Review

Lea J. Berg and Oliver Brüstle*

Stem cell programming – prospects for perinatal medicine

https://doi.org/10.1515/jpm-2022-0575 Received November 28, 2022; accepted December 23, 2022; published online February 22, 2023

Abstract: Recreating human cell and organ systems *in vitro* has tremendous potential for disease modeling, drug discovery and regenerative medicine. The aim of this short overview is to recapitulate the impressive progress that has been made in the fast-developing field of cell programming during the past years, to illuminate the advantages and limitations of the various cell programming technologies for addressing nervous system disorders and to gauge their impact for perinatal medicine.

Keywords: cellular reprogramming techniques; disease models; regenerative medicine.

Introduction

The advent of the pluripotent stem cell (PSC) technology has provided entirely novel prospects for biomedicine. With the availability of human embryonic stem cells (ESCs) and their controlled *in vitro* differentiation into somatic derivatives, it became possible to generate human cells of a large number of tissues and organs in the laboratory [1]. This approach is particularly relevant for cell types of non-regenerative tissues, which typically do not contain sufficient numbers of adult stem cells or are hardly accessible to cell retrieval. Such tissues include, among others, the nervous system, heart and insulin-producing islets of the pancreas —

coincidentally tissues that are primarily affected by diseases associated with the current demographic change.

Less than ten years later, the pioneering work by Shinya Yamanaka and his team rang in the next level of PSC research: the generation of induced pluripotent stem cells (iPSCs) from somatic cells, such as skin fibroblasts, by overexpression of defined transcription factors [2, 3]. This reprogramming approach opened the door to the generation of patient-specific PSCs and their subsequent differentiation into various tissue-specific cells - in virtually unlimited numbers. With this development, iPSCs became not only a resource for cell therapy development but also an exciting tool for modeling diseases in vitro. Based on this, tissuespecific cells generated from patient-derived iPSCs further found entry in drug development, offering a route to assess drug effects on disease-relevant patient cells at an early stage of compound development. These approaches were further boosted by the enormous advances in the field of genome editing. In particular the CRISPR-Cas technology allows to either repair patient-specific mutations in iPSCs or to introduce such mutations into PSCs derived from healthy donors, with both approaches resulting in an ideal isogenic control scenario, which significantly reduces the experimental noise in cell-based disease modeling that is typically observed using control cells from different genetic backgrounds [4].

Naturally, developments did not stop there. Soon the idea of using pioneer transcription factors to switch cell identities was applied to directly inter-convert somatic cell types of different germ layers without traversing through a pluripotent state. Using this rationale, fibroblasts could, e.g., be directly converted into neurons [5]. Along a similar line, fate-instructing transcription factors were used to rapidly differentiate PSCs into distinct somatic fates, a strategy referred to as 'forward programming' (reviewed in [6]).

This steadily increasing methodological tool box makes it challenging to navigate in this fast-moving field and to select appropriate cell sources for individual biomedical applications. The following paragraphs aim at addressing this challenge using the central nervous system (CNS) as exemplar.

Lea J. Berg, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany. https://orcid.org/0000-0002-2746-6519

^{*}Corresponding author: Prof. Dr. Oliver Brüstle, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127 Bonn, Germany, Phone: +49 228 6885 500, E-mail: brustle@uni-bonn.de. https://orcid.org/0000-0002-1277-0980

Extrinsic factor-driven neural differentiation of PSCs

During physiological CNS development, neural subtypes evolve from distinct stem and progenitor cell populations. These cells divide and specialize in response to diverse extrinsic factors. While specific growth factors mediate the proliferation of precursor cells, which is essential for building an expanding structure, morphogens play a key role in instructing regional specification, thereby defining cell populations located in specific compartments of the CNS [7]. It was thus a logical choice that growth factors and morphogens were first used to mimic these developmental processes for differentiating PSCs into distinct regional fates and neural subtypes.

