J. Perinat. Med. 2023; 51(7): 886–890 DE GRUYTER

Roberto Romero*, Maria Teresa Gervasi, Daniel B. DiGiulio, Eunjung Jung, Manaphat Suksai, Jezid Miranda, Kevin R. Theis, Francesca Gotsch and David A. Relman*

Are bacteria, fungi, and archaea present in the midtrimester amniotic fluid?

https://doi.org/10.1515/jpm-2022-0604 Received December 12, 2022; accepted January 14, 2023; published online May 17, 2023

Abstract

റ്

Objectives: This study was conducted to determine whether bacteria, fungi, or archaea are detected in the amniotic fluid of patients who underwent midtrimester amniocentesis for clinical indications.

Methods: Amniotic fluid samples from 692 pregnancies were tested by using a combination of culture and end-point polymerase chain reaction (PCR) techniques. Intra-amniotic inflammation was defined as an interleukin-6 concentration >2,935 pg/mL.

Results: Microorganisms were detected in 0.3% (2/692) of cases based on cultivation, 1.73% (12/692) based on broad-range end-point PCR, and 2% (14/692) based on the combination of both methods. However, most (13/14) of these cases did not have evidence of intra-amniotic

inflammation and delivered at term. Therefore, a positive culture or end-point PCR in most patients appears to have no apparent clinical significance.

Conclusions: Amniotic fluid in the midtrimester of pregnancy generally does not contain bacteria, fungi, or archaea. Interpretation of amniotic fluid culture and molecular microbiologic results is aided by the assessment of the inflammatory state of the amniotic cavity. The presence of microorganisms, as determined by culture or a microbial signal in the absence of intra-amniotic inflammation, appears to be a benign condition.

Keywords: chorioamnionitis; contamination; inflammation; microbial survey; sterile womb hypothesis.

Introduction

The amniotic cavity is thought to be sterile, a concept consistent with the "sterile womb hypothesis," which posits

The study was conducted at the Perinatology Research Branch, NICHD/NIH/DHHS, in Detroit, Michigan; the Branch has since been renamed as the Pregnancy Research Branch, NICHD/NIH/DHHS.

*Corresponding authors: Roberto Romero, MD, DMedSci, Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; and Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA, E-mail: romeror@mail.nih.gov; and David A. Relman, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA, E-mail: relman@stanford.edu

Maria Teresa Gervasi, Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; and Gynaecology and Obstetrics Unit, Department of Woman and Child Health, University Hospital of Padua, Padua, Italy

Daniel B. DiGiulio, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; and Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA

Eunjung Jung, Manaphat Suksai and Francesca Gotsch, Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; and Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA Jezid Miranda, Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; and Department of Obstetrics and Gynecology, Universidad de Cartagena, Cartagena, Colombia

Kevin R. Theis, Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; and Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA

that under normal circumstances microbial colonization occurs after birth [1-3]. Some investigators have reported the presence of microorganisms when using DNA sequencing techniques and proposed that human amniotic fluid contains evidence of a microbiome [4-11], even in clinical states of health. These findings contrast with those of others who used either cultivation or molecular microbiologic techniques, or a combination of both, and did not find evidence of a microbiome [12-18]. The present study was conducted to determine whether bacteria, fungi, or archaea could be found in the amniotic fluid of patients who underwent midtrimester amniocentesis for clinical indications (see Table 1).

Materials and methods

This retrospective cohort study included 692 asymptomatic women with a singleton pregnancy who underwent midtrimester

Table 1: Clinical characteristics, socio-demographics, and perinatal outcomes of the study population.

Characteristics	n=692 n, or median (IQR)
Maternal age, years	37 (35–39)
Maternal race	
Caucasian	683 (98.7)
Black	3 (0.43)
Hispanic	3 (0.43)
Asian	3 (0.43)
Nulliparity	278 (40.2)
History of spontaneous preterm delivery	22 (3.2)
Gestational age at amniocentesis, weeks	16.3 (15.9-16.7)
Indication for amniocentesis	
Advanced maternal age	560 (80.9)
Abnormal 1st or 2nd trimester screening	63 (9.1)
Maternal request	49 (7.1)
Suspected fetal anomaly at ultrasound	11 (1.6)
Others	9 (1.3)
Gestational age at delivery	39.6 (38.6-40.6)
Preterm birth (<37 weeks)	56 (8.1)
Late spontaneous preterm delivery (≥32 weeks)	37 (5.3)
Early spontaneous preterm delivery (<32 weeks)	4 (0.6)
Indicated preterm delivery	15 (2.16)
Delivery route	
Vaginal	524 (75.7)
Cesarean	168 (24.3)
Gender	
Male	338 (49.2)
Female	349 (50.8)
Birthweight, grams	3335 (3041–3600)
Birthweight percentile	43 (27.6–63.9)
Small for gestational age	42 (6.1)

