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Abstract: Recreating human cell and organ systems in vitro
has tremendous potential for disease modeling, drug
discovery and regenerative medicine. The aim of this short
overview is to recapitulate the impressive progress that has
been made in the fast-developing field of cell programming
during the past years, to illuminate the advantages and
limitations of the various cell programming technologies for
addressing nervous system disorders and to gauge their
impact for perinatal medicine.
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Introduction

The advent of the pluripotent stem cell (PSC) technology has
provided entirely novel prospects for biomedicine. With the
availability of human embryonic stem cells (ESCs) and their
controlled in vitro differentiation into somatic derivatives, it
became possible to generate human cells of a large number
of tissues and organs in the laboratory [1]. This approach is
particularly relevant for cell types of non-regenerative
tissues, which typically do not contain sufficient numbers of
adult stem cells or are hardly accessible to cell retrieval.
Such tissues include, among others, the nervous system,
heart and insulin-producing islets of the pancreas -
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prospects for perinatal

coincidentally tissues that are primarily affected by diseases
associated with the current demographic change.

Less than ten years later, the pioneering work by Shinya
Yamanaka and his team rang in the next level of PSC
research: the generation of induced pluripotent stem cells
(iPSCs) from somatic cells, such as skin fibroblasts, by
overexpression of defined transcription factors [2, 3]. This
reprogramming approach opened the door to the generation
of patient-specific PSCs and their subsequent differentiation
into various tissue-specific cells — in virtually unlimited
numbers. With this development, iPSCs became not only a
resource for cell therapy development but also an exciting
tool for modeling diseases in vitro. Based on this, tissue-
specific cells generated from patient-derived iPSCs further
found entry in drug development, offering a route to assess
drug effects on disease-relevant patient cells at an early stage
of compound development. These approaches were further
boosted by the enormous advances in the field of genome
editing. In particular the CRISPR-Cas technology allows to
either repair patient-specific mutations in iPSCs or to
introduce such mutations into PSCs derived from healthy
donors, with both approaches resulting in an ideal isogenic
control scenario, which significantly reduces the experi-
mental noise in cell-based disease modeling that is typically
observed using control cells from different genetic back-
grounds [4].

Naturally, developments did not stop there. Soon the
idea of using pioneer transcription factors to switch cell
identities was applied to directly inter-convert somatic cell
types of different germ layers without traversing through a
pluripotent state. Using this rationale, fibroblasts could, e.g.,
be directly converted into neurons [5]. Along a similar line,
fate-instructing transcription factors were used to rapidly
differentiate PSCs into distinct somatic fates, a strategy
referred to as ‘forward programming’ (reviewed in [6]).

This steadily increasing methodological tool box makes
it challenging to navigate in this fast-moving field and to
select appropriate cell sources for individual biomedical
applications. The following paragraphs aim at addressing
this challenge using the central nervous system (CNS) as
exemplar.
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Extrinsic factor-driven neural
differentiation of PSCs

During physiological CNS development, neural subtypes
evolve from distinct stem and progenitor cell populations.
These cells divide and specialize in response to diverse
extrinsic factors. While specific growth factors mediate the
proliferation of precursor cells, which is essential for
building an expanding structure, morphogens play a key
role in instructing regional specification, thereby defining
cell populations located in specific compartments of the CNS
[7]. It was thus a logical choice that growth factors and
morphogens were first used to mimic these developmental
processes for differentiating PSCs into distinct regional fates
and neural subtypes.

A classic approach along this line is the generation of
stably expandable neural stem cell (NSC) populations from
PSCs, e.g., by safe-guarding the continued proliferation of
neural precursors evolving during undirected differentiation
of PSCs by supplementation of the growth factors FGF2 and
EGF [8, 9]. Once generated, such long-term self-renewing
neuroepithelial stem cells (It-NES cells) can be kept for
numerous passages. Upon growth factor withdrawal, they
generate stable fractions of neurons and glia, which largely
facilitates standardization of the differentiation process.
Human 1t-NES cells have been successfully used in a number
of applications including disease modeling [10, 11] and
preclinical neurotransplantation [8, 12-14], in which their
neuronal derivatives were shown to establish synaptic
connections with the host brain [15]. Over the years, alter-
native protocols for the establishment of PSC-derived NSCs
were established, including a paradigm based on dual-SMAD
inhibition [16] and small molecule-based protocols exploiting,
e.g., induction of SHH and Wnt signaling [17]. In addition, later
stage NSC populations have been established and used for the
generation of glial cells [18]. While such PSC-derived NSCs
provide expandable and cryopreservable intermediates for
robust generation of neurons and glia, they also come with
some limitations. In particular, they are mostly restricted with
respect to regional differentiation. Specifically, directing
PSC-derived stable NSCs toward distinct forebrain pheno-
types has proven difficult and requires sophisticated pro-
tocols [19, 20]. When it comes to the generation of very defined
neuronal subpopulations, recapitulation of their develop-
mental trajectory can yield remarkably authentic cells. A
paradigmatic example is the generation of midbrain dopa-
mine neurons, where a combination of SHH activation, ca-
nonical Wnt induction and timed delivery of FGF8b has been
successfully used to generate this floorplate-derived popula-
tion in vitro [21-23].
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Forward programming: from
morphogens to transcription
factors

