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Abstract

Background: Microbial invasion of the amniotic cavity 
resulting in intra-amniotic infection is associated with 
obstetrical complications such as preterm labor with 
intact or ruptured membranes, cervical insufficiency, as 

well as clinical and histological chorioamnionitis. The 
most widely accepted pathway for intra-amniotic infection 
is the ascension of microorganisms from the lower genital 
tract. However, hematogenous dissemination of micro-
organisms from the oral cavity or intestine, retrograde 
seeding from the peritoneal cavity through the fallopian 
tubes, and introduction through invasive medical pro-
cedures have also been suggested as potential pathways 
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for intra-amniotic infection. The primary reason that an 
ascending pathway is viewed as most common is that 
the microorganisms most often detected in the amniotic 
fluid are those that are typical inhabitants of the vagina. 
However, thus far, no studies have shown that microor-
ganisms in the amniotic cavity are simultaneously present 
in the vagina of the woman from which they were isolated. 
The objective of the study was to determine the frequency 
with which microorganisms isolated from women with 
intra-amniotic infection are also present in the lower 
genital tract.
Methods: This was a cross-sectional study of women 
with intra-amniotic infection with intact membranes. 
Intra-amniotic infection was defined as a positive culture 
and elevated concentrations of interleukin-6 (IL-6) 
(>2.6 ng/mL) in amniotic fluid and/or acute histologic 
chorioamnionitis and funisitis. Microorganisms isolated 
from bacterial cultures of amniotic fluid were taxonomi-
cally identified through matrix-assisted laser desorption 
ionization-time of flight mass spectrometry (MALDI-TOF) 
and 16S ribosomal RNA (rRNA) gene sequencing. Vaginal 
swabs were obtained at the time of amniocentesis for 
the identification of microorganisms in the lower genital 
tract. The overall bacterial profiles of amniotic fluids and 
vaginal swabs were characterized through 16S rRNA gene 
sequencing. The bacterial profiles of vaginal swabs were 
interrogated for the presence of bacteria cultured from 
amniotic fluid and for the presence of prominent (>1% 
average relative abundance) operational taxonomic units 
(OTUs) within the overall 16S rRNA gene bacterial profiles 
of amniotic fluid.
Results: (1) A total of 75% (6/8) of women had bacteria 
cultured from their amniotic fluid that are typical resi-
dents of the vaginal ecosystem. (2) A total of 62.5% (5/8) 
of women with bacteria cultured from their amniotic fluid 
also had these bacteria present in their vagina. (3) The 
microorganisms cultured from amniotic fluid and also 
detected in the vagina were Ureaplasma urealyticum, 
Escherichia coli, and Streptococcus agalactiae. (4) 16S 
rRNA gene sequencing revealed that the amniotic fluid 
of women with intra-amniotic infection had bacterial 
profiles dominated by Sneathia, Ureaplasma, Prevotella, 
Lactobacillus, Escherichia, Gardnerella, Peptostreptococ-
cus, Peptoniphilus, and Streptococcus, many of which 
had not been cultured from the amniotic fluid samples. 
(5) Seventy percent (7/10) of the prominent (>1% average 
relative abundance) OTUs found in amniotic fluid were 
also prominent in the vagina.
Conclusion: The majority of women with intra-amniotic 
infection had bacteria cultured from their amniotic fluid 
that were typical vaginal commensals, and these bacteria 

were detected within the vagina at the time of amniocen-
tesis. Molecular microbiological interrogation of amniotic 
fluid from women with intra-amniotic infection revealed 
that the bacterial profiles of amniotic fluid were largely 
consistent with those of the vagina. These findings indi-
cate that ascension from the lower genital tract is the pri-
mary pathway for intra-amniotic infection.

Keywords: 16S rRNA sequencing; amniotic cavity; amni-
otic fluid; bacteria; chorioamnionitis; culture; funisitis; 
Gardnerella; microbial invasion; microbiome; microbiota; 
pregnancy; preterm birth; Sneathia; Ureaplasma; vaginal 
flora.

