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Abstract

Objectives: The study aims to improve the classification of
fetal anatomical planes usingDeep Learning (DL)methods to
enhance the accuracy of fetal ultrasound interpretation.
Methods: Five Convolutional Neural Network (CNN) archi-
tectures, such as VGG16, ResNet50, InceptionV3, Dense-
Net169, and MobileNetV2, are evaluated on a large-scale,
clinically validated dataset of 12,400 ultrasound images from
1,792 patients. Preprocessing methods, including scaling,
normalization, label encoding, and augmentation, are
applied to the dataset, and the dataset is split into 80 % for
training and 20 % for testing. Each model was fine-tuned
and evaluated based on its classification accuracy for
comparison.
Results: DenseNet169 achieved the highest classification
accuracy of 92 % among all the tested models.
Conclusions: The study shows that CNN-based models,
particularly DenseNet169, significantly improve diagnostic
accuracy in fetal ultrasound interpretation. This

advancement reduces error rates and provides support for
clinical decision-making in prenatal care.

Keywords: prenatal diagnosis; ultrasound imaging; deep
learning; prenatal care; fetal anomaly detection

Introduction

Prenatal Ultrasound [1–3] is an important, simple imaging
method that clinicians use widely to diagnose prenatal de-
fects by assessing the fetus’s health, development, and
position. Despite its widespread use, the traditional inter-
pretation of ultrasound images remains complex, time-
consuming, and dependent on professional expertise.
Structural defects impact about one out of every 40 infants,
and early detection is typically critical to effective inter-
vention and care [4]. However, the complexity of embryonic
anatomical components [5], the variety in picture quality,
and the subjectivity of human interpretation all pose sig-
nificant challenges to reliable and precise diagnosis.

In recent years, deep learning (DL) [6] has demonstrated
itself as a significant method in healthcare, particularly in
medical image analysis, by offering automated solutions
with noteworthy performance in tasks such as disease
detection, segmentation, and classification. Among the DL
models, Convolutional Neural Networks (CNNs) [7] have
shown outstanding success due to their ability to extract
hierarchical features from image data, making them ideal
candidates for addressing challenges in fetal ultrasound
imaging. Existing studies have applied CNNs to classify fetal
planes and detect anatomical structures [8], but several
continuous difficulties still limit clinical deployment. Here,
Rauf et al. [9] have introduced two novel convolutional
neural network architectures, namely the 3-residual and the
4-residual-blockmodels, each designed to enhance efficiency
compared to ResNet 18 and ResNet 50. But they face chal-
lenges for training a deep learning model in an imbalanced
dataset and can lead to the extraction of irrelevant infor-
mation from deeper layers. Sarno et al. [10] evaluates the
potential of AI in obstetrics for improving diagnosis but faces
challenges such as the need for larger datasets, clinician
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training, and evidence-based guidelines for clinical inte-
gration. Xie et al. [11] verified the feasibility of classifying
fetal brains using DL algorithms for the binary classification
of normal or abnormal standard fetal ultrasound brain im-
ages in axial planes. However, their used dataset was not
multicenter, which limited data diversity. Moreover, they
focused only on binary classification (normal vs. abnormal)
of fetal brain, lacking generalizability to other anatomical
planes. These include limited documented datasets, imbal-
anced class distributions, difficulty in distinguishing visually
similar anatomical regions, and the necessity for model
interpretability in clinical decision-making.

This study aims to address these challenges by imple-
menting and evaluatingfive different CNNarchitectures [12],
such as VGG16, ResNet50, InceptionV3, DenseNet169, and
MobileNetV2, on a large dataset (FETAL_PLANES_DB) [13]
consisting of over 12,400 ultrasound images from 1,792 pa-
tients. In contrast to many existing studies, this research
focuses on classification accuracy, the clinical scalability,
and explainability of the models, providing the findings
more applicable to real-world medical use. The study also
demonstrates that high-performance DL in fetal ultrasound
analysis can be achieved without the need for expensive
computing infrastructure, making it more accessible to low-
resource healthcare environments. The main objectives of
this study are:

– To present a reproducible and efficient DL method for
classifying fetal ultrasound images across key anatom-
ical planes using a clinically validated dataset.

