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Abstract

Background: Newborn screening (NBS) has long been a
cornerstone of public health, initially designed to detect a
few congenital disorders such as phenylketonuria and
congenital hypothyroidism. This early intervention prevents
irreversible health consequences. With the advent of
genomic technologies, NBS programs are expanding to
include a broader range of rare diseases (RDs), offering new
opportunities and challenges in clinical implementation,
ethics, and health system readiness.
Content: This mini-review traces the evolution of NBS from
biochemical assays to next-generation sequencing (NGS) and
whole-exome sequencing (WES). It highlights complexities in
integrating RDs into NBS panels, including condition selec-
tion, test validation, confirmatory pipelines, and the need for
robust follow-up. Ethical tensions between public health
goals – focused on population benefit – and the personalized
medicine paradigm are discussed, along with the importance
of international harmonization to ensure equitable access.
Summary: Expanding NBS to include RDs can transform
early diagnosis, reduce diagnostic delays, and enable timely
interventions that improve outcomes. Successful genomic
NBS (gNBS) integration requires clear, evidence-based in-
clusion criteria, validated diagnostics, and sustainable
follow-up systems.
Outlook: Rapidly evolving genomic tools will reshape NBS,
demanding agile policies, secure data infrastructures, and
careful attention to consent, privacy, and equity. Interna-
tional collaboration and stakeholder engagement will be
essential to ensure these technologies are implemented

ethically and effectively, balancing public health priorities
with individualized care.
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diseases; public health; personalized medicine

Introduction

Rare diseases (RDs), defined in the European Union as con-
ditions affecting fewer than one in 2,000 individuals,
collectively impact more than 30 million people across
Europe. Although individually uncommon, their cumulative
burden is significant, owing to their often early onset,
chronicity, and severity. Over 70 % of rare diseases manifest
in childhood, and more than 80 % are believed to have a
genetic basis [1]. Despite advances in diagnostics and
biomedical research, patients with RDs frequently
encounter a prolonged and fragmented diagnostic pathway,
often referred to as a “diagnostic odyssey,” which typically
spans over 6 years and involves consultations with
numerous specialists [2, 3]. This delay can lead to irrevers-
ible health deterioration and missed windows for effective
intervention. As highlighted by Groft et al., global efforts to
improve the identification andmanagement of rare diseases
have gained momentum, yet significant disparities remain
in awareness, infrastructure, and access to care [4]. The
development of a comprehensive national RD ecosystem has
been proposed to address such systemic gaps, emphasizing
early diagnosis, data integration, patient-centered policy,
and the inclusion of rare diseases within broader public
health planning frameworks. These national and interna-
tional initiatives underscore the need for coordinated,
equity-driven strategies to improve outcomes for individuals
living with rare diseases [5, 6].

Newborn screening (NBS) offers a powerful tool to
interrupt this cycle by enabling presymptomatic diagnosis
and early treatment [7]. Initiated in the 1960s with Robert
Guthrie’s test for phenylketonuria (PKU), NBS has evolved
from a single-test, single-disease approach to an integrated
system encompassing dozens of conditions [8–10]. However,
the inclusion of rare diseases into NBS panels raises new
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questions, such as how should conditions be selected; what
are the implications of uncertain or variable phenotypes;
uncertain borders between clinically relevant abnormalities
and benign biochemical or genetic abnormalities in most
conditions; can emerging genomic technologies be inte-
grated responsibly; and how to maintain current levels of
trust into the NBS programs.

This review examines these questions by analyzing the
current landscape of NBS for RDs, assessing ethical and
operational challenges, and exploring the future trajectory
of genomic NBS (gNBS).

Current landscape of NBS for rare
diseases

The implementation of NBS programs varies significantly
across countries, reflecting differences in health system
priorities, funding, technical capacity, and policy frame-
works [7, 9, 10]. While some conditions like PKU and
congenital hypothyroidism are almost universally screened
in Europe, others – such as biotinidase deficiency or
medium-chain acyl - CoA dehydrogenase deficiency
(MCADD) – are only included in a subset of countries [10].
Furthermore, not all the inherited disorders that would
warrant early detection to prevent severe consequences are
currently widely adopted in the NBS programs [11]. Ac-
cording to a 2021 survey by Loeber et al., only a minority of
countries screen for more than 20 conditions routinely [10].
Furthermore, significant inequalities in NBS programs still
exist, and several European countries screen only for a few
conditions or even have no NBS program in place [7, 12].