Introduction
Microbial invasion of the amniotic cavity resulting in 
intra-amniotic infection has been associated with obstet-
rical complications [1–6], including spontaneous preterm 
labor [3, 7–17], preterm prelabor rupture of membranes 
(PPROM) [18, 19], cervical insufficiency [20–26], a sono-
graphic short cervix [27], idiopathic vaginal bleeding 
[28, 29], and histological [30, 31] and clinical chorioam-
nionitis [32, 33]. Indeed, intra-amniotic infection has been 
detected in 6–35% of women with preterm labor and intact 
membranes [3, 8–17, 34], and in 40–50% of women with 
PPROM [18, 19]. Intra-amniotic infection has further been 
detected in 61% of cases of clinical chorioamnionitis at 
term [32]. Intra-amniotic infection has thus been associ-
ated with labor dysfunction [35–37], maternal morbidity 
[38–42], and neonatal morbidity and mortality [43–50]. 
Recent evidence indicates that intra-amniotic infection 
can be treated [51–56], highlighting the need for further 
investigation into its etiologies.

Multiple routes of invasion have been proposed for 
intra-amniotic infection [2, 5, 17, 57, 58], including (1) 
ascending infection from the lower genital tract through 
the cervix, (2) hematogenous dissemination from distant 
sites such as the intestine or the oral cavity through the 
placenta, (3) retrograde seeding from the peritoneal cavity 
through the fallopian tube, and (4) accidental introduc-
tion of microorganisms at the time of invasive medical 
procedures. However, ascending infection from the lower 
genital tract is widely viewed as the primary route by 
which microbial invasion of the amniotic cavity occurs [2, 
5, 17, 57–60]. The principal evidence supporting ascend-
ing infection as the primary route for intra-amniotic infec-
tion is that the bacterial taxa most often identified in the 
amniotic cavity are typical members of the human vaginal 
microbiota [4, 59, 61–71], including Ureaplasma and 
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Mycoplasma spp. [1, 13, 18, 19, 32, 62, 72–77], Gardnerella 
vaginalis [1, 13, 19, 32, 62, 76, 77], Streptococcus agalactiae 
[13, 18, 32, 72, 75, 77, 78], Escherichia coli [1, 32], Sneathia 
and Leptotrichia spp. [13, 19, 32, 72, 73, 75, 76], and Prevo-
tella spp. [62, 77].

Direct evidence of ascending infection as a primary 
cause of intra-amniotic infection, however, is lacking. 
Specifically, demonstration of ascending infection 
requires bacteria in the amniotic fluid to also be present 
in the vagina of the woman from whom the amniotic fluid 
was collected. Molecular surveys will be beneficial for this 
task as they provide greater insight into the diversity of 
microorganisms inhabiting body sites than does culture 
[4, 13, 18, 32]. Although molecular surveys have been used 
to characterize the composition of intra-amniotic [13, 18, 
19, 32, 74, 79–82] and vaginal [68–71, 83–93] microbial 
communities in pregnant women, the concurrent pres-
ence of specific microorganisms in the amniotic fluid and 
the vagina has not been investigated. The objective of this 
study, therefore, was to characterize the microorganisms 
found in amniotic fluid of women with intra-amniotic 
infection and intact membranes, and to evaluate the fre-
quency of ascending infection by determining whether 
the microorganisms cultured from, and molecularly iden-
tified in, amniotic fluid were also present in the vagina.

Materials and methods
Study population

This was a cross-sectional study of women who had an amniocen-
tesis performed for the diagnosis of intra-amniotic inflammation 
and/or infection (see Clinical definitions). Patients with intra-amni-
otic infection were included in the study if they met the following 
criteria: (1) live intrauterine pregnancy, (2) intact chorioamniotic 
membranes, (3) availability of a stored and revived amniotic fluid 
cultivar, (4) if amniotic fluid was available for molecular microbial 

characterization, the cultivar was confirmed to be present within 
the fluid using 16S ribosomal RNA (rRNA) sequencing, and (5) avail-
ability of vaginal swab samples collected from the patient within 
24 h of the amniocentesis. Patients were excluded from the study if 
chromosomal or fetal anomalies were present. The collection of sam-
ples and their use for research were approved by the Human Inves-
tigation Committee of Wayne State University and the Institutional 
Review Board of the Eunice Kennedy Shriver National Institute of 
Child Health and Human Development. All subjects provided written 
informed consent. Demographic characteristics of the study popula-
tion are shown in Table 1.

