9

Review

Milan Stanojević*, Bożena Kociszewska-Najman, Amos Grünebaum, Frank Chervenak and Asim Kurjak

Quo vadis neonatologia? Where is neonatology heading in the 21st century?

https://doi.org/10.1515/jpm-2025-0339 Received June 24, 2025; accepted June 27, 2025; published online July 10, 2025

Abstract

Introduction: This comprehensive narrative review examines current paradigms, emerging trends, and future directions in neonatology through systematic analysis of contemporary literature, clinical practice patterns, and expert consensus. We synthesized evidence from recent publications, international guidelines, and clinical innovations to identify key transformation areas.

Content: Several critical areas are reshaping neonatology. Gestational age has emerged as a lifelong health determinant with implications extending far beyond the neonatal period, affecting cardiovascular, metabolic, and neurodevelopmental outcomes throughout life. Global disparities in neonatal care remain unconscionably large, with survival rates for 28-week infants exceeding 90 % in high-income countries while similar infants in low-resource settings often die from preventable causes. Artificial intelligence applications are revolutionizing predictive analytics, realtime monitoring, and decision support systems, though implementation requires careful attention to bias, transparency, and human oversight. The neonatal microbiome's crucial role in immune development and long-term health has prompted interventions targeting healthy colonization. Salutogenic approaches emphasizing health promotion rather than disease treatment are gaining recognition. Most significantly, the systematic marginalization of mothers in neonatal care is being challenged, with growing recognition of the mother-infant dyad as the fundamental unit of care. **Summary and Outlook:** Future neonatal care must balance technological advancement with humanistic values, addressing global disparities while maintaining scientific rigor. Success requires committing to global health equity, embracing ethical complexity at viability margins, recognizing maternal centrality, thoughtfully integrating emerging technologies, implementing salutogenic principles, and adopting lifelong health perspectives. The field's future depends on interdisciplinary collaboration, ethical reflection, and unwavering commitment to ensuring every newborn receives compassionate, high-quality care.

Keywords: neonatology; gestational age; global health; artificial intelligence; salutogenesis; mother-infant dyad

Introduction

Neonatology emerged as a distinct medical specialty upon recognizing that newborns are physiologically unique beings, fundamentally different from older infants – just as pediatrics developed from understanding that children are not miniature adults [1]. The neonatal period represents one of the most vulnerable phases of human existence, with the neonate undergoing extraordinary physiological transition from the protected uterine environment to the challenging terrestrial world. The newborn is, essentially, a "born fetus", suddenly navigating an environment characterized by gravity, atmospheric pressure, direct oxygen exposure, and microbial colonization [2, 3].

Contemporary neonatology faces unprecedented challenges extending beyond traditional intensive care boundaries. The field must address questions unimaginable decades ago: How do we optimize outcomes for infants at extreme viability limits? How do we address growing global disparities in neonatal care? What role should artificial intelligence (AI) play in clinical decision-making?

This review explores current state and future directions of neonatology, examining key challenges including lifelong

Bożena Kociszewska-Najman, Department of Neonatology and Rare Diseases, Medical University of Warsaw, Warsaw, Poland

Amos Grünebaum and Frank Chervenak, Northwell Health, New York,

Asim Kurjak, Department of Obstetrics and Gynecology, Medical School University of Zagreb, Zagreb, Croatia

^{*}Corresponding author: Milan Stanojević, Department of Neonatology and Rare Diseases, Medical University of Warsaw, Warsaw, Poland, E-mail: mstanoje29@yahoo.com

gestational age implications, clinical terminology inconsistencies, global care inequalities, and the emergence of salutogenic frameworks and AI applications. Importantly, we examine the underrecognized but central role of the mother in neonatal outcomes—marginalized despite overwhelming evidence of its importance [4].

Historical evolution

Neonatology emerged as a distinct specialty in the mid-20th century, driven by revolutionary advances in neonatal ventilation, monitoring systems, and nutritional support [2]. The pivotal development of perinatal regionalization systems in the 1970s represented a fundamental healthcare delivery shift, stratifying risk and centralizing complex cases in tertiary centers [5–8]. While dramatically successful in high-income countries, this model remains difficult to replicate in low-resource settings due to infrastructure, workforce, and funding limitations [9, 10].