– To evaluate and compare the performance of five
innovative CNN architectures like VGG16, ResNet50,
InceptionV3, DenseNet169, and MobileNetV2.

– To evaluate the clinical applicability and scalability of
the proposed models, providing their real-world diag-
nostic utility, computational feasibility, and possible
incorporation into prenatal care processes.

Several studies have used DL models to enhance prenatal
ultrasound image interpretation, focusing on fetal plane
categorization, anomaly diagnosis, and structure segmen-
tation. This section reviews some existing methods, findings,
and challenges. Rathika et al. [14] present a Radial Basis
Function Neural Network (RBFNN) method and achieves a
classification accuracy of 98.07 %. The study needs high
computational resources and doesn’t explore deployment
for real-time clinical applications. Yang et al. [15] collected
1779 normal and abnormal fetal US cardiac pictures in five
standard views of the heart. They employed five You Only
Look Once version 5 (YOLOv5) networks as their primary

model to categorize photos as “normal” or “abnormal”. Ac-
cording to the study, their model achieved an overall accu-
racy of 90.67 %. Gong et al. [16] developed a novel generative
adversarial network (GAN) model by integrating deep
anomaly detection (DANomaly) and generative adversarial
CNN (GACNN) architectures to detect fetal congenital heart
disease (FCH) from echocardiography images. Using a
modified WGAN-GP, they created the DGACNN model,
achieving 85 % accuracy in detecting FCH.

Zhou et al. [17] introduced the Category Attention-
Instance Segmentation Network for segmenting fetal cardiac
four-chamber ultrasound images. By adding a Category
Attention Module, the model reduces misclassification
errors. However, they faced challenges in distinguishing
individual instances and needed better context modeling on
a more diverse dataset. Nurmaini et al. [18] analyzed four
common heart images and three congenital heart abnor-
malities while utilizing a Mask-RCNN architecture to predict
24 features in fetal heart sectors. The model achieved a DICE
score of 89.70 % and an IoU of 79.97 %. However, it was tested
on a small dataset of 1,149 fetal heart images. Moradi et al.
[19] proposed Multi-Feature Pyramid U-net (MFP-Unet) for
automated left ventricle segmentation in 2D echocardiog-
raphy. Trained on an augmented dataset of 1,370 images,
MFP-Unet achieved a Dice score of 0.945 and Hausdorff
Distance of 1.62. However, the study was limited by dataset
size, image resolution, and computational resources. Qu
et al. [20] introduced a differential CNN method for iden-
tifying six fetal brain planes by computing the element-
wise difference between input images. Although they ach-
ieved 92.93 % accuracy using data augmentation, the
approach is sensitive to equipment and human operational
variations, which can affect model robustness and diag-
nostic precision. Xie et al. [21] developed a model using
DCNN, U-Nets, and VGG-Net to identify embryonic brain
abnormalities in fetal images, achieving an overall accu-
racy of 91.5 % and high F1-scores. Class activation mapping
(CAM) helped visualize effectively, but the low IoU values
indicate that better object detection methods are needed
for more accurate localization.

Wang et al. [22] developed FB-ZWUNet to improve the
cerebellum segmentation in fetal brain ultrasounds,
achieving a Dice coefficient of 0.8743 and IoU of 0.7813.
However, its performance on different ultrasound devices
and poor-quality images remains untested. Ciobanu et al.
[23] developed an automated method for classifying fetal
abdominal planes using MobileNetV3Large and Effi-
cientNetV2S, with accuracies of 79.89 % and 79.19 %. Table 1
presents a comparison of the existing methods and their
respective performance metrics.

2 Dey et al.: Early detection of fetal anatomical planes



Methods

The study addresses the challenging task of classifying ul-
trasound images into five distinct anatomical categories.
Figure 1 illustrates the entire process, from data collection
and preprocessing to model training and performance
evaluation. A detailed step-by-step process for fetal ultra-
sound image processing – covering data collection, model
training, evaluation, and prediction – is presented in
Algorithm 1.