Clinical definitions

Gestational age was determined by the date of the last menstrual 
period and confirmed by ultrasound examination. The gestational 
age derived from sonographic fetal biometry was used if the esti-
mation was inconsistent with menstrual dating. Intra-amniotic 
inflammation was defined as an amniotic fluid interleukin-6 (IL-6) 
concentration ≥2.6 ng/mL [12, 33, 94–99] and/or the presence of 
acute histologic chorioamnionitis and funisitis (see Placental his-
topathological examination). Intra-amniotic infection was defined 
as a positive amniotic fluid culture, including genital mycoplasmas 
[2, 7, 8, 100, 101], and intra-amniotic inflammation [19, 76, 102–112]. 
Clinical chorioamnionitis was diagnosed by the presence of mater-
nal fever (temperature >37.8°C) accompanied by two or more of the 
following criteria: (1) uterine tenderness, (2) foul-smelling amniotic 
fluid, (3) fetal tachycardia (heart rate >160 beats/min), (4) maternal 
tachycardia (heart rate >100 beats/min), and (5) maternal leuko-
cytosis (leukocyte count >15,000 cells/mm3) [32, 33, 98, 104–108, 
113–119].

Placental histopathological examination

Placentas were examined histologically by perinatal pathologists 
blinded to clinical diagnoses and obstetrical outcomes accord-
ing to standardized Perinatology Research Branch protocols [120, 
121]. Briefly, three to nine sections of the placenta were examined, 
and at least one full-thickness section was taken from the center of 
the placenta; others were taken randomly from the placental disc. 
Acute inflammatory lesions of the placenta (maternal inflammatory 

Table 1: Demographic characteristics of the patients in the study.

Subject   Age, years  Gestational age at 
amniocentesis, weeks

  Gestational age 
at delivery, weeks

  Mode of 
delivery

  Birthweight, g

#1   26  20.1  20.7  Vaginal   296
#2   20  31.3  31.4  Vaginal   1525
#3   38  22.0  22.1  Vaginal   471
#4   17  37.9  37.9  Vaginal   3060
#5   27  23.0  23.1  Vaginal   640
#6   31  19.6  34.9  Vaginal   1965
#7   24  39.9  39.9  Vaginal   3085
#8   21  22.0  22.1  Vaginal   494
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response and fetal inflammatory response) were diagnosed accord-
ing to established criteria, including staging and grading [120, 122]. 
The results of placental histopathological examination are presented 
in Table 2.

Amniotic fluid sample collection

Amniotic fluid samples were obtained by transabdominal amnio-
centesis under antiseptic conditions and monitored by ultrasound 
in order to detect intra-amniotic inflammation and/or infection in 
patients with intact membranes. Samples of amniotic fluid were 
transported to the laboratory in a sterile, capped syringe for clini-
cal determinations, including amniotic fluid white blood cell count 
[123], Gram stain examination [124], and glucose concentration [125] 
(Table  2). The rest of the sample was used for research purposes, 
which included the determination of IL-6.

Determination of IL-6 in amniotic fluid

Amniotic fluid concentrations of IL-6 were determined by using a sen-
sitive and specific enzyme immunoassay obtained from R&D Systems 
(Minneapolis, MN, USA). The IL-6 concentrations were determined 
by interpolation from the standard curve. The inter- and intra-assay 
coefficients of variation for IL-6 were 8.7% and 4.6%, respectively. The 
detection limit of the IL-6 assay was 0.09 pg/mL. In some cases, the 
IL-6 concentration in amniotic fluid was used for clinical purposes.

Clinical microbiology

Amniotic fluid was cultured for aerobic and anaerobic bacteria. Spe-
cifically, amniotic fluid was inoculated onto chocolate agar, tryp-
ticase soy agar with 5% sheep blood, and MacConkey agar culture 
media. Aerobic plates were incubated at 35°C in an 8% CO2 chamber. 
Anaerobic plates were incubated at 35°C in 5% CO2, 10% hydrogen 
and 85% nitrogen. Plates were incubated for 4  days. A Mycofast 
test kit (MYCOFAST US; Logan, UT, USA) was used for the detec-
tion of Mycoplasma and Ureaplasma spp. [126]. Initial taxonomic 

characterization of cultivars was done via discriminatory biochemi-
cal tests and matrix-assisted laser desorption ionization-time of flight 
mass spectrometry (MALDI-TOF) [127].