The development of tandemmass spectrometry (MS/MS)
has enabled the simultaneous detection of multiple inborn
errors of metabolism from a single dried blood spot [9, 13].
This expanded NBS model can identify over 40 metabolites,
supporting the detection of aminoacidopathies, organic
acidurias, and fatty acid oxidation disorders [14]. The uptake
of NBS remains exceptionally high (>99 %) across most Eu-
ropean countries, reflecting its critical role in public health
[10]. However, the evolving composition of NBS panels
highlights a persistent tension between traditional
(i.e. Wilson and Jungner) screening criteria and the rapid
advancements in diagnostic capabilities. The inclusion of
rare diseases such as spinal muscular atrophy (SMA) and
severe combined immunodeficiency (SCID) illustrates the
expanding potential of NBS in identifying conditions that can
significantly benefit from early intervention [7]. As the scope
of NBS continues to grow, the integration of novel diagnostic
tools, particularly genomic technologies, presents new

challenges. The application of next-generation sequencing
(NGS) and tandem mass spectrometry (MS/MS) to NBS is
advancing the ability to detect a broader range of metabolic
and genetic disorders, yet the pace at which new conditions
are added remains slow [9, 15].

The integration of these new technologies, while
promising, raises concerns about the clinical implications of
overdiagnosis, false positives, and the strain on healthcare
resources. As the number of conditions screened for in-
creases, so does the complexity of managing false positives
and ensuring timely, appropriate follow-up [7, 15]. These
concerns underscore the need for clear, evidence-based in-
clusion criteria that balance the benefits of early diagnosis
with the potential harms of unnecessary interventions.
Furthermore, robust follow-up systems are essential to
ensure that positive results lead to timely confirmation and
intervention, avoiding the risk of unnecessary treatments or
misdiagnoses [15].

Currently, NBS programs enable detection of a very small
proportion of all the pediatric-onset rare diseases, even if we
consider only treatable diseases. According to estimates,
childhood-onset RDs, constitute approximately 75% of the
estimated over 8,000 RDs globally (actionable diseases, with
treatments or management strategies available, encompass
between 500 and 1,000 gene-disease pairs; around 500 of RDs
are considered treatable) [1–4]. On the other hand, only
around 50 RDs are currently included in the best of the
established NBS programs, highlighting a significant gap in
early detection and intervention opportunities [9–11].

Challenges in selecting conditions
for NBS panels

Traditionally, inclusion inNBSpanels has relied on theWilson
and Jungner criteria established by the World Health Orga-
nization in 1968 [16]. These principles emphasize the impor-
tance of disease severity, availability of treatment, early
symptomatic stages, and cost-effectiveness of screening.
While these remain foundational, they were conceived in an
era with limited therapeutic options and rudimentary di-
agnostics [17]. Applying them rigidly to rare diseases may
excludemany conditions that, while individually uncommon,
are severe, treatable, and detectable in the neonatal period.

In the context of rare diseases and the advent of
genomic technologies, several of the classical Wilson and
Jungner screening criteria warrant reinterpretation or
cautious reapplication [18, 19]. As Andermann and col-
leagues [19] argue, while the core principles of screening
remain valid, new challenges have emerged that were not
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foreseen in the original 1968 framework. For example, the
criterion that a condition should have a “recognizable latent
or early symptomatic stage” becomes problematic when
applied to disorders that present with sudden, irreversible
symptoms in the neonatal period – such as severe combined
immunodeficiency (SCID) or certain inborn errors of meta-
bolism. In such cases, the absence of a latent stage para-
doxically strengthens the rationale for presymptomatic
screening, as clinical recognition may come too late for
effective intervention.

Similarly, the requirement that screening should be
“cost-effective in relation to possible expenditure onmedical
care as a whole” is particularly difficult to operationalize for
ultra-rare diseases. By their very nature, these conditions
lack robust prevalence and outcome data, making conven-
tional cost-effectiveness modeling imprecise or even
misleading. Moreover, available treatments – though
expensive – may dramatically alter the prognosis, raising
ethical questions about how value is defined in public health
contexts. As genomics expands the scope of screenable
conditions, a more nuanced and flexible interpretation of
these criteria is needed – one that balances evidence-based
rigor with the ethical imperatives of early diagnosis and
equitable access to care [19].

