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Abstract: Perinatology relies on continuous engagement
with an expanding body of clinical literature, yet the volume
and velocity of publications increasingly exceed the capacity
of clinicians to keep pace. Generative artificial intelligence
(GAI) tools – such as ChatGPT4, Claude AI, Gemini, and
Perplexity AI – offer a novel approach to assist with litera-
ture retrieval, comparison of clinical guidelines, and
manuscript drafting. This study evaluates the strengths and
limitations of these tools in maternal-fetal medicine, using
structured clinical prompts to simulate real-world applica-
tions. Perplexity AI demonstrated the best citation accuracy,
while ChatGPT4 and Claude excelled in content summari-
zation but required manual verification of citations. In
simulated trials, GAI tools reduced the time to generate
clinically relevant summaries by up to 70 % compared to
traditional PubMed searches. However, risks such as hallu-
cinated references and overreliance on machine-generated
text persist. Use cases include summarizing aspirin use
guidelines for preeclampsia and comparing ACOG vs. NICE
protocols. GAI should be viewed as a supportive assistant,
not a substitute, for expert review. To ensure responsible
integration, clinicians must develop AI literacy, apply
rigorous oversight, and adhere to ethical standards. When
used judiciously, GAI can enhance efficiency, insight, and
evidence-based decision-making in perinatal care.
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Introduction

Perinatology is a data-intensive discipline that relies heavily
on up-to-date literature, guidelines, and outcome-based
research. Staying abreast of evolving recommendations
from authoritative bodies like the American College of
Obstetricians and Gynecologists (ACOG), the Society for
Maternal-Fetal Medicine (SMFM), and international coun-
terparts such as the National Institute for Health and Care
Excellence (NICE) or the World Health Organization (WHO)
is essential to providing evidence-based care. Yet the volume
and pace of published research can be overwhelming. Over
one million articles are published annually across biomed-
ical journals, and filtering relevant, high-quality data for
clinical application requires both time and expertise. This
challenge is particularly acute in perinatal medicine, where
new studies on interventions, risk prediction models, and
maternal-fetal outcomes appear weekly [1, 2].

The rise of generative AI offers a partial solution to
this burden. Tools like ChatGPT4, Claude AI, Gemini, and
Perplexity AI use natural language processing to analyze,
summarize, and even compare literature and guidelines
based on user-defined prompts [2, 3]. These systems are
trained on large corpora of text and can produce structured
responses that mirror scientific language, making them
appealing tools for clinicians seeking rapid insight. Impor-
tantly, they allow users to query in plain English, reducing
the technical barrier that often exists with database search
platforms like PubMed.

To evaluate the utility of generative AI tools in peri-
natology literature review, we conducted a comparative
analysis using four major platforms: ChatGPT4 (OpenAI),
Claude AI (Anthropic), Perplexity AI, and Gemini AI (Google
DeepMind). We designed 12 structured prompts covering
common clinical inquiries such as “Compare aspirin timing
in preeclampsia prevention” and “Summarize guidelines
for gestational hypertension management.” Each prompt
was entered into all four platforms, and responses were
assessed independently by two maternal-fetal medicine
specialists for accuracy, citation validity, depth of synthe-
sis, and clinical utility. Time-to-output was recorded from
prompt submission to complete response. We further
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tested citation traceability by cross-referencing cited
sources with PubMed and publisher databases. Qualitative
performance was categorized as “high,” “moderate,” or
“low” based on clarity, relevance, and presence of factual
errors. Discrepancies were resolved by consensus.

Generative AI tools were selectively used to support
specific aspects of manuscript development. ChatGPT-4.0
(OpenAI) assisted with language refinement, restructuring,
and formatting of previously drafted sections. Claude AI
(Anthropic) was employed for grammar review and clarity
improvements, while Perplexity AI supported literature
retrieval by suggesting links to relevant studies and
PubMed articles. All references proposed by AI were
manually verified by the authors using PubMed, Google
Scholar, and official journal databases. No generative AI
platform was used to create novel scientific content of
draw conclusions. AI outputs were critically reviewed for
factual accuracy, citation integrity, and relevance. In cases
of citation hallucination or inconsistency, content was
discarded or replaced using verified sources.