Vaginal swab collection

Vaginal Dacron swabs (Medical Packaging Swab-Pak, Camarillo, CA, 
USA) were obtained using a Pederson speculum in the absence of 
lubrication and turned at a 45° angle to enable the collection of pos-
terior fornix fluid samples. All vaginal samples were collected within 
24  h of amniocentesis and prior to any rupture of membranes. All 
swabs were stored at ≤−70°C until analysis.

Isolation of DNA from amniotic fluid and vaginal samples

Prior to DNA extraction, the order of all samples was randomized 
to avoid cross-contamination of DNA between samples based on 
body site or patient identity. Total DNA was extracted from vagi-
nal swabs, 200 μL of amniotic fluid supernatant, and 200 μL of 
amniotic fluid pellet [all pellets were resuspended in 450 μL ster-
ile phosphate-buffered saline (PBS)] using the DNeasy PowerLyzer 
PowerSoil Kit (QIAGEN, Valencia, CA, USA) with four modifica-
tions to the manufacturer’s protocol: (1) vaginal swabs were 
immersed in 500 μL of the supplied bead solution and 200 μL of 
phenol:chloroform:isoamyl alcohol pH 7–8 solution for 10 min prior 
to cell lysis by mechanical disruption rather than being suspended 
in 700 μL of supplied bead solution alone; (2) 100 μL of solution C2, 
100 μL of solution C3, and 1 μL of RNase A were added and sam-
ples were incubated at 4°C for 5 min prior to centrifugation rather 
than being added to samples over two steps; (3) lysates were com-
bined with 650 μL of solution C4 and 650 μL of 100% ethanol prior 
to loading samples on the supplied spin column rather than being 
combined with 1200 μL of solution C4 alone; (4) DNA was eluted 
in 60 μL of solution C6 rather than 100 μL of solution C6. To assess 
potential background DNA contamination within the DNA extrac-
tion kit or reagents, three blank DNA extraction kit control samples 
were processed alongside biological samples and sequenced. Puri-
fied DNA was stored at −20°C.

Table 2: Clinical characteristics of the patients in the study.

Subject   Total amniotic fluid 
white blood cell 

count, cells/mm3

  Amniotic fluid 
IL-6, pg/mL

  Glucose, 
mg/dL

  Microorganisms in amniotic fluid by culture  Acute histologic 
chorioamnionitisa

  Acute 
funisitisb

#1   20  126,800   25  Ureaplasma urealyticum   Stage 3   Stage 2
#2   206  169,372   1  Staphylococcus warneri   Stage 3   Stage 2
#3   340  171,100   9  Streptococcus anginosus   Stage 3   Stage 1
#4   1650  29,300   1  Escherichia coli, Ureaplasma urealyticum   Stage 1   None
#5   110  148,500   1  Escherichia coli   Stage 2   Stage 2
#6   10  39,200   19  Ureaplasma urealyticum   None   None
#7   0  1485   1  Streptococcus agalactiae   Stage 2   Stage 2
#8   299  102,800   0  Ureaplasma urealyticum   Stage 3   Stage 1

aAcute histologic chorioamnionitis: Stage 1, early, acute subchorionitis/chorionitis; Stage 2, intermediate, acute chorioamnionitis; Stage 3, 
necrotizing chorioamnionitis. bFunisitis: Stage 1, early umbilical phlebitis/chorionic vasculitis; Stage 2, intermediate, umbilical arteritis.
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Amplification and sequencing of bacterial 16S rRNA 
genes in amniotic fluid and vaginal swabs

