest speed cluster
labeled as Cluster 3.

In order to interpret the clusters according to the
estimated parameters, in Figure 2 we show the mean lap
speed and the probability of B; = 0 and the conditional
probability of B; = 1 given B;>0. These curves are based on
the estimated parameters, but the represented points are
obtained by a Monte Carlo simulation, in order to account
for the non-informative drop-out due reaching the race
time deadline of 24 h. This procedure amount to randomly
draw a large number of trajectories for each cluster and
then computing the average trajectory. In practice, each
simulated trajectory is obtained as of series of values
randomly drawn from the conditional distribution of the
response variables Y; and B; given the cluster.

Interestingly, all of the clusters are characterized by a
decreasing speed profile but with a rise in speed prior to
the end of the race. The rise is particularly strong in Cluster
1 but this can be explained by the fact that a number of
runners from this cluster drop out and the remaining
runners have a higher average speed than those in the
laps prior to when they dropped out. Further, Clusters 2
and 3 initially have a flat speed profile before the profile

Table 2: Model summaries for the choice of the appropriate number
of strategies (k).

k  Log-likelihood  #par BIC  Entropy NEC
1 -42559.12 12 85186.65 0.0000  1.000000
2 -37979.32 27  76112.55 3.0549  0.000667
3 -36073.36 42 72386.13 3.7283 0.000575
4 -35054.75 57  70434.43 5.9694  0.000795
5 -34539.12 72 69488.67 8.2349  0.001027
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Table 3: Estimates of the parameters 8, with standard errors in
parentheses.

Power Cluster ()
1 2 3

0 9.524 9.235 10.014
(0.209) (0.042) (0.016)

1 27.970 2.482 -6.514
(2.975) (0.606) (0.228)

2 29.615 16.135 6.697
(2.126) (0.497) (0.229)

3 5.619 6.702 4.480
(0.874) (0.278) (0.190)

drops and eventually rises. Thus, the speed profiles of the
groups can be characterized as a mix of those outlined in
Abbiss and Laursen (2008). Most runners follow an even
pacing initial phase for the early laps but this is followed
by a reverse-] pacing phase. The athletes in the higher per-
forming groups are able to maintain the even pacing for
more laps than the lower performing groups.

It is also worth noting that the effect of the runner
covariates, gender and age, as shown in Table 5 are only
minor. The possibility of including higher order regression

Table 4: Estimates of the parametersy,, andy,,.

Cluster (u) B;
Power 1 2

1 0 -12.088 -12.189
(2.829) (0.603)

1 -113.806 -88.901

(39.343) (2.426)

2 -82.106 -71.177

(25.082) (3.915)

3 -18.031 -14.235

(9.989) (5.665)

2 0 -6.120 -7.022
(0.431) (0.747)

1 2.824 11.623

(10.856) (19.827)

2 -27.313 -23.202

(4.749) (8.282)

3 2.789 9.233

(5.842) (10.780)

3 0 -8.199 -7.644
(2.163) (0.863)

1 33.418 11.216

(39.297) (19.556)

2 -37.100 -24.525

(21.962) (9.541)

3 1.834 3.251

(16.060) (11.213)

The standard error of the estimates are given in parentheses.
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Table 5: Estimates of the parameters d, with standard errors in
parentheses.

Covariate Cluster (k)
2 3

Intercept 1.135 0.777
(0.227) (0.240)

Gender -0.298 -0.512
(0.320) (0.345)

Age -0.003 -0.034
(0.024) (0.025)

terms was considered but these terms had little effect on
the model, so they are omitted. The fitted cluster probabil-
ities can also be seen in Figure 3 where the probability of
each cluster membership is shown for males and females
and the range of ages of the participants in the race; the
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probabilities are approximately constant with respect to
the covariates. In addition, it is clear that Cluster 2 is the
most prevalent, followed by Cluster 3 and Cluster 1. Thus,
the cluster of slowest runners is the least prevalent one
within the set of competitors.

As already noticed in the entropy calculations from
Table 2, the clustering divides the runners into very dis-
tinct clusters. In fact, the maximum a posteriori prob-
abilities are almost all very close to 1, with a mean value
of 0.9933. Thus, the model has effectively clustered the
runners into different and distinct strategies.