A classic approach along this line is the generation of stably expandable neural stem cell (NSC) populations from PSCs, e.g., by safe-guarding the continued proliferation of neural precursors evolving during undirected differentiation of PSCs by supplementation of the growth factors FGF2 and EGF [8, 9]. Once generated, such long-term self-renewing neuroepithelial stem cells (lt-NES cells) can be kept for numerous passages. Upon growth factor withdrawal, they generate stable fractions of neurons and glia, which largely facilitates standardization of the differentiation process. Human lt-NES cells have been successfully used in a number of applications including disease modeling [10, 11] and preclinical neurotransplantation [8, 12-14], in which their neuronal derivatives were shown to establish synaptic connections with the host brain [15]. Over the years, alternative protocols for the establishment of PSC-derived NSCs were established, including a paradigm based on dual-SMAD inhibition [16] and small molecule-based protocols exploiting. e.g., induction of SHH and Wnt signaling [17]. In addition, later stage NSC populations have been established and used for the generation of glial cells [18]. While such PSC-derived NSCs provide expandable and cryopreservable intermediates for robust generation of neurons and glia, they also come with some limitations. In particular, they are mostly restricted with respect to regional differentiation. Specifically, directing PSC-derived stable NSCs toward distinct forebrain phenotypes has proven difficult and requires sophisticated protocols [19, 20]. When it comes to the generation of very defined neuronal subpopulations, recapitulation of their developmental trajectory can yield remarkably authentic cells. A paradigmatic example is the generation of midbrain dopamine neurons, where a combination of SHH activation, canonical Wnt induction and timed delivery of FGF8b has been successfully used to generate this floorplate-derived population in vitro [21-23].

Forward programming: from morphogens to transcription factors

Guiding the differentiation of PSCs with morphogens and small molecules modulating cell specification-relevant pathways remains a versatile approach for mimicking cell fate acquisition during development. However, cells from different genetic backgrounds can show subtle differences in their response to extrinsic factors, which might require protocol adaptations for individual PSC lines. In case full maturation into a functional phenotype is required, longer in vitro differentiation times may further complicate the derivation process. Considering the power of transcription factors, which was impressively illustrated with the reprogramming of somatic cells into iPSCs, it was a logical next step to move from extrinsic factor-based differentiation paradigms to transcription factor-mediated approaches.

Indeed, overexpression of a few or even single transcription factors can suffice to force PSCs into differentiation trajectories yielding forebrain excitatory or inhibitory neurons within a few days [24, 25]. While initial approaches mostly relied on viral vectors, genome editing has facilitated the development of highly controlled forward programming systems, such as those making use of inducible transgene cassettes that are stably inserted into genomic safe harbor loci in order to avoid variability in transgene expression levels due to positional effects at different insertion sites [26]. Forward programmed neurons generated in this manner can become functional within three weeks of in vitro maturation on mouse astrocytes [27], and combining defined fractions of excitatory and inhibitory neurons even enables to 'tune' the activity levels of in vitro-assembled neuronal networks [28]. Furthermore, evolving neurons can still be efficiently cryopreserved. Importantly, the concept of forward programming has meanwhile been extended to numerous CNS cell types including also astrocytes and oligodendrocytes [29, 30], altogether providing a versatile resource for setting up disease modeling and drug screening platforms.

Traditionally, neurotransplantation approaches were based on immature neural precursors, which are considered particularly well suited for integrating into a host CNS environment. On the other hand, later stage neuronal progenitors derived via extrinsic factor-based differentiation of PSCs have been successfully grafted [31-35] and have even shown superior intracerebral migration compared to earlier stage neural precursors [36]. However, since only little is known about the survival and integration capacity of forward programmed neurons at later stages of differentiation (reviewed in [6]), it remains to be explored how these cells fare in neurotransplantation compared to donor cells generated by more traditional methods. One attractive prospect here is the development of 'designer grafts' composed of defined fractions of specific forward programmed cell types.

Cell programming for the direct conversion of somatic cell types

Following the seminal discovery of Shinya Yamanaka and his team that fibroblasts can be reprogrammed into iPSCs, the question of how transcription factors could be used to directly switch one somatic cell type into another gained new attention. This question was not entirely new, as previous studies had already shown that somatic-to-somatic cell conversion is feasible for lineage-related cell types [37]. Now, with Yamanaka's discovery, it seemed possible to extend such conversion paradigms even to switches between different germ layers. Indeed, several papers soon reported that fibroblasts forced to overexpress ASCL1 in combination with either BRN2 and MYT1L [5, 38] or, e.g., NGN2 [39, 40] can turn into 'induced' neurons (iNs).