Guiding the differentiation of PSCs with morphogens and
small molecules modulating cell specification-relevant
pathways remains a versatile approach for mimicking cell
fate acquisition during development. However, cells from
different genetic backgrounds can show subtle differences in
their response to extrinsic factors, which might require
protocol adaptations for individual PSC lines. In case full
maturation into a functional phenotype is required, longer
in vitro differentiation times may further complicate the
derivation process. Considering the power of transcription
factors, which was impressively illustrated with the
reprogramming of somatic cells into iPSCs, it was a logical
next step to move from extrinsic factor-based differentiation
paradigms to transcription factor-mediated approaches.

Indeed, overexpression of a few or even single tran-
scription factors can suffice to force PSCs into differentiation
trajectories yielding forebrain excitatory or inhibitory neu-
rons within a few days [24, 25]. While initial approaches
mostly relied on viral vectors, genome editing has facilitated
the development of highly controlled forward programming
systems, such as those making use of inducible transgene
cassettes that are stably inserted into genomic safe harbor
loci in order to avoid variability in transgene expression
levels due to positional effects at different insertion sites [26].
Forward programmed neurons generated in this manner
can become functional within three weeks of in vitro
maturation on mouse astrocytes [27], and combining defined
fractions of excitatory and inhibitory neurons even enables
to ‘tune’ the activity levels of in vitro-assembled neuronal
networks [28]. Furthermore, evolving neurons can still be
efficiently cryopreserved. Importantly, the concept of
forward programming has meanwhile been extended to
numerous CNS cell types including also astrocytes and
oligodendrocytes [29, 30], altogether providing a versatile
resource for setting up disease modeling and drug screening
platforms.

Traditionally, neurotransplantation approaches were
based on immature neural precursors, which are considered
particularly well suited for integrating into a host CNS
environment. On the other hand, later stage neuronal
progenitors derived via extrinsic factor-based differentia-
tion of PSCs have been successfully grafted [31-35] and have
even shown superior intracerebral migration compared to
earlier stage neural precursors [36]. However, since only
little is known about the survival and integration capacity of
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forward programmed neurons at later stages of differenti-
ation (reviewed in [6]), it remains to be explored how these
cells fare in neurotransplantation compared to donor cells
generated by more traditional methods. One attractive pros-
pect here is the development of ‘designer grafts’ composed of
defined fractions of specific forward programmed cell types.

Cell programming for the direct
conversion of somatic cell types

Following the seminal discovery of Shinya Yamanaka and
his team that fibroblasts can be reprogrammed into iPSCs,
the question of how transcription factors could be used to
directly switch one somatic cell type into another gained
new attention. This question was not entirely new, as
previous studies had already shown that somatic-to-somatic
cell conversion is feasible for lineage-related cell types [37].
Now, with Yamanaka’s discovery, it seemed possible to
extend such conversion paradigms even to switches
between different germ layers. Indeed, several papers soon
reported that fibroblasts forced to overexpress ASCL1 in
combination with either BRN2 and MYTIL [5, 38] or, e.g.,
NGN2 [39, 40] can turn into ‘induced’ neurons (iNs).

Notably, such a direct conversion has not only advan-
tages with respect to time and reduced experimental
complexity. Several studies confirmed that iNs, in contrast to
neurons generated from iPSCs, maintain their epigenetic
and cellular age [40-43] — a property that could offer
significant advantages for modeling diseases of old age
[44, 45]. On the other hand, iNs are postmitotic cells,
which renders the generation of large numbers of clonally
defined cells for biomedical applications almost impossible.
However, subsequent studies demonstrated successful
conversion of blood cells into proliferative neural stem
and progenitor cells [46, 47]. These cells can indeed be
clonally expanded, cryopreserved and, upon growth factor
withdrawal, differentiated toward different neuronal and
glial subtypes. Furthermore, they have been shown to be
suitable for in vitro disease modeling and in vivo neuro-
transplantation [46].

The possibility of transcription factor-based cell
conversion finally raises the question whether cells resident
within the CNS can be interconverted, too. Indeed, already
earlier work by Magdalena G6tz and others had shown that
astrocytes can be converted into neurons both in vitro and
in vivo [48-52]. Subsequent studies refined this approach
toward the generation of distinct therapeutically relevant
neuronal subtypes such as dopamine neurons [53]. With
concomitant advances in the field of in vivo gene transfer in
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the context of gene therapy, such approaches could in the
end provide prospects for in situ cell replacement without
cell transplantation (reviewed in [54]).