The 16S ribosomal RNA (rRNA) gene is widely used as a phylogenetic 
marker gene for characterizing bacterial communities in environmen-
tal and clinical samples. To characterize and compare the bacterial 
communities in paired amniotic fluid and vaginal samples, the V4 
region of the 16S rRNA gene was amplified (515F/806R primers) from 
sample DNA extracts and sequenced at the University of Michigan’s 
Microbial Systems Molecular Biology Laboratory (https://microbe.
med.umich.edu/services) using the dual indexing strategy devel-
oped by Kozich et  al. [128]. Sequencing was done on the Illumina 
MiSeq platform, using a MiSeq V2 500 cycle Reagent Kit (San Diego, 
CA, USA; MS102-2003), according to the manufacturer’s instructions 
with modifications found in Kozich et al. [128]. AccuPrime High Fidel-
ity Taq (Life Technologies, Carlsbad, CA, USA; 12346094) was used 
instead of AccuPrime Pfx SuperMix. Each polymerase chain reaction 
(PCR) contained 1.0 μM of each primer, 3 μL template DNA, and 0.15 
μL AccuPrime HiFi Polymerase and DNase-free water to produce a 
final volume of 20 μL. PCR was performed using the following condi-
tions: 95°C for 2 min, followed by 30 cycles of 95°C for 20 s, 55°C for 
30  s and 72°C for 5  min, with an additional elongation at 72°C for 
10  min. To determine if bacteria cultured from amniotic fluid were 
also present in the vagina of respective patients (i.e. the 16S rRNA 
gene of the cultured bacterium was also detected in the vagina), the 
V4 region of the 16S rRNA gene was amplified (515F/806R primers) 
from vaginal DNA extracts and sequenced at Michigan State Univer-
sity’s Research Technology Support Facility (https://rtsf.natsci.msu.
edu/) using protocols established by Caporaso et al. [129].

16S rRNA gene sequence processing and bacterial com-
munity characterization

Mothur software (Ann Arbor, MI, USA; v 1.39.5) was used to assem-
ble paired-read contigs from FASTQ files, to trim, filter, and align 
sequences, to identify chimeras, to assign sequences to taxonomies, 
and to assign sequences to operational taxonomic units (OTUs) based 
on their percent nucleotide similarity [130]. Briefly, quality-filtered 
sequences (maximum length 300 bp, with no ambiguous base calls 
and homopolymers of no more than 8 bp) were aligned to the SILVA 
16S rRNA gene reference database (release 102) [131]. Chimeras were 
identified using the method of Edgar et al. [132] as implemented in 
mothur, and these sequences were subsequently removed. A preclus-
tering step (diffs = 2) was performed to reduce the impact of sequenc-
ing errors. OTUs were defined by clustering 16S rRNA gene sequences 
at a nucleotide similarity level of 99%. The remaining sequences 
were classified against the SILVA 16S rRNA gene reference database 
using a k-nearest neighbor approach with a confidence threshold of 
80%. Any reads derived from an unknown domain, Eukaryota, chlo-
roplasts, mitochondria, or Archaea, were removed.

Good’s coverage values (an indicator of sample coverage) for 
all amniotic fluid supernatant and pellet samples, vaginal swabs, 
and the three blank DNA extraction kit controls exceeded 98.0%. 
Raw OTU count data were converted to percentages within each sub-
ject’s dataset. There was no difference between the structure of the 
bacterial profiles of the supernatant and pellet portions of amniotic 
fluid samples [N = 6; non-parametric multivariate analysis of vari-
ance (NPMANOVA); Bray-Curtis: F = 0.698, P = 0.590], yet they were 
highly patient-specific (F = 3.337, P = 0.004). Therefore, bacterial 

community data for amniotic fluid supernatants and pellets for indi-
vidual patients were combined bioinformatically to generate a single 
amniotic fluid bacterial community profile per patient. The profiles 
of amniotic fluid and blank DNA extraction kits differed in both 
composition (Jaccard; F = 1.30, P = 0.014) and structure (Bray-Curtis; 
F = 2.11, P = 0.045). Forty OTUs were identified in the three blank DNA 
extraction kit samples. The two OTUs with the highest mean relative 
abundance in extraction kit samples (OTU 87: Bacteroides and OTU 
8: Escherichia) were found in two of the three kit controls. Only two 
OTUs (OTU 5: Lactobacillus and OTU 38: Streptococcus) were present 
in all three kit controls, and they were present at lower mean relative 
abundances in kit controls than in amniotic fluid samples. Therefore, 
we did not remove any OTUs from the dataset.