Notably, such a direct conversion has not only advantages with respect to time and reduced experimental complexity. Several studies confirmed that iNs, in contrast to neurons generated from iPSCs, maintain their epigenetic and cellular age [40-43] - a property that could offer significant advantages for modeling diseases of old age [44, 45]. On the other hand, iNs are postmitotic cells, which renders the generation of large numbers of clonally defined cells for biomedical applications almost impossible. However, subsequent studies demonstrated successful conversion of blood cells into proliferative neural stem and progenitor cells [46, 47]. These cells can indeed be clonally expanded, cryopreserved and, upon growth factor withdrawal, differentiated toward different neuronal and glial subtypes. Furthermore, they have been shown to be suitable for in vitro disease modeling and in vivo neurotransplantation [46].

The possibility of transcription factor-based cell conversion finally raises the question whether cells resident within the CNS can be interconverted, too. Indeed, already earlier work by Magdalena Götz and others had shown that astrocytes can be converted into neurons both in vitro and in vivo [48-52]. Subsequent studies refined this approach toward the generation of distinct therapeutically relevant neuronal subtypes such as dopamine neurons [53]. With concomitant advances in the field of in vivo gene transfer in the context of gene therapy, such approaches could in the end provide prospects for in situ cell replacement without cell transplantation (reviewed in [54]).

Standardization and automation as key requirements for biomedical applications

Several requirements need to be met in order to move the latest developments in stem cell research toward therapeutic application. A key aspect is standardization of cell production, which necessitates robust protocols enabling reproducible and scalable cell programming and differentiation. Here, automation becomes crucial in order to reduce variable outcomes due to manual processing and subtle interindividual differences of experimenters. Significant progress has been made with respect to bioreactor development, enabling scaling of both, pluripotent and somatic stem cells [55, 56]. However, the execution of complex protocols encompassing multiple distinct handling steps has remained a challenge.

While a number of automated modules for specialized cell culture steps have been established and exemplarily used for automated iPSC generation [57], their assembly into larger automation platforms remains a bottleneck. Here, developments such as the StemCellFactory[®] provide new prospects. Constructed for automated cell reprogramming, this system covers the entire process, including clone picking, expansion and in process quality control steps [58], and is designed to parallelize cell reprogramming - a key prerequisite for generating larger numbers of cell lines, e.g., from different donors. Notably, since cells from different donors and tissues can show subtle differences in reprogramming efficiency and proliferation speed, cell culture automation systems cannot only rely on fixed protocols and holding patterns, such as in automobile industry, but require smart systems including artificial intelligencetrained algorithms, e.g., for the assessment of cell morphology and density [59-61]. Yet, since many of the handling steps in cell reprogramming are also used during genome editing, such system developments are expected to enable parallelized generation of genetically modified PSCs.

Prospects for the use of human PSCs in perinatal medicine

As for any disease, the potential use of PSCs in perinatal medicine extends to both, disease modeling and drug discovery as well as cell therapy and cell-based gene therapy. Modeling neurodevelopmental disorders or neurotoxic insults in vitro represent a particularly interesting avenue. Here, human PSC-derived brain organoids might provide fascinating prospects. As self-organizing 3D structures recapitulating key aspects of the cytoarchitecture and cell type composition of a variety of human brain regions, cerebral organoids were successfully employed to model developmentally-relevant diseases such as microcephaly and lissencephaly (for further reading see review by [62]).

On the other hand, direct application of human PSC derivatives could be a therapeutic modality for a number of diseases. Already in 1999, we could show that glial precursors generated from mouse ESCs can restore myelin when transplanted into the CNS of neonatal rats deficient in proteolipid protein, an animal model of Pelizaeus-Merzbacher disease [63] - the first example of using ESCs for the rapeutic application in an animal model of a human disease. In subsequent studies, we and others used mouse ESC- and human iPSC-derived neural precursors engineered to overexpress arylsulfatase A for reduction of cerebral sulfatide load in a mouse model of metachromatic leukodystrophy [64–66]. While alternative gene therapy approaches are developing with promising results that have been observed, e.g., upon transplantation of arylsulfatase A-overexpressing hematopoietic progenitors for the treatment of metachromatic leukodystrophy [67], neural cell-based therapies offer the additional prospect of bona fide structural repair such as replacement of oligodendrocytes and lost myelin. This also sets them apart from broadly advertised cord blood and mesenchymal stromal cell treatments with their often ill-defined mode of action.