No patient specific or identifiable data were entered into
AI systems. All AI use adhered to ethical standards, serving
strictly as editorial and literature support under human su-
pervision. This process aligns with best practices for trans-
parent, responsible integration of AI in academic writing.

Applications in literature retrieval

Among the most promising uses of GAI in perinatology is its
ability to assist with literature searches. Traditional methods
often rely on Boolean operators and MeSH terms within da-
tabases such as PubMed, Embase, or Scopus. This can be time-
consuming andmaymiss relevant studies due to variability in
indexing or keyword selection. Generative AI enables clini-
cians to use natural language prompts such as “What are the
latest randomized trials on aspirin use in pregnancy?” or “List
five systematic reviews published since 2020 comparing
vaginal and cesarean delivery outcomes.” [3, 4].

When used effectively, platforms like Perplexity AI can
provide linked summaries with real citations. Perplexity
integrates with PubMed and other real-time search engines,
offering brief overviews followed by source lists. This allows
clinicians to scan findings, quickly before accessing the full
text for in-depth review. However, verification remains
essential, as even PubMed-linked platforms canmisinterpret
abstract conclusions or overstate statistical significance [5].

In contrast, tools like ChatGPT4 and Claude AI may
provide coherent and fluent summaries but are not always
connected to real-time sources. These models sometimes
fabricate references that appear credible but do not exist,

especially when asked to cite specific studies [6]. Users must
cross-reference any citations with primary sources using
PubMed or journal databases. Despite this limitation, these
tools are excellent for summarizing known content and
exploring general trends in the literature [3].

Guideline comparison and
summarization

Another valuable application of GAI is in the synthesis and
comparison of clinical guidelines. Perinatologists often
consult guidelines for conditions such as preeclampsia,
gestational diabetes, or labor induction. These documents
are detailed, often exceeding 30 pages, andmay differ across
issuing bodies. GAI tools can be prompted to extract specific
sections (e.g., “Compare timing of delivery recommenda-
tions for gestational hypertension in ACOG and NICE
guidelines”) and return tabulated or paragraph summaries.
This function is particularly useful when navigating con-
flicting recommendations. For example, ACOG may advise
delivery at 37weeks formild gestational hypertension, while
NICE suggests consideration between 37 and 39 weeks
depending on individual risk [7–9]. GAI platforms can
generate side-by-side comparisons to facilitate shared
decision-making and streamline guideline teaching for
trainees. Nonetheless, verification is again necessary, espe-
cially for critical recommendations involving medication,
delivery timing, or surgical intervention [10].

Citation accuracy and verification

Historically, a significant limitation of generative AI tools
is their tendency to produce inaccurate or fabricated out-
puts – commonly referred to as “hallucinations.” A recent
empirical analysis of ChatGPT’s role in systematic literature
reviews found hallucination rates reaching up to 91 %,
particularly in interpretative tasks involving citation gen-
eration and content synthesis [6]. While ChatGPT shows
strong sensitivity in title and abstract screening
(80.6–96.2 %), its precision can drop to as low as 4.6 %,
underscoring a persistent risk in tasks requiring nuanced
judgment [6]. These findings reinforce the necessity of
human oversight in academic workflows, especially in
evidence-based fields where accuracy and verifiability are
critical. The Systematic Research Processing Framework
(SRPF), introduced in this context, highlights how AI-human
collaboration may mitigate such risks by structuring over-
sight into each stage of the review process [6].
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While not claiming that AI now hallucinates less than
humans, Altman has cautioned that despite these gains,
generative models still produce errors and must be used
with critical oversight. Even when summaries are accurate,
the inclusion of nonexistent or misattributed references can
compromise the integrity of academic writing. This is
particularly dangerous when drafting manuscripts, pre-
paring presentations, or generating educational content.
Among current platforms, Perplexity AI performs best in
linking real-time references [11]. ChatGPT4 and Claude can
simulate formatting but often include invented citations
unless carefully guided. To mitigate this risk, users should
avoid asking AI to generate citations unless using a tool with
embedded literature databases. Even then, each citation
should be confirmed manually through PubMed or journal
websites. A best practice is to use AI to draft or organize
content, and then independently retrieve and format veri-
fied references. Vancouver or APA style formatting can be
automated by many reference managers, but source integ-
rity must be maintained through human review [12]. This
aligns with current best practices that emphasize hybrid
human – AI models for maintaining academic reliability in
AI-assisted writing workflows [6].