To address the limitations of classical screening
criteria – especially for rare and ultra-rare diseases – expert
bodies have developed structured, evidence-based frame-
works for evaluating candidate conditions. The U.S. Advisory
Committee on Heritable Disorders in Newborns and Chil-
dren (ACHDNC), established in 2003 under the Newborn
Screening Saves Lives Act and tasked with advising on ad-
ditions to the Recommended Uniform Screening Panel
(RUSP), exemplified this approach [20]. The RUSP was
established to propose a tiered approach to evaluating con-
ditions for inclusion [21]. The ACHDNC applied a systematic,
multi-criteria decision-makingmodel that integrated disease
severity, availability of timely and effective interventions,
implementation feasibility, stakeholder input, clinical and
economic evidence, and ethical considerations. However, in
April 2025, the committee was abruptly terminated – leaving
the United States without its only federal advisory body
guiding RUSP updates – a decision that has been widely
criticized as creating “a dangerous vacuum” in the NBS
infrastructure [22]. In contrast, many European countries
continue to use similar multi-factorial frameworks through
national expert panels to evaluate NBS expansions. The
sudden absence of a centralized, transparent advisory pro-
cess in the U.S. underscores the urgent need for robust,
ethically grounded governance to navigate the complex
expansion of NBS in the genomic era.

However, the process remains uneven globally [7]. In
Europe, NBS panels vary widely despite shared regulatory
frameworks and comparable economic contexts [10]. This
inconsistency reflects differences in political will, advocacy
pressure, and institutional inertia. As a result, a child born in
one country may have access to life-saving NBS and early
diagnosis, while another in a neighboring state may not [7,
8, 12].

The urgency to develop harmonized, transparent, and
evidence-based processes for condition selection is further
amplified by the acceleration of genomic technologies,
which can detect hundreds of conditions in a single assay [10,
15]. Without clear frameworks, the risk of premature or
inequitable implementation grows.

Public health vs. rare disease
paradigms

NBS initially started as in the context of the public health
paradigm, while more recent are tendencies to shift towards
the rare disease (personalized medicine) paradigm. Each
paradigm brings different priorities, values, and methodol-
ogies (see Table 1).

The public health paradigm is population-focused. It
prioritizes equity, cost-effectiveness, and the responsible use
of public resources. NBS programs in this model are
designed to maximize overall benefit while minimizing
harm and unnecessary intervention [8, 9, 15]. It adheres
closely to established principles like those of Wilson and
Jungner, emphasizing standardization, program metrics,
and scalability. NBS is seen not as a diagnostic process, but as
a means of risk stratification leading to further
evaluation [17].

In contrast, the rare disease paradigm emphasizes in-
dividual benefit. Advocates for this model argue that even
conditions with very low prevalence should be included in
NBS panels if early diagnosis can significantly alter out-
comes. This approach draws from the principles of person-
alized medicine, emphasizing tailored follow-up, genomic
diagnostics, and cascade testing in families. It is driven by
ethical imperatives to avoid preventable suffering and
irreversible damage, even when population-level cost-
effectiveness is not demonstrable [1–4, 23].

These paradigms are not inherently in conflict, but their
priorities can lead to tension. Public health authorities may
resist including ultra-rare conditions with marginal or un-
certain evidence, while rare disease advocates may push for
rapid expansion based on emerging treatments [16, 17, 23].
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Resolving this tension requires governance models that
allow for deliberation across these perspectives.

One proposed solution is the implementation of a preci-
sion public health framework, which seeks to integrate
genomic innovation with public health infrastructure,
balancing individualized benefit with population-level
impact. This model emphasizes equitable access to diag-
nostic advances, robust data integration, interdisciplinary
care, and international collaboration – all grounded in ethical
and sustainable policy development [23, 24].

Pilot programs that integrate gNBS – such as those un-
derway in the UK, Belgium – offer a testing ground for
reconciling these paradigms [25, 26]. Transparent evalua-
tion, stakeholder engagement, and attention to distributive
justice are critical. Ultimately, NBSmust evolve into a hybrid
model, balancing public good with personalized benefit.