However, a key challenge of neural cell-based treatments of disorders affecting large areas of the CNS is their limited distribution after intracerebral transplantation. For example, attempts to translate neural precursor cell transplantation into clinical treatment of Pelizaeus-Merzbacher disease patients revealed very poor distribution of the cells and no evidence of substantial graft-related myelination [68]. While transplantation studies in rodents have shown impressively widespread distribution of neural precursors upon multifocal neonatal transplantation [69, 70] or after intrauterine transplantation into the lateral ventricles [71, 72], it remains to be explored whether the spread of cells is sufficient to cover much larger territories in the human brain. Further hurdles that need to be overcome on the route to the clinics include safety concerns relating to the tumorigenicity and immunogenicity of PSC derivatives [73], as well as regulatory considerations relating to genetic modification of human cells. Still, transplantation of human neuronal

and/or glial progenitors remains a promising approach for the development of novel treatment regimens for a number of diseases in perinatal medicine, including Pelizaeus-Merzbacher disease [68], Canavan's disease [74], metachromatic leukodystrophy [65, 66], Niemann-Pick disease [75, 76] and Krabbe disease [77, 78], as well as perinatal brain damage resulting from neonatal encephalopathy and periventricular leukomalacia [79-81] (for further reading see reviews [82-86]). It remains to be explored how such approaches can be further enhanced by the use of human PSC-derived and forward programmed donor cells as well as *in situ* cell fate conversion strategies.

In sum, recent advances in stem cell technology and cell programming hold great promise for a variety of applications in perinatal medicine, ranging from in vitro disease models to cell and gene therapy. Considering the intricacies of these approaches, sound investigation of mode of action, efficacy and clinical safety is mandatory to further develop this field, which is increasingly confronted with a plethora of unproven therapies [87-89].

Research funding: Work at the Institute of Reconstructive Neurobiology is supported by the German Research Foundation (DFG) and the Swiss National Science Foundation (grant no. GZ: BR 1337/4-1, project no. 412637376), the German Federal Ministry of Education and Research under the umbrella of the EJP Rare Diseases program (German grant no. 01GM1924), the European Union's Horizon 2020 research and innovation program (grant agreement no 874758 - NSC-Reconstruct), and the German Federal Ministry of Education and Research under the umbrella of the ERA-NET NEURON program (German grant no. 01EW2207).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflict of interest.

Informed consent: Not applicable. **Ethical approval:** Not applicable.

References

- 1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7.
- 2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76.
- 3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72.

- 4. Germain PL, Testa G. Taming human genetic variability: transcriptomic meta-analysis guides the experimental design and interpretation of iPSC-based disease modeling. Stem Cell Rep 2017;8: 1784-96.
- 5. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010;463:1035-41.
- 6. Flitsch LJ, Laupman KE, Brüstle O. Transcription factor-based fate specification and forward programming for neural regeneration. Front Cell Neurosci 2020;14:121.
- 7. Tao Y, Zhang SC. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 2016;19:573-86.
- 8. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type, selfrenewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 2009:106:3225-30.
- 9. Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One 2012;7:e29597.
- 10. Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 2011;480:543-6.
- 11. Mertens J, Stüber K, Wunderlich P, Ladewig J, Kesavan JC, Vandenberghe R, et al. APP processing in human pluripotent stem cellderived neurons is resistant to NSAID-based y-secretase modulation. Stem Cell Rep 2013;1:491-8.
- 12. Fujimoto Y, Abematsu M, Falk A, Tsujimura K, Sanosaka T, Juliandi B, et al. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived longterm self-renewing neuroepithelial-like stem cells. Stem Cell 2012;30:
- 13. Tatarishvili J, Oki K, Monni E, Koch P, Memanishvili T, Buga AM, et al. Human induced pluripotent stem cells improve recovery in strokeinjured aged rats. Restor Neurol Neurosci 2014;32:547-58.
- 14. Grønning Hansen M. Laterza C. Palma-Tortosa S. Kvist G. Monni E. Tsupykov O, et al. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Transl Med 2020;9:1365-77.
- 15. Doerr J, Schwarz MK, Wiedermann D, Leinhaas A, Jakobs A, Schloen F, et al. Whole-brain 3D mapping of human neural transplant innervation. Nat Commun 2017;8:14162.
- 16. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27: 275-80.
- 17. Reinhardt P, Glatza M, Hemmer K, Tsytsyura Y, Thiel CS, Höing S, et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 2013; 8:e59252.
- 18. Gorris R, Fischer J, Erwes KL, Kesavan J, Peterson DA, Alexander M, et al. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes. Glia 2015;63:2152-67.
- 19. Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 2013;12: 559-72.
- 20. Qi Y, Zhang XJ, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined smallmolecule inhibition accelerates the derivation of functional cortical