Standardization and automation as
key requirements for biomedical
applications

Several requirements need to be met in order to move the
latest developments in stem cell research toward therapeutic
application. A key aspect is standardization of cell production,
which necessitates robust protocols enabling reproducible
and scalable cell programming and differentiation. Here,
automation becomes crucial in order to reduce variable out-
comes due to manual processing and subtle interindividual
differences of experimenters. Significant progress has been
made with respect to bioreactor development, enabling
scaling of both, pluripotent and somatic stem cells [55, 56].
However, the execution of complex protocols encompassing
multiple distinct handling steps has remained a challenge.
While a number of automated modules for specialized
cell culture steps have been established and exemplarily
used for automated iPSC generation [57], their assembly into
larger automation platforms remains a bottleneck. Here,
developments such as the StemCellFactory® provide new
prospects. Constructed for automated cell reprogramming,
this system covers the entire process, including clone
picking, expansion and in process quality control steps [58],
and is designed to parallelize cell reprogramming — a
key prerequisite for generating larger numbers of cell lines,
e.g., from different donors. Notably, since cells from
different donors and tissues can show subtle differences in
reprogramming efficiency and proliferation speed, cell cul-
ture automation systems cannot only rely on fixed protocols
and holding patterns, such as in automobile industry,
but require smart systems including artificial intelligence-
trained algorithms, e.g, for the assessment of cell
morphology and density [59-61]. Yet, since many of the
handling steps in cell reprogramming are also used during
genome editing, such system developments are expected to
enable parallelized generation of genetically modified PSCs.

Prospects for the use of human PSCs
in perinatal medicine

As for any disease, the potential use of PSCs in perinatal
medicine extends to both, disease modeling and drug
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discovery as well as cell therapy and cell-based gene therapy.
Modeling neurodevelopmental disorders or neurotoxic
insults in vitro represent a particularly interesting avenue.
Here, human PSC-derived brain organoids might provide
fascinating prospects. As self-organizing 3D structures
recapitulating key aspects of the cytoarchitecture and cell
type composition of a variety of human brain regions,
cerebral organoids were successfully employed to model
developmentally-relevant diseases such as microcephaly
and lissencephaly (for further reading see review by [62]).

On the other hand, direct application of human PSC
derivatives could be a therapeutic modality for a number of
diseases. Already in 1999, we could show that glial
precursors generated from mouse ESCs can restore myelin
when transplanted into the CNS of neonatal rats deficient in
proteolipid protein, an animal model of Pelizaeus-
Merzbacher disease [63] — the first example of using ESCs
for therapeutic application in an animal model of a human
disease. In subsequent studies, we and others used mouse
ESC- and human iPSC-derived neural precursors engineered
to overexpress arylsulfatase A for reduction of cerebral
sulfatide load in a mouse model of metachromatic leuko-
dystrophy [64-66]. While alternative gene therapy
approaches are developing with promising results that
have been observed, e.g., upon transplantation of arylsul-
fatase A-overexpressing hematopoietic progenitors for the
treatment of metachromatic leukodystrophy [67], neural
cell-based therapies offer the additional prospect of bona fide
structural repair such as replacement of oligodendrocytes
and lost myelin. This also sets them apart from broadly
advertised cord blood and mesenchymal stromal cell treat-
ments with their often ill-defined mode of action.

However, a key challenge of neural cell-based treatments
of disorders affecting large areas of the CNS is their
limited distribution after intracerebral transplantation.
For example, attempts to translate neural precursor cell
transplantation into clinical treatment of Pelizaeus-
Merzbacher disease patients revealed very poor distribu-
tion of the cells and no evidence of substantial graft-related
myelination [68]. While transplantation studies in rodents
have shown impressively widespread distribution of neural
precursors upon multifocal neonatal transplantation [69, 70]
or after intrauterine transplantation into the lateral ventricles
[71, 72], it remains to be explored whether the spread of cells is
sufficient to cover much larger territories in the human brain.
Further hurdles that need to be overcome on the route to the
clinics include safety concerns relating to the tumorigenicity
and immunogenicity of PSC derivatives [73], as well as
regulatory considerations relating to genetic modification
of human cells. Still, transplantation of human neuronal
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and/or glial progenitors remains a promising approach
for the development of novel treatment regimens for a
number of diseases in perinatal medicine, including
Pelizaeus-Merzbacher disease [68], Canavan’s disease [74],
metachromatic leukodystrophy [65 66], Niemann-Pick
disease [75, 76] and Krabbe disease [77, 78], as well as
perinatal brain damage resulting from neonatal encepha-
lopathy and periventricular leukomalacia [79-81] (for
further reading see reviews [82-86]). It remains to be
explored how such approaches can be further enhanced by
the use of human PSC-derived and forward programmed
donor cells as well as in situ cell fate conversion strategies.

In sum, recent advances in stem cell technology and cell
programming hold great promise for a variety of applica-
tions in perinatal medicine, ranging from in vitro disease
models to cell and gene therapy. Considering the intricacies
of these approaches, sound investigation of mode of action,
efficacy and clinical safety is mandatory to further develop
this field, which is increasingly confronted with a plethora of
unproven therapies [87-89].
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