Today, neonates are recognized not as small infants or ex-utero fetuses, but as unique transitional beings requiring precision-based care approaches. This recognition has led to subspecialized areas including neonatal neurology, cardiology, and surgery, while technological advances have paralleled our understanding of developmental biology and long-term consequences of early-life experiences [11].

Gestational age: a lifelong health determinant

Gestational age (GA) stands as one of the most powerful predictors of both immediate neonatal outcomes and lifelong health trajectories [12]. Preterm infants face immediate risks including respiratory distress, hemorrhage, and sepsis, with implications extending far beyond acute complications to include cerebral palsy, intellectual disability, and behavioral disorders. Emerging evidence reveals that even "early-term" infants (37–38 weeks) face increased long-term risks compared to those born at optimal 39–40 weeks [13–17].

Clinical GA management is complicated by persistent terminology confusion. Obstetricians typically use "running weeks" (36 + 5 weeks represents the 37th week), while neonatol" ogists rely on "completed weeks" (36 + 5 remains 36 weeks). These distinctions significantly impact critical decisions including corticosteroid timing, cesarean delivery decisions, and Neonatal Intensive Care (NICU) admission thresholds [18–20].

Recognition of GA as a lifelong biomarker has led to proposals for incorporating GA into adult medical records, developing GA-adjusted reference ranges, and using this information for lifelong screening and risk assessment strategies.

Common neonatal conditions and global disparities

Several conditions dominate neonatal care due to frequency and severity [21–27]. Preterm birth remains the leading cause of neonatal mortality worldwide, with complications including infections, respiratory distress syndrome, patent ductus arteriosus, and necrotizing enterocolitis. Long-term consequences extend to increased cardiovascular disease, metabolic syndrome, and reduced fertility risks in adulthood.

Neonatal infections continue representing major morbidity causes, particularly in settings lacking infection control or antimicrobial access. The vulnerability reflects immature immune systems and frequent invasive procedure exposure [28–30].

Despite overall progress, global disparities remain unconscionably large. According to WHO, nearly half of under-5 deaths occur during the neonatal period, mostly in low-income countries from preventable causes [31, 32]. Essential interventions – thermal regulation, clean birth practices, breastfeeding support, basic resuscitation – remain inconsistently available. In high-income countries, 28-week infant survival exceeds 90 %, while similar infants in low-income settings often die from lack of basic supportive care [33].

Ethical complexities at viability margins

Viability refers to the gestational age at which a fetus has a reasonable chance of survival outside the uterus with appropriate medical support. Over the last few decades the threshold of viability has historically been considered around 24 weeks gestation, though this varies significantly based on multiple factors including healthcare setting, available resources, fetal lung maturity, antenatal corticosteroid administration, maternal conditions, intrauterine growth, and the presence of major congenital anomalies. The availability of exogenous surfactant therapy, advanced mechanical ventilation, and specialized neonatal intensive care significantly influences survival outcomes at these early gestational ages.

Advances have pushed viability boundaries in highincome countries to 22-23 weeks gestation, creating unprecedented ethical challenges [34]. Survival at these margins often involves significant neurodevelopmental disability risks and reduced quality of life. Prognostic uncertainty, varying legal frameworks, and cultural differences complicate decision-making [35-37].

Healthcare providers experience moral distress when feeling constrained from ethically appropriate actions. Addressing these challenges requires robust ethics consultation, interdisciplinary support, and shared decisionmaking frameworks respecting family values while maintaining professional integrity.