- neurons from human pluripotent stem cells. Nat Biotechnol 2017;35: 154-63.
- 21. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011;480:547-51.
- 22. Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 2012;1:703-14.
- 23. Kirkeby A, Nolbrant S, Tiklova K, Heuer A, Kee N, Cardoso T, et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson's disease. Cell Stem Cell 2017:20:135-48.
- 24. Zhang Y, Pak CH, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013:78:785-98.
- 25. Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 2017;14:621-8.
- 26. Peitz M, Krutenko T, Brüstle O. Protocol for the standardized generation of forward programmed cryopreservable excitatory and inhibitory forebrain neurons. STAR Protoc 2020;1:100038.
- 27. Rhee HJ, Shaib AH, Rehbach K, Lee CK, Seif P, Thomas C, et al. An autaptic culture system for standardized analyses of iPSC-derived human neurons. Cell Rep 2019;27:2212-28.e7.
- 28. Wen J, Peitz M, Brüstle O. A defined human-specific platform for modeling neuronal network stimulation in vitro and in silico. J Neurosci Methods 2022;373:109562.
- 29. Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, et al. Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat Methods 2018;15:693-6.
- 30. Pawlowski M, Ortmann D, Bertero A, Tavares JM, Pedersen RA, Vallier L, et al. Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Rep 2017;8:803-12.
- 31. Steinbeck IA, Choi SI, Mreieru A, Ganat Y, Deisseroth K, Sulzer D, et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model. Nat Biotechnol 2015; 33:204-9.
- 32. Piao J, Zabierowski S, Dubose BN, Hill EJ, Navare M, Claros N, et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell. 2021;28:217-29.e7.
- 33. Besusso D, Schellino R, Boido M, Belloli S, Parolisi R, Conforti P, et al. Stem cell-derived human striatal progenitors innervate striatal targets and alleviate sensorimotor deficit in a rat model of Huntington disease. Stem Cell Rep 2020;14:876-91.
- 34. Grealish S, Heuer A, Cardoso T, Kirkeby A, Jönsson M, Johansson J, et al. Monosynaptic tracing using modified rabies virus reveals early and extensive circuit integration of human embryonic stem cell-derived neurons. Stem Cell Rep 2015;4:975-83.
- 35. Cardoso T, Adler AF, Mattsson B, Hoban DB, Nolbrant S, Wahlestedt JN, et al. Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of parkinsonian rats. J Comp Neurol 2018;526:2133-46.
- 36. Ladewig J, Koch P, Brüstle O. Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nat Neurosci 2014:17:24-6.
- 37. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987;51:987–1000.