Tool comparison for literature tasks

Each major generative AI tool has unique strengths and
limitations for literature-focused tasks:
– Perplexity AI: Best for citation-linked literature sum-

maries. Draws from real-time data and often includes
hyperlinks to PubMed articles. Limitations include
shallow synthesis and less nuanced discussion [13].

– Claude AI: Strong in structured summaries and manu-
script drafting. Safer and more cautious in tone. Weak-
nesses include occasional hallucinations of references
and a lack of live web access [14].

– ChatGPT4: Versatile across formats, good for lay sum-
maries and patient education. Tends to hallucinate ref-
erences unless prompted with verified input. Strong for
reorganizing existing content [15].

– Gemini 2.5 Pro: Gemini excels at reasoning, analyzing
complex information, and handling multimodal tasks
over long inputs. It combines retrieval and logic for
accurate responses. However, it still struggles with
occasional hallucinations, visual input interpretation,
over-filtering, and maintaining citation accuracy over
long texts.

– [16].

Prompt engineering and clinical
relevance

The quality of GAI output is heavily influenced by prompt
design. Broad or vague prompts often yield generic
responses, while specific, context-rich inputs improve
relevance and depth. For instance, instead of asking “What
is preeclampsia?”, a clinician might ask, “Summarize
recent meta-analyses comparing aspirin initiation before
and after 16 weeks in preventing preeclampsia.” This leads
to better, more targeted results, enabling AI to align its
output with clinical needs. Clinicians should think of
prompting as a skill akin to framing clinical questions using
the PICO (Population, Intervention, Comparison, Outcome)
model. Precise prompts can direct the AI to include study
design, population size, key findings, and limitations.
Prompt templates and libraries may be useful tools for
training residents and fellows to engage effectively with
GAI [4, 17]. (See Table 1).

Quantitative insights on efficiency
and timesaving

In a time trial simulating a real-world scenario – summarizing
aspirin use in preeclampsia prevention, a clinician using
traditional PubMed methods (Boolean search, abstract scan-
ning, manual citation formatting) required an average of
72min to generate a usable summary with five validated
references. In contrast:
– Perplexity AI produced a citation-linked summary in

11 min, requiring only 15 min of verification.
– ChatGPT4, prompted with a verified abstract, produced

a coherent summary in 9 min, though it required 20 min
of manual reference correction.

– Claude AI returned a structurally sound summary in
10 min, but cited three non-existent studies out of 6,
resulting in 18 min of correction.

– Gemini responded in 12 min, with mixed citation qual-
ity, requiring 25 min total.
Net result

Time savings ranged from 35 % to 70 %,with user experience
improving over time as prompt specificity increased. These
results suggest that GAI can cut first-pass literature review
time in half ormorewhen used judiciously [12] (see Figures 1
and 2).
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Risks and ethical considerations

While GAI offers many advantages, it also introduces new
risks. These include overreliance on machine-generated
content, propagation of misinformation, and erosion of
critical reading habits. In clinical education, there is a
danger that trainees may prioritize fluency over accuracy
if AI summaries are accepted uncritically. Furthermore,

institutional policies around the use of AI in manuscript
preparation, student assessments, and grant writing
remain underdeveloped [18]. Ethically, clinicians must
avoid entering patient-identifiable information into any AI
system not specifically designed for secure clinical use.
All GAI-generated content used in academic writing or
public communication should be disclosed. Additionally,
AI should never be used to make independent clinical
decisions or replace guideline review. Instead, it should
be regarded as an assistant for synthesis, not an authority
[19–21].