Family-centered care and parental engagement

Active parental involvement represents both ethical principle and evidence-based strategy for improving outcomes [38, 39]. Kangaroo Mother Care (KMC), emphasizing continuous skin-to-skin contact, demonstrates numerous benefits including improved thermal regulation, breastfeeding success, weight gain, and neurodevelopmental outcomes [40, 41]. Despite robust evidence, implementation remains inconsistent due to institutional policies prioritizing technology over human contact. The Baby-Friendly Hospital Initiative (BFHI), launched by the World Health Organization (WHO) and UNICEF in 1991 and updated in 2018 to protect, promote, and support breastfeeding in healthcare settings, has been predominantly implemented in high-income countries. In contrast, its implementation in low-income countries remains limited, leaving many mothers and infants without adequate support for successful breastfeeding, which may negatively affect their health [42].

Effective engagement requires transparent communication, trust-building, and recognition of parental expertise. Single-family room designs facilitating privacy and parentinfant interaction show improved outcomes compared to traditional open-bay designs.

Microbiome and early life programming

The maternal and neonatal microbiome play crucial roles in immune development, metabolic programming, and neurological function [43–49]. Cesarean delivery, antibiotic exposure, and formula feeding contribute to dysbiosis, associated with increased asthma, allergies, diabetes, and neurodevelopmental disorder risks. Understanding microbiome importance has led to interventions including vaginal seeding, probiotic supplementation, and judicious antibiotic use, though implementation requires careful risk-benefit consideration.

Salutogenesis and health promotion

Traditional pathogenesis-focused approaches, while successful in reducing mortality, may be insufficient for optimizing long-term outcomes. Salutogenesis (from Latin 'salus'=health + Greek 'genesis'=origin) literally means "the origins of health." Salutogenesis seeks to identify factors supporting health and resilience rather than simply treating disease [50-52]. In neonatology, this emphasizes minimizing unnecessary interventions, promoting physiological processes, supporting bonding, and creating healing environments. Implementation includes developmental care, family-centered models, and environmental modifications supporting neurological maturation.

Rare diseases and genetic advances

The neonatal period presents a unique window of opportunity for the recognition and management of rare diseasesconditions that, by the European definition, affect fewer than five in 10,000 individuals in the general population [53, 54]. Intriguingly, many of the conditions encountered in the NICU meet this criterion, suggesting that rare diseases may, paradoxically, be relatively common within neonatal medicine [55-57].

Timely diagnosis during the neonatal period can be lifesaving and significantly improve long-term outcomes which has been perceived useful by parents [58]. Advances in genomic technologies, particularly next-generation sequencing, have made it possible to identify the molecular basis of many rare disorders shortly after birth [59]. Early diagnosis allows for the initiation of targeted therapies, genetic counseling for families, and individualized care strategies that may alter the natural course of the disease and improve survival [60].

Furthermore, incorporating rare diseases into neonatal screening programs and promoting clinical suspicion among neonatologists are essential steps toward reducing diagnostic delays, which remain a major challenge [61]. A greater awareness of the prevalence of rare diseases in the NICU setting—particularly metabolic, neuromuscular, and immunological conditions—can lead to earlier recognition, better prognostication, and more effective management strategies [62]. This process may be improved by using artificial intelligence [63].

As neonatal care continues to evolve, integrating rare disease awareness and diagnostic pathways into standard practice may be one of the most impactful advances for a subset of patients whose conditions, while individually rare, collectively represent a significant clinical burden.

Artificial intelligence: promise and challenges

AI integration represents transformative development, offering unprecedented outcome improvement opportunities while raising safety, equity, and human judgment questions [64–68]. Applications span predictive analytics for complication identification, real-time monitoring, and decision support systems. However, implementation must address algorithm bias risks, transparency requirements, and automation bias potential. Healthcare organizations must ensure data privacy and security while maintaining human clinical expertise primacy.

The central role of mothers

Contemporary neonatal care systematically marginalizes mothers despite overwhelming evidence of their biological, psychological, and social indispensability [69, 70]. The mother-infant dyad should be recognized as the fundamental care unit. Routine post-birth separation disrupts evolutionarily conserved processes occurring when both are primed for bonding. Breastfeeding provides optimal nutrition, immune protection, and physiological regulation, with composition dynamically responding to infant needs.