The trajectories of the runners in each cluster are
reported in Figure 4. The plot of the trajectories and the
mean trajectory shows that the model fits the data very well
and the differences between the clusters are highlighted.
In particular, the speed trajectory for each cluster is quite
similar but the runners in different clusters are running
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Figure 2: The top panel shows the estimated mean trajectories given the cluster; the middle panel shows the trajectories of the conditional
probability that a subject is still running in a certain lap; the lowest panel shows the proportion of a subject resting in a certain lap. The
solid line corresponds to the first group, the dashed line to the second group, and the dotted line to the third group.
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Figure 3: Probability of belonging to each cluster for each gender and age. The pink lines show the probabilities for females and the blue
lines for males. The probability of belonging to Cluster 1is shown as solid line, Cluster 2 as a dashed line and Cluster 3 as a dotted line.

at different average speeds (increasing from Cluster 1 to
Cluster 3). Further, the clusters are also characterized by
the rate of resting and dropping out with these behaviors
being less prevalent and later as the cluster number goes
from 1to 3.

Group 1

Finally, to check the conditional independence
assumption in equation (2), we obtained the residuals
for each athlete and lap as the difference between the
observed speed and the predicted speed given the latent
class assignment of the athlete. We then computed the
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Figure 4: Trajectories of the runners assigned to each cluster with corresponding mean (solid) and estimated mean on the basis of the
parameters (dashed).
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Table 6: Descriptive statistics about the athlete-specific
autocorrelations coefficients between residuals.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

-0.3625 0.3091 0.4929 0.4681 0.6585 0.9583

autocorrelation of the residuals for each athlete given that
he/she is running normally, obtaining in this way n auto-
correlation coefficients. Table 6 shows the main descrip-
tive statistics for these autocorrelations. These results
indicate that the aforementioned assumption of con-
ditional independence between lap speeds may be too
restrictive. To overcome this limitation we suggest some
possible extension in Section 5.

5 Discussion and conclusions

The running strategies of the runners in the 2013 Inter-
national Association of Ultrarunners 24-Hour World
Championships has been investigated using a latent tra-
jectory model. The model was constructed to capture the
changing speeds of the runners in the race and to facili-
tate modeling runners who rest or stop during the race
duration.

The modeling strategy established that there were
three distinct clusters of runners who differed in both
their running speed and their prevalence to rest or stop
running completely. In all clusters, the runners exhibited
a gradual decrease in pace throughout the race; this is
similar to the pacing observed by Lambert et al. (2004) in
a 100 km race. However, interestingly, in all clusters the
average speed of runners increased when the end of the
race became closer; this is similar to what has been previ-
ously observed in a wide range of race distances as out-
lined in Section 2.

Further, the propensity to stop shows a peak towards
the middle of the race only. The group of best perform-
ing runners had very little tendency to stop at any point
during the race. The cluster membership was not strongly
influenced by either gender or age. The middle speed
runners form the largest cluster, faster runners forming
the next largest cluster and slower runners forming the
smallest cluster.

Likelihood-based inference for this model was
achieved using the EM algorithm combined with model
selection using the normalized entropy criterion, so that
clearly separated clusters yielded.
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Limitations of the proposed approach are mainly
due to the structure of the data and, in particular, to the
reduced number of covariates that are available. In fact, it
would be of interest to dispose of more details about the
athletes, such as previous performances in similar races.
However, if available, this information may be easily
included among the individual covariates affecting the
probability of belonging to each cluster. Similarly, time-
varying covariates related, for instance, to the temporary
weather conditions, could be included in the model, but
this would require a suitable data manipulation to take
into account that the outcomes are referred to each lap run
by every athlete and the same lap number may correspond
to different moments of the race for different athletes. This
is mainly due to the variability of the performances in
terms of lap speed.

The proposed approach assumes that, given the
latent class, the probability of running normally at any
time is independent of any other time. In addition, given
the latent class and running normally, the speed at a
particular time is conditionally independent of that at
any other times. In particular, the diagnostic analysis
illustrated at the end of previous section indicates that
the second assumption is restrictive for the data at issue.
A possibility to relax this assumption is to assume a
mixed-effects model based on random intercepts and/or
regression coefficients as in the approach of Muthén and
Shedden (1999). This approach may result in more precise
inferences and reduced bias by addressing the depend-
ence between consecutive laps.

Finally, it is also important recalling that a basic
assumption of the proposed model is the independence
between athletes in terms of behavior during the race.
This assumption rules out possible interactions between
runners which would be of interest to study. In particular,
there might exist particular “group” strategies that lead to
an improvement of the performance of certain athletes.
This again would require a more complex data structure
and, in particular, a much more sophisticated model
having elements of a model for social networks that could
be the object of future research.
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