Data collection

This study utilizes the (FETAL_PLANES_DB) [13] consists of
1,792 patient records with 12,000+ ultrasound images in a
real clinical environment. The six classes represent clinically
significant fetal structures: (i) fetal abdomen, (ii) fetal brain,
(iii) fetal femur, (iv) fetal thorax, (v) maternal cervix, and (vi)
Other. The distribution of each type of fetal ultrasound im-
age is as follows: Fetal Abdomen: 5.7 %, Fetal Brain: 24.9 %,
Maternal Cervix: 13.1 %, Fetal Femur: 8.4 %, Fetal Thorax:

Table : Existing fetal anomaly detection methods and their performance metrics.

Reference Dataset Features extraction Model Results Limitations

Rathika et al.
[]

Fetal dataset from Zenodo Gray-level Co-
occurrence matrix

RBFNN Accuracy: .% Higher computational resources, no
clinical relevance

Yang et al.
[]

Normal and abnormal fetal
ultrasound heart images

YOLOv component
outputs

YOLOv models Accuracy: .% Small sample size, class imbalace

Gong et al.
[]

Fetal cardiac ultrasound
dataset

Region of interest, end-
systolic phase

DGACNN Accuracy: % Limited disease samples, unlabeled
video data

Zhou et al.
[]

 fetal echocardiography
images.

CA-ISNet Category attention
module

Precision: .%,
DICE: . to .

SOLOv misclassification Issue.Mo-
derate precision

Nurmaini
et al. []

Ultrasound video data
(, annotated images)

Deep visual and seman-
tic features extracted via
ResNet

Mask RCNN
architecture

DICE=.% and
IoU=.

Small dataset

Moradi et al.
[]

Clinical images of 
patients

Grayscale and contrast-
enhanced channels.

MFP-Unet DM: ., HD: .,
MAD: .

Dataset size and Diversity, Limited
input image resolution

Qu et al. [] Fetal brain ultrasound
images

Differential convolu-
tional feature

Differential CNN Accuracy: .% dataset’s size and diversity, sensitive
to inherent artifacts

Xie et al. [] Ultrasound fetal images Extracted spatial fea-
tures (edges, textures,
contours)

U-Net, VGG-Net-
based DCNN
model

Overall accuracy:
.%

Localization Precision, considered
transverse standard planes,
neglecting sagittal and coronal
planes

Wang et al.
[]

Fetal brain corpus callosum
dataset

ZAM,WAM, MCM FB-ZWUNet Dice: ., IoU:
.

Device-specific performance,
Limited generalizability

Ciobanu
et al. []

Prospective cohort of fetal
ultrasound images
( classes)

Optical character
recognition

MobileNetV
large, efficient
NetVS

MobileNetV large:
.%, EfficientVS:
.%

Abdominal-only focus, no real-time
integration

Figure 1: Architectural diagram of fetal ultrasound classification.
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13.9 %, Other: 33.9 %. Figure 2 shows the different maternal–
fetal anatomical planes [24] and data representation before
and after preprocessing. Each image was labelled by an
Expert clinician to ensure high-quality annotations. The
images in the dataset vary in size, which can lead to incon-
sistent visual representation and negatively impact the
quality of analysis and model performance. Therefore,
resizing them to a uniform dimension is essential for
maintaining clarity and consistency.

Data preprocessing

In the preprocessing stages, images are resized using
OpenCV to 150 × 150 pixels for models like VGG16 and
ResNet50 and to 224 × 224 pixels for models such as Incep-
tionV3, DenseNet169, and MobileNetV2. The grayscale ul-
trasound image is converted to RGB by repeating the single
channel three times for transfer learning with ImageNet-

trained weights. Then the images are normalized from 8 bit
pixel values [0, 255] to the range [−1, 1] for faster convergence
and to improve the training process. The final step in pre-
processing is data augmentation, including random rotation,
zooming, shearing, and horizontal and vertical flipping,
which is used only on the training set to increase model
generalization and reduce overfitting. Then, the categorical
text labels are first transformed to integer representations
using Scikit-Learn’s LabelEncoder function. This stage con-
verts each class into a distinct numerical value. These
integer-encoded labels are then turned into a single hot-
encoded vector using the to_categorical() function in Ten-
sorFlow or Keras [25], which is required for multi-class
classification using softmax-based [26] neural network [25]
outputs.