Institutional practices often create breastfeeding barriers through separation, inflexible schedules, and inadequate support. Mothers actively involved in care report higher confidence and lower anxiety, while excluded mothers experience helplessness and traumatic stress. International models in high-income countries like Newborn Individualized Care and Assessment Program (NIDCAP) and Family Integrated Care (FICare) demonstrate improved outcomes when recognizing parents as primary caregivers rather than visitors.

Future directions

Several emerging paradigms will shape neonatology's future. Precision medicine approaches toward individualized care based on genetic and metabolic markers represent fundamental shifts from uniform protocols. Pharmacogenomics has particular relevance where drug responses vary by genetic factors and gestational age.

Regenerative medicine, including stem cell therapy and tissue engineering, offers potential for repairing damaged organs, potentially transforming conditions like brain damage, bronchopulmonary dysplasia and necrotizing enterocolitis. Digital health technologies enable specialized care extension beyond hospitals through remote monitoring and telemedicine platforms.

Global health integration drives scalable approach development for resource-limited settings, including low-cost device development, task-shifting strategies, and innovative financing mechanisms. "Frugal innovation" concepts—developing effective, affordable solutions using local resources—are particularly relevant for expanding quality care access even in low-income settings [71].

Conclusions

Neonatology stands at a critical evolutionary juncture. The field has achieved remarkable survival improvements for vulnerable infants, but success has revealed new challenges extending beyond traditional medical concerns. The future requires addressing several key imperatives simultaneously:

First, committing to addressing unconscionable global outcome disparities through increased resources, improved systems, and fundamental equity commitment. Second, embracing ethical decision-making complexity while developing sophisticated family and provider support frameworks. Third, recognizing and supporting the central family role, particularly mothers, requiring fundamental care organization changes toward genuine family-centered approaches.

Fourth, thoughtfully integrating emerging technologies while maintaining human values focus. Technology should enhance rather than replace human connection and clinical judgment. Fifth, embracing salutogenic approaches promoting health and resilience rather than simply treating disease. Finally, committing to lifelong health perspectives, recognizing neonatal interventions have entire lifespan implications.

Success depends on neonatal community ability to collaborate across disciplines, institutions, and boundaries addressing shared challenges. Most importantly, the future must be guided by unwavering commitment to the principle that every newborn deserves compassionate, high-quality care respecting their dignity and potential.

Quo vadis neonatologia? The field heads toward a future demanding not only scientific excellence and technological innovation but also moral courage, ethical reflection, and deep commitment to human values making medicine a healing profession. Today's choices will determine whether neonatology fulfills its potential to create a world where every newborn has the opportunity to thrive.

Research ethics: Not applicable. **Informed consent:** Not applicable.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Use of Large Language Models, AI and Machine Learning Tools: We used ChatGPT and Claude as LLM to improve sentences and grammar.

Conflict of interest: The author states no conflict of interest. Research funding: None declared. Data availability: Not applicable.

References

- 1. Mahnke CB. The growth and development of a specialty: the history of pediatrics. Clin Pediatr (Phila) 2000;39:705-14.
- 2. Manley BJ, Doyle LW, Davies MW, Davis PG. Fifty years in neonatology. J Paediatr Child Health 2015;51:118-21.
- 3. Stanojević M, Malinac S, Kurjak A, Medjedović E. From fetal to neonatal neurobehavior. Donald Sch J Ultrasound Obstet Gynecol 2023;17:
- 4. Luu TM, Rehman Mian MO, Nuyt AM. Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin Perinatol 2017:44:305-14.
- 5. Quebec Perinatal Committee. Perinatal intensive care after integration of obstetrical services in Quebec. Quebec: Ministry of Social Affairs;
- 6. Committee on Perinatal Health. Toward improving the outcome of pregnancy: recommendations for the regional development of maternal and perinatal health services. White Plains: NY: National March of Dimes Birth Defects Foundation; 1976.
- 7. Berger GS, Gillings DB, Siegel E. The evaluation of regionalized perinatal health care programs. Am J Obstet Gynecol 1976;125:924-32.
- 8. Paul VK, Singh M. Regionalized perinatal care in developing countries. Semin Neonatol 2004;9:117-24.
- 9. Lamary M, Bertoni CB, Schwabenbauer K, Ibrahim J. Neonatal golden hour: a review of current best practices and available evidence. Curr Opin Pediatr 2023;35:209-17.