- 38. Pfisterer U, Wood J, Nihlberg K, Hallgren O, Bjermer L, Westergren-Thorsson G, et al. Efficient induction of functional neurons from adult human fibroblasts. Cell Cycle 2011;10:3311-6.
- 39. Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F, et al. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 2012;9:575-8.
- 40. Mertens J, Paguola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 2015;17:705-18.
- 41. Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LFZ, Horvath S, et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife 2016;5:e18648.
- 42. Tang Y, Liu ML, Zang T, Zhang CL. Direct reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neurons. Front Mol Neurosci 2017;10:359.
- 43. Kim Y, Zheng X, Ansari Z, Bunnell MC, Herdy JR, Traxler L, et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep 2018;23: 2550-8.
- 44. Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci 2018;21:341-52.
- 45. Mertens J, Herdy JR, Traxler L, Schafer ST, Schlachetzki JCM, Böhnke L, et al. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell 2021;28:1533-48.e6.
- 46. Sheng C, Jungverdorben J, Wiethoff H, Lin Q, Flitsch LJ, Eckert D, et al. A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation. Nat Commun 2018:9:4047
- 47. Giorgetti A, Marchetto MCN, Li M, Yu D, Fazzina R, Mu Y, et al. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc. Proc Natl Acad Sci U S A 2012;109:12556-61.
- 48. Buffo A, Vosko MR, Ertürk D, Hamann GF, Jucker M, Rowitch D, et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 2005;
- 49. Kronenberg G, Gertz K, Cheung G, Buffo A, Kettenmann H, Götz M, et al. Modulation of fate determinants Olig2 and Pax6 in resident glia evokes spiking neuroblasts in a model of mild brain ischemia. Stroke 2010;41:
- 50. Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T, Grealish S, et al. In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Rep 2015;12:474-81.
- 51. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. Cell Stem Cell 2014; 14:188-202
- 52. Heinrich C, Bergami M, Gascón S, Lepier A, Viganò F, Dimou L, et al. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep 2014;3:1000-14.
- 53. Di Val Cervo PR, Romanov RA, Spigolon G, Masini D, Martín-Montañez E, Toledo EM, et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nat Biotechnol 2017;35:444-52.
- 54. Flitsch LJ, Brüstle O. Evolving principles underlying neural lineage conversion and their relevance for biomedical translation. F1000Research 2019;8:1548. F1000 Faculty Rev.

- 55. Elanzew A, Sommer A, Pusch-Klein A, Brüstle O, Haupt S. A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension. Biotechnol J 2015;10:1589-99.
- 56. Ackermann M, Kempf H, Hetzel M, Hesse C, Hashtchin AR, Brinkert K, et al. Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat Commun 2018;9:5088.
- 57. Paull D. Sevilla A. Zhou H. Hahn AK, Kim H. Napolitano C. et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods 2015;12:
- 58. Elanzew A, Nießing B, Langendoerfer D, Rippel O, Piotrowski T, Schenk F, et al. The StemCellFactory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells. Front Bioena Biotechnol 2020;8:580352.
- 59. Jaccard N, Macown RJ, Super A, Griffin LD, Veraitch FS, Szita N. Automated and online characterization of adherent cell culture growth in a microfabricated bioreactor. J Lab Autom 2014;19:437–43.
- 60. Kavitha MS, Kurita T, Park SY, Chien SI, Bae JS, Ahn BC. Deep vectorbased convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS One 2017;12:e0189974.
- 61. Piotrowski T, Rippel O, Elanzew A, Nießing B, Stucken S, Jung S, et al. Deep-learning-based multi-class segmentation for automated, noninvasive routine assessment of human pluripotent stem cell culture status. Comput Biol Med 2021;129:104172.
- 62. Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 2017;18:573-84.
- 63. Learish RD, Brüstle O, Zhang SC, Duncan ID. Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutant results in widespread formation of myelin. Ann Neurol 1999;46: 716-22
- 64. Klein D, Schmandt T, Muth-Köhne E, Perez-Bouza A, Segschneider M, Gieselmann V, et al. Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Ther 2006:13:1686-95.
- 65. Doerr J, Böckenhoff A, Ewald B, Ladewig J, Eckhardt M, Gieselmann V, et al. Arylsulfatase A overexpressing human iPSC-derived neural cells reduce CNS sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol Ther 2015;23:1519-31.
- 66. Meneghini V, Frati G, Sala D, De Cicco S, Luciani M, Cavazzin C, et al. Generation of human induced pluripotent stem cell-derived bona fide neural stem cells for ex vivo gene therapy of metachromatic leukodystrophy. Stem Cells Transl Med 2017;6:352-68.
- 67. Fumagalli F, Calbi V, Sora MGN, Sessa M, Baldoli C, Rancoita PMV, et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a nonrandomised, open-label, phase 1/2 trial and expanded access. Lancet 2022;399:372-83.
- 68. Gupta N, Henry RG, Kang SM, Strober J, Lim DA, Ryan T, et al. Long-term safety, immunologic response, and imaging outcomes following neural stem cell transplantation for Pelizaeus-Merzbacher disease. Stem Cell Rep 2019;13:254-61.
- 69. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013;12:
- 70. Windrem MS, Schanz SJ, Morrow C, Munir J, Chandler-Militello D, Wang S, et al. A competitive advantage by neonatally engrafted human