Model training

This study optimized themodels to separate fetal ultrasound
images into five anatomical groups. Each model has been
configured with ImageNet [27] trained weights, enabling
transfer learning [27] by utilizing pretrained visual features.
The final layers of each model are customized to the current
classification task by replacing the original fully connected
layers with new dense layers, followed by a softmax acti-
vation function for multi-class prediction. The Adam opti-
mizer [28] is chosen here due to its adjustable learning rate
and computing efficiency, which make it most effective in
medical imaging tasks with a large number of parameters.
Each model is trained over 25 to 50 epochs with a batch size
of 16 or 32, based on model size, early stopping criteria, and
memory usage. Figure 3 shows the structuredmodel training
process of this study.

VGG16

The VGG16 [12] architecture is initialized using weights ob-
tained from training on the ImageNet dataset and config-
ured without its top classification layer. Equation (1)
represents the fundamental convolutional operation used in
the VGG16 architecture. Here, Z(l) represent the output of the
lth layer in the network. The terms W(l) and b(l) denote the
weights and biases associated with that layer, respectively.
The symbol ∗ refers to the convolution operation applied
between the input and the kernel. The activation function
used is the Rectified Linear Unit (ReLU), mathematically
defined as ReLU(x) = max(0, x), which introduces non-
linearity into the model while maintaining computational
efficiency. It uses small 3 × 3 kernels to capture fine-grained

Algorithm : Working procedure for classification of fetal ultrasound
images using DL models.

: Input: Raw ultrasound images from the FETAL_PLANES_DB dataset
: Step : Data Collection
: Acquire ultrasound images labeled into six categories: Fetal abdomen,
fetal brain, fetal femur, fetal thorax, maternal cervix, and other.
: Step : Data Preprocessing
: Resize all images to fixed dimensions ( ×  or  ×  based on
model type).
: Convert grayscale images to -channel RGB format.
: Normalize pixel values to the range [−, ].
: Apply augmentation (rotation, flipping, zooming, shearing) to increase
variability.
: Encode labels using LabelEncoder and one-hot encoding.
: Step : Dataset Splitting
: Divide data into training (%) and testing (%) sets.
: Step : Model Selection and Customization
: Utilize customized CNN models (e.g., VGG, ResNet, InceptionV,
DenseNet, MobileNetV).
: Remove original top layers and add new Dense + Dropout + Softmax
layers.
: Step : Model Compilation
: Use Adam optimizer and categorical cross-entropy loss.
: Set evaluation metric as classification accuracy.
: Step : Training and Fine-Tuning
: Train each model for – epochs with batch size of  or .
: Apply early stopping and learning rate scheduling.
: Step : Evaluation
: Evaluate trained models using accuracy, precision, recall, F-score, and
confusion matrix.
: Identify best-performing architecture (DenseNet) based on evalu-
ation metrics.
: Return: Predicted anatomical category for each input image.
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Figure 2: Visual representation of six different fetal ultrasound images before and after data preprocessing. (a) Different maternal–fetal anatomical
planes and data representation before preprocessing (b) different maternal–fetal anatomical planes after preprocessing.

Figure 3: Comprehensive architecture of model training process with parameter specifications.
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spatial characteristics and recognize features such as the
head, abdomen, or femur to distinguish fetal planes.

Z(l) = ReLU(W(l)∗Z(l−1) + b(l)) (1)

ResNet50

ResNet50 [12] is initialized with trained weights of ImageNet
and modified by appending a custom classification head.
Equation (2) represents the fundamental operation used in
the ResNet50 architecture. Here, Z(l) is the input to the re-
sidual block, and Z(l+1) is the output. The function F(Z(l), W(l))
represents the residual mapping learned by the block, typi-
cally consisting of a series of convolutional layers with ReLU
activations and batch normalization. The original input Z(l) is
added directly to the output of F, enabling the network to
learn modifications to the identity function. It is used to
preserve important details in deep layers, effectively detect
small differences in fetal images, and accurately distinguish
between similar fetal planes.