- 10. Litt JS, Halfon N, Msall ME, Russ SA, Hintz SR. Ensuring optimal outcomes for preterm infants after nicu discharge: a life course health development approach to high-risk infant follow-up. Children 2024;11:
- 11. Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev 2020;150:105187.
- 12. Kurjak A, Stanojević M, Barišić P, Ferhatović A, Gajović S, Hrabar D. Facts and doubts on the beginning of human life – scientific, legal, philosophical and religious controversies. J Perinat Med 2022;51:39-50.
- 13. Alt KW, Al-Ahmad A, Woelber JP. Nutrition and health in human evolution-past to present. Nutrients 2022;14:3594.
- 14. Habich M, Zielenkiewicz P, Paczek L, Szczesny P. Correlation of gestational age and age at death in sudden infant death syndrome: another pointer to the role of critical developmental period? BMC Pediatr 2024:24:259.
- 15. Butt K, Lim KI. Guideline no. 388-determination of gestational age by ultrasound. J Obstet Gynaecol Can 2019;41:1497-507.
- 16. Committee Opinion No 700. Methods for estimating the due date. Obstet Gynecol 2017;129:e150-4.
- 17. Stevenson A, Joolay Y, Levetan C, Price C, Tooke L. A comparison of the accuracy of various methods of postnatal gestational age estimation; including ballard score, foot length, vascularity of the anterior lens, last menstrual period and also a clinician's non-structured assessment. J Trop Pediatr 2021;67:fmaa113.
- 18. Crump C. Preterm birth and mortality in adulthood: a systematic review. J Perinatol 2020;40:833-43.
- 19. Cao G, Liu J, Liu M. Global, regional, and national incidence and mortality of neonatal preterm birth, 1990-2019. JAMA Pediatr 2022;176:
- 20. Koupil I, Leon DA, Lithell HO. Length of gestation is associated with mortality from cerebrovascular disease. J Epidemiol Community Health 2005;59:473-4.
- 21. Li J, Xiang L, Chen X, Li S, Sun Q, Cheng X, et al. Global burden of neonatal sepsis and infections, 1990-2019. Eur J Pediatr 2023;182: 2335-43.
- 22. Giouleka S. Gkiouleka M. Tsakiridis I. Daniilidou A. Mamopoulos A. Athanasiadis A, et al. Diagnosis and management of neonatal hypoglycemia: a comprehensive review of guidelines. Children (Basel) 2023:10:1220.
- 23. Zhang EY, Bartman CM, Prakash YS, Pabelick CM, Vogel ER. Oxygen and mechanical stretch in the developing lung. Front Med (Lausanne) 2023;
- 24. Ke K, Chi X, Lv H, Zhao J, Jiang Y, Jiang T, et al. Association of breastfeeding and neonatal jaundice with infant neurodevelopment. Am J Prev Med 2024;66:698-706.
- 25. `Brobby NAW, Nguah SB, Yakubu RC, Plange-Rhule G, Yiadom APB, Ocran AA, et al. Outcomes of neonatal hyperbilirubinemia and associated factors at a tertiary hospital in Ghana. BMC Pediatr 2025;25:267.
- 26. Dankhara N, Holla I, Ramarao S, Kalikkot Thekkeveedu R. Bronchopulmonary dysplasia: pathogenesis and pathophysiology. I Clin Med 2023;12:4207.
- 27. Roeper M, Hoermann H, Kummer S, Meissner T. Neonatal hypoglycemia: lack of evidence for a safe management. Front Endocrinol 2023;14:1179102.
- 28. Stanojevic M, Kurjak A. Health-dedicated millennium development goals: what has been done wrong? Donald school. I Ultrasound Obstet Gynecol 2020;14:32-5.
- 29. Stanojević M. Neonatal and child mortality are they different in developing and developed countries? J Perinat Med 2022;50:855-62.