IQR, Interquartile range. Missing data: Gender (5).

amniocentesis for clinical indications between 14 and 26 weeks of gestation (Table 1). Amniotic fluid was cultured for both aerobic and anaerobic bacteria as well as for genital mycoplasmas. Broad-range end-point polymerase chain reaction (PCR) assays were performed to amplify and characterize the ribosomal DNA (rDNA) of bacteria, fungi, and archaea, using a method previously described in detail [19]. In seven cases, quantitative PCR [19] was performed to assess microbial burden. Amniotic fluid concentrations of interleukin (IL)-6 were measured and validated with specific enzyme-linked immunosorbent assays. Intra-amniotic inflammation was diagnosed when the amniotic fluid IL-6 concentration was >2,935 pg/mL. White blood cell count, glucose concentration, and Gram stain of amniotic fluid were also performed. Microbial invasion of the amniotic cavity was defined by the presence of a positive culture or of microbial sequences by broadrange PCR.

The collection of samples and clinical data was approved by the Institutional Review Board of the Azienda Ospedaliera Treviso, Azienda Ospedale/Universita' Padova, Veneto Region, Italy. This institution has a Federal Wide Assurance with the United States Department of Health and Human Services. This study is based on a subset of samples previously investigated in intra-amniotic inflammation [12].

Categorical data are presented as n (%) and continuous data as mean [standard deviation (±SD)] or median [interquartile range (IQR)] according to their distribution. The Kruskal-Wallis test, followed by the Mann-Whitney-Wilcoxon test for post-hoc analysis, was performed to compare continuous variables among and between groups. Comparisons of proportions were performed with Chi-square or Fisher's exact tests. Statistical analysis was performed by using R language and environment for statistical computing (www.r-project.org). For all analyses, a two-tailed p-value<0.05 was considered significant.

Results

Bacteria were detected in 0.3% (2/692) of cases based on cultivation, 1.73% (12/692) based on broad-range end-point PCR, and 2% (14/692) based on the combination of culture and end-point PCR results (Table 2). Collectively, eight bacterial taxa, one fungal species (Candida albicans), and no archaea were identified. Two bacterial taxa (Staphylococcus aureus and Pseudomonas aeruginosa) were detected by culture only and six bacterial taxa (Ureaplasma, Acinetobacter, Mycoplasma hominis, Streptococcus agalactiae, Streptococcus, and Sneathia) were detected by PCR only. There was no concordance between the results of microbial culture and molecular microbiology. Importantly, quantitative PCR did not yield a signal above the limit of detection of the assay in five of the seven cases tested (Table 2).

The prevalence of spontaneous preterm birth (<37 weeks of gestation) was 5.78% (40/692) whereas that of spontaneous early preterm birth (<32 weeks of gestation) was 1.15% (8/692). Sterile intra-amniotic inflammation (IL-6>2,935 pg/mL and an absence of detectable microorganisms) was found in 6.1% (42/692) of patients in the midtrimester of pregnancy. Patients whose amniotic fluid

Table 2: Amniotic fluid markers of inflammation and pregnancy outcomes in patients with a positive amniotic fluid culture or an end-point PCR for microorganisms during the midtrimester.

Case number	Microorganism identi- fied by culture	Microorganism identified by end-point PCR	Microbial burden 16S rRNA gene copy number	AF WBC, cells/mm ³	AF glucose, mg/dL	AF IL-6, ng/mL	GA at delivery, weeks
1	Negative	Ureaplasma	13,003	30	34	8.43	28.6
2	Negative	Acinetobacter	745	12	35	0.40	34.7
3	Negative	S. agalactiae	NI	1	51	0.58	41.3
4	Negative	M. hominis	NI	2	44	0.43	41
5	Negative	Streptococcus	Below limit of detection	5	45	0.60	41.4
6	Negative	Sneathia	NI	5	50	0.17	40.9
7	Negative	Sneathia	NI	2	44	0.48	39.1
8	Negative	Candida	Below limit of detection	7	54	0.20	41.1
9	Negative	Candida	NI	2	45	0.10	39.4
10	Negative	Candida	Below limit of detection	11	46	0.06	39.3
11	Negative	Candida	NI	1	55	0.41	38
12	Negative	Candida	NI	2	50	0.3	37
13	Staphylococcus aureus	Negative	Below limit of detection	2	50	0.87	40.1
14	Pseudomonas aeruginosa	Negative	Below limit of detection	3	37	1.09	39.0