16S rRNA gene sequencing and taxonomic identification 
of bacteria cultured from amniotic fluid

Amniotic fluid bacterial cultivars were recovered from frozen stocks 
on chocolate agar, Columbia CNA with sheep blood agar, MacConkey 
agar, or SP4 broth with urea media. Genomic DNA was extracted 
from pure cultures of the bacteria using an UltraClean Microbial DNA 
Isolation kit (MoBio, now Qiagen), following the manufacturer’s 
protocol. The 16S rRNA gene was first amplified from purified DNA 
with the 8F/1492R primer set and then bidirectionally sequenced 
using the Sanger chain termination method with the 515F and 806R 
primers targeting the V4 hypervariable region of the gene. Forward 
and reverse reads were trimmed using DNA Baser software (http://
www.dnabaser.com/) with default settings, and assembled using the 
contig assembly program (CAP) of BioEdit software (Carlsbad, CA, 
USA; v7.2.5) with default settings. The initial taxonomic identity of 
each bacterial cultivar as determined by MALDI-TOF was then con-
firmed by searching for similarity by BLAST against cultured bacte-
rial type strain 16S rRNA gene sequences ≥1200 bp (12,736 sequences) 
contained within the Ribosomal Database Project (RDP) database 
(Release 11, Update 5) [133, 134]. BLAST results were consistent with 
those of MALDI-TOF for each of the bacterial cultivars.

Determining if bacteria cultured from amniotic fluid are 
also present in the vagina

To determine if bacterial cultivars from amniotic fluid were also pre-
sent in the patient’s vagina, the 16S rRNA gene sequences obtained 
from each patient’s vaginal sample were screened for the presence of 
the 16S rRNA gene sequence of that patient’s respective cultivar(s). 
Specifically, the V4 region of the 16S rRNA gene sequence for each 
cultivar was trimmed to exclude the 515F and 806R primer regions, 
and a matching sequence was identified by searching for similar-
ity using BLAST [133] against individual databases containing each 
woman’s vaginal 16S rRNA gene sequence library. Sequence libraries 
used to construct BLAST databases were generated prior to the pre-
clustering step in the mothur protocol described earlier.

Statistical analysis

NPMANOVA with 10,000 permutations was conducted to evaluate 
variation in the composition and structure of the bacterial profiles 
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of amniotic fluid and vaginal samples. Bacterial community com-
position and structure were characterized using the Jaccard and 
Bray-Curtis similarity indices, respectively [135]. All analyses were 
conducted using PAST software (Oslo, Norway; v2.17) [136].

Results

Clinical characteristics of the study 
population

Table 1 describes the demographic characteristics of the 
patients in this study. Seven of the eight patients (87.5%) 
delivered within 1 week of amniocentesis and their amni-
otic fluid testing positive for bacterial cultures. Most of the 
patients included in this study underwent preterm labor 
(87.5%) and/or were diagnosed with clinical chorioam-
nionitis (50%). Table 2 describes the clinical laboratory 
determinations and the microorganisms cultured from 
amniotic fluid, as well as the results of placental histo-
pathological examination.

Are the bacteria cultured from amniotic fluid 
also present in the vagina?

Six of the eight (75%) patients had bacteria cultured from 
their amniotic fluid that are typical vaginal commen-
sals (Figure 1A), specifically Ureaplasma urealyticum, E. 
coli, and S. agalactiae. The other two patients (25%) had 

bacteria in their amniotic fluid that are not commonly 
associated with the vagina (Figure 1A), namely Staphylo-
coccus warneri and Streptococcus anginosus. When vaginal 
swabs were interrogated for the presence of amniotic fluid 
isolates, matches were found in five of the eight (62.5%) 
patients. Precisely, in these five cases, bacteria cultured 
from amniotic fluid were detected in paired vaginal swabs 
based on matching 16S rRNA gene sequences (≥99.5% 
shared nucleotide identity) (Figures 1B, 2). The bacterial 
cultivars with matching 16S rRNA gene sequences in the 
vagina were identified as U. urealyticum (three cultivars), 
E. coli (two cultivars), and S. agalactiae (one cultivar) 
(Table 3). These bacteria were typically present at low 
relative abundances within their respective vaginal bacte-
rial communities (Figure 2). These results show that most 
women with intra-amniotic infection are colonized by 
vaginal microorganisms.