- Kurjak A, Stanojevic M, Sen C, Chervenak F. Maternal mortality: tragedy for developing countries and shame for developed world. Donald Sch J Ultrasound Obstet Gynecol 2020;14:17–27.
- WHO. Newborn mortality. https://www.who.int/news-room/fact-sheets/detail/newborn-mortality [Accessed 23 Jun 2025].
- UNICEF. Neonatal mortality. https://data.unicef.org/topic/childsurvival/neonatal-mortality/ [Accessed 23 Jun 2025].
- 33. Johnson YR, Guillory C, Imaizumi S. Health care disparities in high-risk neonates. Clin Perinatol 2023;50:67–80.
- 34. Morgan AS, Zeitlin J, Källén K, Draper ES, Maršál K, Norman M, et al. Birth outcomes between 22 and 26 weeks' gestation in national population-based cohorts from Sweden, England and France. Acta Paediatr 2022:111:59–75.
- Stanojevic M. Infants at the limits of viability: medical and ethical aspects.
 In: Kurjak A, Chervenak FA, McCullough LB, Hasanovic A, editors. Science and religion. Synergy not skepticism. New Delhi, London, Panama:
 Jaypee Brothers Medical Publishers; 2018:196–207 pp.
- 36. Stanak M. Professional ethics: the case of neonatology. Med Health Care Philos 2019;22:231–8.
- Boutillier B, Juneau AL, Reichherzer M, Tremblay C, Janvier A. Managing moral distress and complex ethical challenges in the NICU. Semin Perinatol 2025;49:152050.
- 38. Kim UO, Basir MA. Informing and educating parents about the risks and outcomes of prematurity. Clin Perinatol 2014;41:979–91.
- Brelsford GM, Doheny KK, Stoner J. A systematic review of psychospiritual interventions in the nicu: supporting parents' mental health and psychological well-being. Adv Neonatal Care 2024;24:141–50.
- WHO Immediate KMC Study Group. Impact of continuous kangaroo mother care initiated immediately after birth (iKMC) on survival of newborns with birth weight between 1.0 to < 1.8 kg: study protocol for a randomized controlled trial. Trials 2020;21:280.
- Gupta N, Deierl A, Hills E, Banerjee J. Systematic review confirmed the benefits of early skin-to-skin contact but highlighted lack of studies on very and extremely preterm infants. Acta Paediatr 2021;110:2310–15.
- 42. Baby-friendly hospital initiative training course for maternity staff: participant's manual. Geneva: World Health Organization and the United Nations Children's Fund (UNICEF), 2020.
- Betran AP, Ye J, Moller AB, Souza JP, Zhang J. Trends and projections of caesarean section rates: global and regional estimates. BMJ Glob Health 2021;6:e005671.
- Inchingolo F, Inchingolo AD, Palumbo I, Trilli I, Guglielmo M, Mancini A, et al. The impact of cesarean section delivery on intestinal microbiota: mechanisms, consequences, and perspectives-a systematic review. Int J Mol Sci 2024;25:1055.
- Paul JK, Azmal M, Haque ASNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: comprehensive review on its role in different diseases. World J Gastroenterol 2025;31:99913.
- Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017:81:e00036–17
- 47. Ahearn-Ford S, Berrington JE, Stewart CJ. Development of the gut microbiome in early life. Exp Physiol 2022;107:415–21.
- Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The role of diet and nutritional interventions for the infant gut microbiome. Nutrients 2024;16:400.
- Swain Ewald HA, Ewald PW. Natural selection, the microbiome, and public health. Yale J Biol Med 2018;91:445–55.
- 50. Antonovsky A. The salutogenic model as a theory to guide health promotion. Health Promot Int 1996;11:11–18.