Z(l+1) = F(Z(l),W(l)) + Z(l) (2)

InceptionV3

InceptionV3 [12] model is initialized with trained ImageNet
weights, and its top layers are excluded to allow the addition of
a task-specific classification head. Equation (3) represents the
fundamental operation used in the DenseNet169 architecture.
Here,X represents the input, Convk×k denote convolutionwith
a k× k kernel, Pool3×3 represents 3× 3max or average pooling,
and Concat indicates depth-wise concatenation of feature
maps. The model improves performance by using a learning
rate scheduler, early stopping, model checkpointing, Adam
optimization, and categorical cross-entropy.

Z = Concat Conv1×1(X), Conv3×3(X),(
Conv5×5(X), Pool3×3(X)) (3)

InceptionV3 incorporatesmultiple responses in parallel,
making it highly effective for capturing features at different
levels. This is particularly relevant in fetal ultrasoundwhere
organs and anatomical regions vary significantly in size and
orientation. Its efficiency and robustness help in learning
discriminative features across varying fetal positions and
scanning angles.

DenseNet169

The DenseNet169 [12] model is initializedwith ImageNet pre-
trained weights and configured without its top classification
layers. Equation (4) represents the fundamental operation

used in the DenseNet169 architecture. Here, H(l) is a com-
posite function (BatchNorm → ReLU → Convolutionlayer)
and [Z(0), Z(1), …, Z(l−1)] represents concatenation of all pre-
vious layer outputs. DenseNet169 improves feature reuse
and gradient to detect subtle anatomical differences in fetal
ultrasound images.

Z(l) = H(l) [Z(0), Z(1),…, Z(l−1)]( ) (4)

MobileNetV2

The MobileNetV2 [12] model is trained using a transfer
learning approach, where the base convolutional layers are
initialized with pre-trained weights from the ImageNet
dataset and all layers are halted to allow fine-tuning. Equa-
tion (5) represents the fundamental operation used in the
MobileNetV2 architecture. Here, ConvDepthwise(X ) applies
spatial filtering per channel, ConvPointwise performs 1 × 1
convolution for cross-channel fusion, and ConvDS(X ) repre-
sents the output.

ConvDS(X) = ConvPointwise ConvDepthwise(X)( ) (5)

Results

All experiments are conducted on a computational system
equippedwith an Intel(R) Core(TM) i5-10400 CPU@2.90 GHz,
16 GB DDR4 RAM, and a 64 bit Windows 11 operating system
(×64-based architecture), ensuring reproducibility and
alignmentwith standard hardware configurations formodel
evaluation. The model’s performance [29] is evaluated using
accuracy, precision, recall, F1-score, and confusionmatrices.
Each metric is computed based on the number of correctly
and incorrectly predicted samples, categorized as True
Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN). This ensured a thorough and reliable
assessment of its classification effectiveness. Equa-
tion (6)–(9) shows the calculating procedure of the evalua-
tion metrics.

Accuracy = TP + TN
TP + TN + FP + FN

× 100% (6)

Precision = TP
TP + FP

× 100% (7)

Recall = TP
TP + FN

× 100% (8)

F1 − score = 2 × Precision × Recall
Precision + Recall

× 100% (9)

6 Dey et al.: Early detection of fetal anatomical planes



Performance metrics

The VGG16 model, fine-tuned with pre-trained ImageNet
weights, achieved a test accuracy of 90.22 %. The ResNet50
model, with a test accuracy of 88 %, is close to VGG16, while
InceptionV3 also performs similarly with an accuracy close
to 90 %. MobileNetV2, optimized for speed and efficiency,
achieved a 71 % accuracy. Among all models, DenseNet169
outperforms the otherswith the highest test accuracy of 92 %
presented in Table 2.

Figure 4 shows the confusion matrix of all five CNN
models. Figure 5 shows high classification accuracy for all
classes, with AUC values between 0.87 and 1.00.