Discussion

Integrating generative AI into the perinatal workflow offers
meaningful benefits, particularly in reducing cognitive and
administrative load [3]. With careful prompt design and
validation, clinicians can accelerate literature review,
identify new studies for review, and generate draft sum-
maries of complex guideline documents. These efficiencies
can allow more time for direct patient care, professional
development, and thoughtful interpretation of evolving
research [22]. However, GAI must not become a substitute
for expert judgment. Clinical reasoning, statistical literacy,
and ethical responsibility remain central to the practice of
perinatology. These tools are only as effective as the over-
sight applied by their users. As technology evolves, profes-
sional organizations should issue best-practice guidelines to
promote responsible and beneficial use across the field [23].

Table : Prompt engineering impact on AI output in perinatal literature review this table illustrates how the design of prompts significantly affects the
accuracy, depth, and clinical relevance of generative AI outputs. Broad or ambiguous prompts tend to elicit superficial or generic responses, while
context-rich, clinically framed prompts – modeled after approaches like the PICO format – produce more precise, evidence-based summaries. Each
example highlights the transformation of a weak prompt into a more effective one, alongside the corresponding improvement in AI-generated content.

Prompt
type

Example prompt Observed AI output Improved prompt Improved output

Too broad “What is
preeclampsia?”

Generic textbook-style
definition with no recent
references or clinical
relevance.

“Summarize recent meta-analyses
(–) comparing aspirin initiation
before and after  weeks to prevent
preeclampsia.”

Summary included data from multiple
trials, reference to USPSTF and ACOG
guidelines, and clear conclusions
regarding timing efficacy.

Ambiguous “List delivery timing
for hypertension.”

Vague summary mentioning
early delivery without
specifying gestationalwindows
or clinical context.

“Compare delivery timing recommenda-
tions for gestational hypertension
between ACOG and NICE guidelines.”

Output included week-specific timing
(– weeks), differences by guideline
body, and conditional factors like
maternal or fetal status.

Overly
general

“How does aspirin
help in pregnancy?”

General benefits of aspirin
listed without context or
supporting data.

“Describe the mechanism and outcomes
of low-dose aspirin use in preventing
preeclampsia, based on RCTs since .”

Answer included antiplatelet
mechanism, placental perfusion
improvement, and referenced trials
such as ASPRE with citation accuracy.

Figure 1: This figure outlines the sequential process used to evaluate
generative AI tools in our study. The workflow begins with a clinical
question, proceeds through prompt engineering and AI-assisted
literature generation, and endswithmanual verification and review. Tools
assessed included ChatGPT4o, Perplexity AI, Claude AI, and Gemini AI.

4 Ayala-Yáñez et al.: Integrating GAI in perinatology



Although GAI is turning into an essential adjunct for
perinatologists engaged in literature review and evidence-
based practice [24], its integration in perinatology is still in
its early stages. Future iterations of language models are
expected to offer improved citation accuracy, embedded
integrationwith real-time literature databases (e.g., PubMed
or Cochrane), and customizable filters for guideline syn-
thesis across geographies. Development of specialty-specific
AI “co-pilots” trained on obstetric and perinatal literature
may offer even greater accuracy and relevance. Importantly,
structured curricula in AI literacy and prompt engineering
should be incorporated into medical education and
continuing professional development, ensuring safe and
effective use. Ethical standards, transparency requirements,
and institutional policies must evolve in parallel to harness
the full potential of AIwhile safeguarding academic integrity
and patient care [10, 25].

Conclusions

Generative AI is becoming an important adjunct for peri-
natologists engaged in literature review and evidence-based
practice. When used responsibly, tools like Perplexity AI,
Claude, ChatGPT4, and Gemini can help clinicians navigate
medical research more efficiently. By emphasizing prompt
specificity, cross-verifying outputs, and maintaining ethical
standards, clinicians can incorporate GAI into their work-
flow without compromising quality or integrity. AI will not
replace the perinatologist, but those who use AI wisely may
outpace those who do not.
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