- 51. Mittelmark MB. Salutogenesis from its origins to the present. In: Mittelmark MB, Bauer GF, Vaandrager L, Pelikan JM, Sagy S, Eriksson M, editors. The Handbook of Salutogenesis [Internet], 2nd ed. Cham (CH): Springer; 2022. Chapter 1.
- Kurjak A, Stanojevic M. How to increase resilience of healthy newborns in underdeveloped countries? Donald Sch J Ultrasound Obstet Gynecol 2020:14:28–31.
- 53. European Commission. Rare diseases [Internet]. Brussels: European Commission; 2023. [cited 2025 Jun 17]. Available from: https://health.ec.europa.eu/rare-diseases-and-european-reference-networks/rare-diseases en
- 54. Chung CCY, Chu ATW, Chung BHY, Hong Kong Genome Project. Rare disease emerging as a global public health priority. Front Public Health 2022;10:1028545.
- Kingsmore SF, Cakici JA, Clark MM, Gaughran M, Feddock M, Investigators RCIGM, et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am J Hum Genet 2019; 105:719–33.
- Antoniou AA, McGinley R, Metzler M, Chaudhari BP. NeoGx: machinerecommended rapid genome sequencing for neonates. medRxiv 2024. [Preprint]:2024.06.24.24309403. https://doi.org/10.1101/2024.06.24. 24309403.
- Czaplińska N, Kociszewska-Najman B, Kosiński P, Stanojević M. Looking for a needle in a haystack: a case study of rare disease care in neonatology. J Perinat Med 2025;53:733–46.
- Cakici JA, Dimmock DP, Caylor SA, Gaughran M, Clarke C, Triplett C, et al. A prospective study of parental perceptions of rapid wholegenome and -exome sequencing among seriously ill infants. Am J Hum Genet 2020;107:953–62.
- Petrikin JE, Willig LK, Smith LD, Kingsmore SF. Rapid whole genome sequencing and precision neonatology. Semin Perinatol 2015;39:623–31.
- Wojcik MH, Gold NB. Implications of genomic newborn screening for infant mortality. Int | Neonatal Screen 2023;9:12.
- 61. van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, Langeveld M, Ferreira CR, van de Kamp JM, et al. The role of the clinician in the multi-omics era: are you ready? J Inherit Metab Dis 2018:41:571–82.
- Ferreira CR. The burden of rare diseases. Am J Med Genet 2019;179: 885–92.
- Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, et al. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024;24:138.
- Sullivan BA, Beam K, Vesoulis ZA, Aziz KB, Husain AN, Knake LA, et al. Transforming neonatal care with artificial intelligence: challenges, ethical consideration, and opportunities. J Perinatol 2024;44:1–11.
- Alruwaili AN, Alshammari AM, Alhaiti A, Elsharkawy NB, Ali SI, Elsayed Ramadan OM. Neonatal nurses' experiences with generative AI in clinical decision-making: a qualitative exploration in high-risk NICUs. BMC Nurs 2025;24:386.
- Stanojević M, Kurjak A, Međedović E. Artificial intelligence in perinatal medicine and human reproduction: is it "The end of the Beginning" or "The beginning of the end". Sarajevo Med J 2024;1:32–7.
- Medjedovic E, Stanojevic M, Jonuzovic-Prosic S, Ribic E, Begic Z, Cerovac A, et al. Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics. Technol Health Care 2024; 32:1273–87.
- 68. Kilpatrick R, Greenberg RG, Boyce D, Davis J. Large language models and clinical calculations: to err is human and machines are

- not exempt. Pediatr Res 2025. https://doi.org/10.1038/s41390-025-04166-y.
- 69. McCloskey L, Bernstein J, Goler-Blount L, Greiner A, Norton A, Jones E, et al. It's time to eliminate racism and fragmentation in women's health care. Womens Health Issues 2021;31:186-9.
- 70. Bailly L. The maternal covenant role and function of the mother in the social field. Int J Psychoanal 2022;103:26-45.
- 71. Sarkar S, Mateus S. Doing more with less how frugal innovations can contribute to improving healthcare systems. Soc Sci Med 2022;306: 115127.