AF, amniotic fluid; IL-6, interleukin-6; GA, gestational age; NI, no information; PCR, polymerase chain reaction; WBC, white blood cell count.

samples had microorganisms but not inflammation had a similar perinatal outcome to that of women without detectable microorganisms. None of the patients with a positive amniotic fluid culture had intra-amniotic inflammation, and all delivered at term. A positive PCR result was associated with intra-amniotic inflammation in only one case (Case #1 in Table 2), specifically a patient with a high amniotic fluid microbial burden of *Ureaplasma* (13,003 16S rRNA gene copies) detected only by PCR but not by cultivation. The patient delivered at 28.6 weeks of gestation.

Discussion

Our findings indicate that most asymptomatic patients in the midtrimester of pregnancy do not have bacteria, fungi, or archaea detectable in amniotic fluid and these observations are consistent with previous reports [12–15].

The standard diagnosis of amniotic fluid infection depends upon the identification of microorganisms in amniotic fluid obtained in a manner that minimizes the risk of contamination of the specimen (transabdominal amniocentesis vs. intrauterine pressure catheter) [20]. Cultures of aerobic and anaerobic bacteria have been the gold standard. Molecular microbiologic techniques, using PCR with primers designed to target the conserved regions of microbial genomes or primers for specific microorganisms, have emerged as complementary methods to cultures for microbial detection [21–28]. The individual and combined use of these methods for the diagnosis of intra-

amniotic infection has been the subject of previous publications [19, 21, 23–26, 29–39]. In general, molecular microbiologic techniques are more sensitive than cultivation techniques [40–43]. Cultivation assays are also prone to false positive results due to contamination of a specimen either at the bedside or in the laboratory [44–46].

In the current study, two cases of positive amniotic fluid cultures were identified. Neither patient showed clinical evidence of intra-amniotic inflammation (white blood cell count and concentrations of glucose and IL-6), and both had a negative PCR result for microorganisms and subsequently delivered at term. These findings suggest that the positive cultures in these cases represented contamination of the specimens. We have previously reported that a positive amniotic fluid culture in the absence of intra-amniotic inflammation is a benign condition associated with term delivery and normal outcome [47].

Herein, 12 patients had a positive end-point PCR result for microorganisms but only one showed evidence of intra-amniotic inflammation (Case #1 in Table 2). This patient had a preterm delivery at 28 weeks of gestation with histologic evidence of acute chorioamnionitis (a maternal inflammatory response) and funisitis (a fetal inflammatory response). These observations suggest that the patient had a true positive PCR test even though the amniotic fluid culture was negative. Of interest, the microbial burden was high with quantitative real-time PCR. Previous reports suggested that the microbial burden in amniotic fluid may be helpful in the differential diagnosis of a true positive vs. a false positive result of molecular microbiologic tests [25].

Ouantification of the microbial burden with real-time PCR for bacterial 16S rDNA was performed in seven cases of which five were positive for the end-point PCR and two were positive by culture. In most cases, real-time PCR did not detect microbial nucleic acids. In one case, the microbial burden was high (13,003 16S rRNA gene copies), and this patient is described in the previous paragraph. In the second case, Acinetobacter was identified by end-point PCR but there were only 745 16S rRNA gene copies. This patient had no evidence of intra-amniotic inflammation (Case #2 in Table 2) and delivered at 34 weeks of gestation; the placenta showed no evidence of acute histologic chorioamnionitis or funisitis.

We conclude that amniotic fluid in the midtrimester of pregnancy of clinically asymptomatic patients generally does not contain bacteria, fungi, or archaea. Interpretation of amniotic fluid culture and molecular microbiologic results is aided by assessment of the inflammatory state of the amniotic cavity, and by the quantification of microbial sequences. The presence of microorganisms by culture or a microbial signature by end-point PCR in the absence of intra-amniotic inflammation appears to be a benign condition.

Acknowledgments: The authors thank Maureen McGerty (Wayne State University) for her critical reading of the manuscript and editorial support.