Comparative analysis

We compared the classification performance of various CNN
architectures on fetal ultrasound image data, using the
models VGG16, ResNet50, InceptionV3, DenseNet169, and
MobileNetV2. Table 3 presents the performance metrics,
which include overall accuracy, average precision, recall, F1-
score, and best performing classes. DenseNet169 out-
performed all other models as a result of accuracy and F1-
score, demonstrating an outstanding capacity to identify
complex anatomical structures like the fetal thorax. In
comparison, MobileNetV2, performed considerably lower in
most metrics, including detecting fetal abdomen and femur.
The findings demonstrate the relationship between model
complexity and diagnostic performance.

Discussions

This study conducts a comprehensive evaluation of five deep
learningmodels, VGG16, ResNet50, InceptionV3, DenseNet169,
and MobileNetV2 for the classification of fetal ultrasound
images across six anatomical planes. Among these models,
DenseNet169 demonstrated superior performance, achieving
a classification accuracy of 92%, thereby highlighting its
exceptional capability in recognizing intricate fetal struc-
tures, particularly the fetal brain and maternal cervix.
InceptionV3 and VGG16 also exhibited competitive perfor-
mance. In contrast, MobileNetV2, despite its lightweight and
computationally efficient design, significantly under-
performed with an accuracy of 65.83 %, especially in complex
anatomical regions such as the fetal abdomen and femur. This
study identified deeper CNN architectures, particularly Den-
seNet169, outperforming lighter models such as MobileNetV2
in classifying complex fetal ultrasound images. This indicates
deeper networks are more effective at preserving subtle

spatial features and fine-grained anatomical distinctions,
which are important for accurate classification in medical
imaging tasks. These findings are important because
they demonstrate the clinical feasibility of incorporating
advanced deep learning models into diagnostic workflows.

Table : Comparison of classification reports for different deep learning
models.

VGG classification report

Class Precision Recall F-score Support

Fetal abdomen . . . 

Fetal brain . . . 

Fetal femur . . . 

Fetal thorax . . . 

Maternal cervix . . . 

Other . . . 

ResNet classification report

Class Precision Recall F-score Support

Fetal abdomen . . . 

Fetal brain . . . 

Fetal femur . . . 

Fetal thorax . . . 

Maternal cervix . . . 

Other . . . 

InceptionV classification report

Class Precision Recall F-score Support

Fetal abdomen . . . 

Fetal brain . . . 

Fetal femur . . . 

Fetal thorax . . . 

Maternal cervix . . . 

Other . . . 

MobileNetV classification report

Class Precision Recall F-score Support

Fetal abdomen . . . 

Fetal brain . . . 

Fetal femur . . . 

Fetal thorax . . . 

Maternal cervix . . . 

Other . . . 

DenseNet classification report

Class Precision Recall F-score Support

Fetal abdomen . . . 

Fetal brain . . . 

Fetal femur . . . 

Fetal thorax . . . 

Maternal cervix . . . 

Other . . . 
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DenseNet169, with high F1-scores across most classes, may be
utilized as an option for sonographers, lowering diagnostic

errors, particularly in resource-constrained environments.
MobileNetV2’s low performance, despite being fast and

Figure 4: Confusion matrix of various CNN models’. (a) VGG16 model performance. (b) ResNet50 model performance. (c) InceptionV3 model
performance. (d) MobileNetV2 model performance. (e) DenseNet169 model performance.
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Figure 5: ROC curves of various CNN architectures used for fetal anatomical plane classification. (a) VGG16 model ROC curve. (b) ResNet50 model ROC
curve. (c) InceptionV3 model ROC curve. (d) MobileNetV2 model ROC curve. (e) DenseNet169 model ROC curve.
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efficient, shows the limitations of using lightweight models in
high-precision tasks without customized optimizations. The
models also show that almost all models performed better
when recognizing the fetal brain and maternal cervix, sug-
gesting that these anatomical planes are visually separate and
simpler to segment. On the other hand, the fetal abdomen
consistently appeared as the weakest class across all models,
with significantly lower precision and recall. The inability of
models to learn robust features is probably caused by both
class imbalance and increased variation between different
classes. The DenseNet169 model’s strong performance is sig-
nificant not just for accuracy but also for usage in real-world
medical contexts. Using this type of DLmodel in prenatal care
can help in various ways, including reducing diagnostic time
by automatically detecting important anatomical views,
improving consistency by reducing differences between
different doctors’ interpretations, and assisting doctors in
making correct decisions. These advantages are particularly
useful in clinics with limited resources, where professional
doctors may not always be available.