- glial progenitors yields mice whose brains are chimeric for human glia. J Neurosci 2014;34:16153-61.
- 71. Brüstle O, Maskos U, McKay RDG. Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 1995;15:1275-85.
- 72. Brüstle O, Choudhary K, Karram K, Hüttner A, Murray K, Dubois-Dalcg M, et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat Biotechnol 1998;16:1040-4.
- 73. Yamanaka S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell 2020;27:523-31.
- 74. Feng L, Chao J, Tian E, Li L, Ye P, Zhang M, et al. Cell-based therapy for Canavan disease using human iPSC-derived NPCs and OPCs. Adv Sci 2020;7:2002155.
- 75. Sidman RL, Li J, Stewart GR, Clarke J, Yang W, Snyder EY, et al. Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res 2007;1140:195-204.
- 76. Hong S, Lee SE, Kang I, Yang J, Kim H, Kim J, et al. Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice. J Vet Sci 2021;22:e7.
- 77. Taylor RM, Lee JP, Palacino JJ, Bower KA, Li J, Vanier MT, et al. Intrinsic resistance of neural stem cells to toxic metabolites may make them well suited for cell non-autonomous disorders: evidence from a mouse model of Krabbe leukodystrophy. J Neurochem 2006;97: 1585-99.
- 78. Neri M, Ricca A, Di Girolamo I, Alcala'-Franco B, Cavazzin C, Orlacchio A, et al. Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cell 2011:29:1559-71.
- 79. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, et al. Human neural stem cell grafts modify microglial response and enhance axonal

- sprouting in neonatal hypoxic-ischemic brain Injury. Stroke 2010;41: 516-23.
- 80. Ji G, Liu M, Zhao XF, Liu XY, Guo QL, Guan ZF, et al. NF-κB signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxicischemic encephalopathy. CNS Neurosci Ther 2015;21:926-35.
- Kim TK, Park D, Ban YH, Cha Y, An ES, Choi J, et al. Improvement by human oligodendrocyte progenitor cells of neurobehavioral disorders in an experimental model of neonatal periventricular leukomalacia. Cell Transplant 2018;27:1168-77.
- 82. Osorio MJ, Goldman SA. Glial progenitor cell-based treatment of the childhood leukodystrophies. Exp Neurol 2016;283:476-88.
- 83. Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta Biomembr 2006;1758:2057-79.
- 84. Goldman SA, Mariani JN, Madsen P. Glial progenitor cell-based repair of the dysmyelinated brain: progression to the clinic. Semin Cell Dev Biol 2021;116:62-70.
- 85. Hagberg H, Edwards AD, Groenendaal F. Perinatal brain damage: the term infant. Neurobiol Dis 2016;92:102–12.
- 86. Titomanlio L, Kavelaars A, Dalous J, Mani S, Ghouzzi VE, Heijnen C, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 2011;70:698-712.
- 87. Bianco P, Barker R, Brüstle O, Cattaneo E, Clevers H, Daley GQ, et al. Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO J 2013;32:1489-95.
- 88. Bauer G, Elsallab M, Abou-El-Enein M. Concise review: a comprehensive analysis of reported adverse events in patients receiving unproven stem cell-based interventions. Stem Cells Transl Med 2018;7:676-85.
- 89. Master Z, Matthews KRW, Abou-el-Enein M. Unproven stem cell interventions: a global public health problem requiring global deliberation. Stem Cell Rep 2021;16:1435-45.