Research funding: This research was supported, in part, by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research. Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/ DHHS); and, in part, with Federal funds from NICHD/NIH/ DHHS under Contract No. HHSN275201300006C. It was also supported by the Thomas C. and Joan M. Merigan Endowment at Stanford University (Dr. Relman). Dr. Romero has contributed to this work as part of his official duties as an employee of the United States Federal Government.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflicts of interest. Informed consent: Informed consent was obtained from all individuals included in this study.

Ethical approval: Research involving human subjects complied with all relevant national regulations and institutional policies; is in accordance with the tenets of the Helsinki Declaration (as revised in 2013); and has been

approved by the Institutional Review Board of Azienda Ospedaliera Treviso, Azienda Ospedale/Universita' Padova, Veneto Region, Italy.

References

- 1. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017;5:48.
- 2. Blaser MJ, Devkota S, McCoy KD, Relman DA, Yassour M, Young VB. Lessons learned from the prenatal microbiome controversy. Microbiome 2021;9:8.
- 3. Carino R, 3rd, Takayasu L, Suda W, Masuoka H, Hirayama K, Konishi S, et al. The search for aliens within us: a review of evidence and theory regarding the foetal microbiome. Crit Rev Microbiol 2022;48:611-23.
- 4. Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 2012;102:178-84.
- 5. Chu D, Stewart C, Seferovic M, Suter M, Cox J, Vidaeff A, et al. 26: profiling of microbiota in second trimester amniotic fluid reveals a distinctive community present in the mid trimester and predictive of the placental microbiome at parturition. Am J Obstet Gynecol 2017;216:
- 6. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016;6: 23129.
- 7. Zhu L, Luo F, Hu W, Han Y, Wang Y, Zheng H, et al. Bacterial communities in the womb during healthy pregnancy. Front Microbiol
- 8. Stinson LF, Boyce MC, Payne MS, Keelan JA. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front Microbiol 2019;10:1124.
- 9. Stinson L, Hallingstrom M, Barman M, Viklund F, Keelan J, Kacerovsky M, et al. Comparison of bacterial DNA profiles in midtrimester amniotic fluid samples from preterm and term deliveries. Front Microbiol 2020;11:415.
- 10. Campisciano G, Quadrifoglio M, Comar M, De Seta F, Zanotta N, Ottaviani C, et al. Evidence of bacterial DNA presence in chorionic villi and amniotic fluid in the first and second trimester of pregnancy. Future Microbiol 2021;16:801-10.
- 11. Wu S, Yu F, Ma L, Zhao Y, Zheng X, Li X, et al. Do maternal microbes shape newborn oral microbes? Indian | Microbiol 2021;61:16-23.
- 12. Gervasi MT, Romero R, Bracalente G, Erez O, Dong Z, Hassan SS, et al. Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med 2012;
- 13. Rowlands S, Danielewski JA, Tabrizi SN, Walker SP, Garland SM. Microbial invasion of the amniotic cavity in midtrimester pregnancies using molecular microbiology. Am J Obstet Gynecol 2017;217:71.e1-5.
- 14. Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 2018;6:87.
- 15. Rehbinder EM, Lodrup Carlsen KC, Staff AC, Angell IL, Landro L, Hilde K, et al. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am J Obstet Gynecol 2018;219:289.e1-12.