Emerging role of genomics in NBS

Next-generation sequencing (NGS) technologies, including
whole-exome andwhole-genome sequencing (WES/WGS), are

rapidly transforming the landscape of NBS [15, 25–28]. These
tools offer the potential to identify hundreds of monogenic
disorders in a single assay, often before clinical symptoms
emerge. In pilot initiatives across Europe and North America,
gNBS is being explored as a complement – or in some cases, a
replacement – for traditional biochemical methods [25–28]. A
notable example is the system developed by Kingsmore et al.,
which used rapid whole-genome sequencing to screen for
over 380 severe genetic conditions, demonstrating high
sensitivity and specificity within a consented, clinically inte-
grated model [29]. Betzler et al. analyzed seven published
gene-disease lists fromgNBS studies and observed substantial
variation in total gene count (median 480, range 237–889) and
disease group composition; an intersection was identified for
only 53 genes, 83 % of them were related to the inherited
metabolic diseases [30]. In the NBSeq project, Adhikari et al.
demonstrated the potential of exome sequencing as a com-
plementary tool for NBS, showing high specificity in identi-
fying inborn errors of metabolism [31]. Furthermore, in a
nationally representative survey, approximately 74% of
parents expressed interest in newborn whole-genome
sequencing through public health programs [32].

Table : Comparison of the Public Health and Rare Disease Paradigms applied to the Newborn Screening.

Dimension Public health paradigm Rare disease/Personalized medicine paradigm

Primary objective Maximize population health outcomes; reduce overall
morbidity and mortality

Optimize individual outcomes through early and accurate diagnosis

Screening
justification

Based on classical criteria (Wilson & Jungner): Importance,
treatability, cost-effectiveness

Based on ethical urgency, treatability, and individual benefit – even
with low prevalence or limited cost data

Scope of conditions High-prevalence, well-characterized, cost-effective disorders
(e.g., PKU, CH, MCADD)

Rare or ultra-rare genetic conditions, often newly actionable (e.g.,
SCID, SMA, LSDs; genomic pilots)

Testing approach Biochemical methods (e.g., MS/MS, immunoassays); stan-
dardized protocols

Genomic technologies (e.g., WES/WGS); tailored follow-up and
cascade testing in families

Decision-making
criteria

Emphasis on population-level benefit, feasibility, and cost-
effectiveness

Emphasis on clinical urgency, ethical imperatives, and possibility of
significant individual health impact

Ethical framework Consequentialist (maximize benefit, minimize harm);
cautious expansion

Principlist (beneficence, autonomy, justice); tolerant of uncertainty if
outcome is serious and preventable

Consent model Implicit or opt-out consent under public health authority Increasingly favors explicit informed consent due to data sensitivity
and scope of testing

Equity focus Equal access to standardized national services Equitable inclusion of underserved rare disease patients despite low
prevalence

Data use &
governance

Public health surveillance systems; key performance in-
dicators; centralized QA/QC

Decentralized or hybrid governance; data-sharing infrastructures for
research and personalized care

Limitations May exclude low-prevalence but treatable conditions; rigid
criteria

May overextend resources; risk of overdiagnosis or uncertain findings
(e.g., VUS)

Governance
models

National public health bodies (e.g., RUSP, WHO
recommendations)

Multi-stakeholder advisory models, often involving patient groups and
genetic experts

Conceptual
foundations

Wilson and Jungner [], WHO principles, Andermann et al.
[]

Precision public health (Baynam et al. ), ESHG guidance, rare
disease advocacy frameworks

PKU, phenylketonuria; CH, congenital hypothyroidism; SCID, severe combined immunodeficiency; SMA, spinal muscular atrophy; LSDs, lysosomal storage
disorders;MS/MS, tandemmass spectrometry;WES, whole exome sequencing;WGS,whole genome sequencing; QA/QC, quality assurance/quality control;
VUS, variant of unknown significance; RUSP, recommended uniform screening panel; WHO,World Health Organization; ESHG, European Society of Human
Genetics.
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gNBS introduces several advantages: it can detect con-
ditions not amenable to biochemical markers, clarify di-
agnoses with variable phenotypic expression, and enable
cascade testing in families. Moreover, it holds promise for
personalized treatment approaches, pharmacogenomics,
and gene-targeted therapies [15, 33]. Notably, early data from
pilot studies indicate that gNBS may improve diagnostic
yield while reducing time to diagnosis for complex condi-
tions. In addition, costs have reduced dramatically over the
last several years and continue to do so [15, 34].