Furthermore, while some studies have examined pre-
natal defects, authors frequently focused on specific struc-
tures; this research has utilized a complete multi-class
categorization method. Compared to previous studies that
primarily addressed limited anatomy or binary classification
tasks, this study takes a more comprehensive approach. Our
methodology covers multi-class categorization across six
essential fetal anatomical planes, hence increasing its thera-
peutic value in real-world circumstances. Furthermore, pre-
vious research frequently did not include robust testing
across varied anatomical complexity and failed to incorporate
multi-plane detection. Our findings highlight the relevance of
employing deeper CNN designs such as DenseNet169, which
remains successful across almost all classes. This contributes

to broader diagnostic applicability and sets a benchmark for
automated fetal ultrasound classification systems.

Although the dataset is clinically labeled and large, itmay
not cover every aspect of fetal morphological changes among
populations. This limitation could affect the model’s general-
izationwhen applied to new clinical settings. The training and
evaluation were conducted on resource-constrained hard-
ware. While this demonstrates the feasibility of Deep
Learning on modest systems, it may have limited the explo-
ration of larger architectures or more complex hyper-
parameter tuning. A slight imbalance in the number of
samples across classes, particularly for the fetal abdomen and
fetal femur, may have influenced the model’s performance.
Models may have been biased toward classes with more ex-
amples, resulting in reduced recall and precision in under-
represented categories. To extend the scope and applicability
of this study, future research will focus on several key areas.
Firstly, expanding the dataset with fetal ultrasound images
from multiple hospitals, different ultrasound machines, and
varied patient populations will enhance the model’s gener-
alization and robustness across diverse clinical settings. Sec-
ondly, exploring model compression and optimization
strategies such as pruning, quantization, or the use of inher-
ently lightweight architectures likeMobileNetV2 can facilitate
real-time deployment in environments with limited compu-
tational resources. Third, improving the explainability of
model decisions through visualization techniques like Grad-
CAM or SHAP can increase transparency and help clinicians
understand and trust the model’s outputs. Lastly, integrating
these models into real-time clinical workflows should be
investigated. Real-time deployment during ultrasound scans
has the potential to support practitioners with immediate
feedback, thus improving both the speed and consistency of
prenatal diagnostics.

Table : Performance comparison of CNN models for ultrasound classification.

Model Accuracy, % Precision,
P

Recall,
R

F-
score

Best performing classes Weakest classes Computational
efficiency

VGG . . . . Fetal brain, maternal cervix Fetal abdomen (% P, % R), fetal
thorax

Moderate

ResNet . . . . Fetal brain, maternal cervix Fetal abdomen (% P, % R) Moderate
InceptionV . . . . Fetal brain, maternal cervix Fetal abdomen (% P, % R), fetal

thorax
High

DenseNet . . . . Fetal brain, maternal cervix,
fetal thorax

Fetal abdomen (% P, % R) High

MobileNetV . . . . Fetal brain Fetal abdomen (% P, % R), fetal
thorax, fetal femur

Lightweight
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Conclusions

This study proposes a deep learning based method for the
classification of fetal ultrasound images using five custom-
ized CNN architectures. These models are trained and eval-
uated on the FETAL_PLANES_DB dataset, which contains six
clinically significant anatomical planes. The objective is to
evaluate the effectiveness of current deep learning ap-
proaches in accurately identifying fetal structures from ul-
trasound images. Among the models, DenseNet169 achieves
the highest test accuracy of 92 %. The results show the need
for deep learning models to support automated prenatal
diagnostics, enabling clinicians to identify fetal anatomical
features more efficiently and with reduced variability. This
method performs effectively even on basic resource equip-
ment, demonstrating its suitability for deployment in low-
resource clinical environments. To provide higher reliability
in real-world applications, future research should focus on
increasing dataset diversity, optimizingmodel performance,
and improving interpretability. Improving these fields is
essential for incorporating deep models into reliable and
efficient medical procedures.
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