- Burnham P, Gomez-Lopez N, Heyang M, Cheng AP, Lenz JS, Dadhania DM, et al. Separating the signal from the noise in metagenomic cell-free DNA sequencing. Microbiome 2020;8:18.
- Liu Y, Li X, Zhu B, Zhao H, Ai Q, Tong Y, et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am J Obstet Gynecol 2020;223: 248.e1–21.
- 18. Wang H, Yang GX, Hu Y, Lam P, Sangha K, Siciliano D, et al. Comprehensive human amniotic fluid metagenomics supports the sterile womb hypothesis. Sci Rep 2022;12:6875.
- DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 2008;3:e3056.
- Gibbs RS, Blanco JD, St Clair PJ, Castaneda YS. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J Infect Dis 1982;145:1–8.
- Yoon BH, Romero R, Kim M, Kim EC, Kim T, Park JS, et al. Clinical implications of detection of Ureaplasma urealyticum in the amniotic cavity with the polymerase chain reaction. Am J Obstet Gynecol 2000; 183:1130–7.
- DiGiulio DB, Romero R, Kusanovic JP, Gomez R, Kim CJ, Seok KS, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 2010;64:38–57.
- DiGiulio DB, Gervasi M, Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based methods. I Perinat Med 2010:38:503–13.
- DiGiulio DB, Gervasi MT, Romero R, Vaisbuch E, Mazaki-Tovi S, Kusanovic JP, et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J Perinat Med 2010;38:495–502.
- Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraamniotic infection in preterm labor with intact membranes. Am J Reprod Immunol 2014;71:330–58.
- Romero R, Miranda J, Kusanovic JP, Chaiworapongsa T, Chaemsaithong P, Martinez A, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med 2015;43:19–36.
- Romero R, Gomez-Lopez N, Winters AD, Jung E, Shaman M, Bieda J, et al. Evidence that intra-amniotic infections are often the result of an ascending invasion - a molecular microbiological study. J Perinat Med 2019;47:915–31.
- Winters AD, Romero R, Graffice E, Gomez-Lopez N, Jung E, Kanninen T, et al. Optimization and validation of two multiplex qPCR assays for the rapid detection of microorganisms commonly invading the amniotic cavity. J Reprod Immunol 2022;149:103460.
- Romero R, Emamian M, Quintero R, Wan M, Hobbins JC, Mazor M, et al. The value and limitations of the Gram stain examination in the diagnosis of intraamniotic infection. Am J Obstet Gynecol 1988;159:114–9.
- Goldstein I, Zimmer EZ, Merzbach D, Peretz BA, Paldi E. Intraamniotic infection in the very early phase of the second trimester. Am J Obstet Gynecol 1990;163:1261–3.
- Watts DH, Krohn MA, Hillier SL, Eschenbach DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol 1992;79: 351–7.

- 32. Mandar R, Li K, Ehrenberg A, Smidt I, Raukas E, Kask V, et al. Amniotic fluid microflora in asymptomatic women at mid-gestation. Scand J Infect Dis 2001;33:60–2.
- Markenson GR, Adams LA, Hoffman DE, Reece MT. Prevalence of Mycoplasma bacteria in amniotic fluid at the time of genetic amniocentesis using the polymerase chain reaction. J Reprod Med 2003;48:775–9.
- 34. Perni SC, Vardhana S, Korneeva I, Tuttle SL, Paraskevas LR, Chasen ST, et al. Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: association with amniotic fluid cytokine levels and pregnancy outcome. Am J Obstet Gynecol 2004;191:1382–6.
- DiGiulio DB, Romero R, Kusanovic JP, Gómez R, Kim CJ, Seok KS, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 2010; 64:38–57.
- Payne MS, Feng Z, Li S, Doherty DA, Xu B, Li J, et al. Second trimester amniotic fluid cytokine concentrations, Ureaplasma sp. colonisation status and sexual activity as predictors of preterm birth in Chinese and Australian women. BMC Pregn Childbirth 2014;14:340.
- Romero R, Miranda J, Chaemsaithong P, Chaiworapongsa T, Kusanovic JP, Dong Z, et al. Sterile and microbial-associated intraamniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2015;28:1394–409.
- Oh KJ, Romero R, Park JY, Hong JS, Yoon BH. The earlier the gestational age, the greater the intensity of the intra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J Perinat Med 2019:47:516–27.
- Tetu A, Guerby P, Rallu F, Duperron L, Morin V, Bujold E. Mid-trimester microbial invasion of the amniotic cavity and the risk of preterm birth.
 J Matern Fetal Neonatal Med 2022;35:4071–4.
- Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008:14:908–34.
- Rhoads DD, Cox SB, Rees EJ, Sun Y, Wolcott RD. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infect Dis 2012;12:321.
- Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, et al. Analysis of culture-dependent versus cultureindependent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol 2014;52: 3605–13.
- Gupta S, Mortensen MS, Schjørring S, Trivedi U, Vestergaard G, Stokholm J, et al. Amplicon sequencing provides more accurate microbiome information in healthy children compared to culturing. Commun Biol 2019;2:291.
- Dargère S, Cormier H, Verdon R. Contaminants in blood cultures: importance, implications, interpretation and prevention. Clin Microbiol Infect 2018;24:964–9.
- 45. Giuliano C, Patel CR, Kale-Pradhan PB. A guide to bacterial culture identification and results interpretation. P T 2019;44:192–200.
- Bool M, Barton MJ, Zimmerman PA. Blood culture contamination in the emergency department: an integrative review of strategies to prevent blood culture contamination. Australas Emerg Care 2020;23: 157–65.
- 47. Jung E, Romero R, Yoon BH, Theis KR, Gudicha DW, Tarca AL, et al. Bacteria in the amniotic fluid without inflammation: early colonization vs. contamination. J Perinat Med 2021;49:1103–21.