However, these advances are accompanied by signifi-
cant challenges. Technical considerations include variant
interpretation, test sensitivity and specificity, and limita-
tions in detecting non-exonic or structural variants [15].
Clinical challenges include the potential for uncertain or
incidental findings, variable penetrance, and unclear prog-
noses. Ethical concerns revolve around consent, privacy, and
the psychosocial impact of early genetic information. In
addition, ethical frameworks for genetic testing in minors
emphasize deferring testing for late-onset conditions unless
early intervention is possible [15].

Currently, most gNBS programs adopt a targeted gene
panel approach, focusing on actionable conditions with high
penetrance and early onset [15]. This strategy limits ethical
and clinical uncertainty while preserving the benefits of
early genomic insight. Informed consent – ideally offered
during pregnancy – remains a cornerstone of these pro-
grams, ensuring that parents understand both the benefits
and limitations of genomic data [15].

Ultimately, the successful integration of genomics into
NBS will depend on establishing clear inclusion criteria,
robust confirmatory testing pipelines, multidisciplinary
support for families, and policies for data storage and
reanalysis. Lessons from existing NBS systems – such as the
need for equitable access, longitudinal follow-up, and public
trust – must guide the design of gNBS [9, 15].

Future directions

The future of NBS for rare diseases lies in a gradual but
deliberate transition from reactive diagnostics to proactive,
data-driven prevention [9]. As biomedical research con-
tinues to uncover disease mechanisms and therapeutic tar-
gets, NBS programs must evolve to match this progress.

One key direction is the development of internationally
agreed-upon standards for the inclusion of conditions in NBS
panels. A collaborative approach among health authorities,
professional societies, and patient advocacy groups is
essential to reduce inequalities in access and ensure quality

assurance. Platforms such as the European Reference Net-
works (ERNs) and international consortia could serve as
vehicles for such alignment [8].

Another important trend is the convergence of multi-
omics data – integrating genomics, metabolomics, tran-
scriptomics, and proteomics – to enhance diagnostic preci-
sion and predictive power [9]. The availability of digital
health infrastructure, artificial intelligence, and biobanks
will further support real-time decision-making, enabling
individualized follow-up and dynamic care pathways.

At the same time, social and ethical frameworksmust keep
pace. Policymakerswill need to clarifydatagovernance, consent
policies, and criteria for reporting variants of uncertain signif-
icance. Special attention should be paid to ensuring informed
parental participation and protecting the child’s future auton-
omy [35]. According toASHG/ACMGguidelines, genetic testing in
children should be initiated only when it offers clear medical
benefit, with psychosocial implications factored into decision-
making [36, 37]. In addition, the AAP and ACMG emphasize
that genetic testing of minors should prioritize the child’s best
interests, limiting testing to conditions with actionable child-
hood interventions and discouraging nonclinical or direct-to-
consumer screening models in pediatric populations [38].

Long-term outcome registries, ideally linked to NBS
data, will be indispensable for evaluating program impact,
guiding clinical guidelines, and informing cost-benefit ana-
lyses. Investment in such infrastructure should be seen as a
public health priority [8, 9].

Ultimately, the goal is moving towards a more antici-
patory model of medicine – where diagnosis, prevention,
and intervention begin at birth or even before, transforming
the life course of individuals with rare diseases.

Conclusions

NBS is considered one of the most successful public health
interventions, and its extension to additional treatable RDs,
that need to be detected at birth, represents both an ethical
imperative and a technological opportunity. While the in-
clusion of rare and ultra-rare conditions challenges tradi-
tional frameworks, it also holds the potential to dramatically
improve lives through earlier diagnosis and treatment.

The ongoing transition from classical biochemical NBS
to genomics-enabled platforms requires utmost careful
implementation. This evolution must be based on evidence,
maintaining high ethical standards, must be aligned with
health system capacities, and have transparent governance.

In the emerging future, NBS will be increasingly
bridging preventive public health and personalized medi-
cine paradigms. Ensuring equitable access, minimizing
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harm, maintaining high levels of trust, and supporting
families throughout the diagnostic and care pathway will be
essential to realize its full promise. Ultimately, the goal is not
only to detect disease early but to affirm each child’s right to
a healthy start in life.
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