Comparison of the molecular bacterial 
profiles of paired amniotic fluid and vaginal 
samples

Six of the eight women with intra-amniotic infection had 
a sufficient volume of amniotic fluid to generate 16S rRNA 
gene profiles of the fluid. Among these six women, there 
were 10 prominent (≥1% average relative abundance) 
OTUs among the amniotic fluid samples (Figure 3, taxa 
in red font). Their taxonomic identities at the genus level, 
in the order of most to least relative abundance in the 

Vaginal commensals

A B

75%

25%

37.5%

62.5%

Other

16S rRNA gene match in the vagina

Other

Figure 1: Pie charts illustrating the relationships between bacteria isolated from the amniotic fluid and vaginal microbiota.
The percentage of women for whom the bacteria isolated from their amniotic fluid samples (A) were typical commensals of the human 
vaginal ecosystem, and (B) had exact matches of their 16S rRNA genes also detected among the vaginal microbiota.
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amniotic fluid, were Sneathia, Ureaplasma, Prevotella, 
Lactobacillus, Escherichia, Gardnerella, Peptostreptococ-
cus, Peptoniphilus, and Streptococcus (Figure 3). Seven of 
the 10 (70.0%) prominent OTUs in amniotic fluid were also 
prominent in vaginal bacterial communities (Figure 3, 
taxa in bold red font). At the genus level, the seven promi-
nent OTUs shared between amniotic fluid and the vagina 
were Lactobacillus, Sneathia, Gardnerella, Prevotella, 
Ureaplasma, and Escherichia (Figure 3, taxa in bold red 

font). In four of six (66.7%) patients with paired amniotic 
fluid and vaginal samples, at least 50% of the prominent 
OTUs in the amniotic fluid were also present in the vagina 
(Figure 3, case #1, 2, 3, and 4). In 50.0% (3/6) of patients 
with paired amniotic fluid and vaginal samples, at least 
88.9% of the prominent OTUs in the amniotic fluid were 
also present in the vagina (Figure 3, case #1, 2, and 4). The 
prominent OTUs most commonly shared between paired 
amniotic fluid and vaginal samples were Sneathia (OTUs 
3 and 6), Lactobacillus (OTUs 5 and 14), Gardnerella (OTU 
9), and Prevotella (OTU 10). In general, among women 
with intra-amniotic infection, there was overlap between 
the bacterial profiles of amniotic fluid and the vagina.

Discussion

Principal findings of the study

(1) Seventy-five percent (6/8) of women had bacteria cul-
tured from their amniotic fluid that are typical residents of 
the vaginal ecosystem; (2) 62.5% (5/8) of women had bac-
teria cultured from their amniotic fluid also present in the 

Figure 2: Percent relative abundance of bacterial taxa in the vaginal samples of eight patients with intra-amniotic infection confirmed 
through culture.
The top 20 bacterial taxa, based on average percent relative abundance among the vaginal samples, are displayed. Asterisks indicate a 
match between the 16S rRNA gene sequence of the bacterial cultivar obtained from amniotic fluid and 16S rRNA gene sequences in the same 
subject’s vaginal sample. The taxonomic identities of intra-amniotic bacterial cultures without matching sequences in their subject’s vaginal 
sample were (A) Ureaplasma urealyticum, (B) Streptococcus anginosus, and (C) Staphylococcus warneri.

Table 3: The frequency of detection of bacteria cultured from 
amniotic fluid within the microbiota of paired vaginal samples using 
16S rRNA gene sequencing.

Microorganism   No. of amniotic 
fluid samples 
from which it 
was cultured

  No. of paired 
vaginal 

samples in 
which it was 

detected

Ureaplasma urealyticum   4  3
Escherichia coli   2  2
Streptococcus agalactiae   1  1
Staphylococcus warneri   1  0
Streptococcus anginosus   1  0
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bacterial communities of their paired vaginal sample; (3) the 
bacterial cultivars associated with ascending infection were 
U. urealyticum, E. coli, and S. agalactiae; (4) as assessed by 
16S rRNA gene sequencing, the bacterial communities of 
amniotic fluids with positive bacterial cultures were domi-
nated by Sneathia, Ureaplasma, Prevotella, Lactobacillus, 
Escherichia, Gardnerella, Peptostreptococcus, Peptoniphilus, 
and Streptococcus, indicating that microbial cultures do not 
detect many bacteria present in amniotic fluid; and (5) 70% 
(7/10) of prominent (>1% average relative abundance) OTUs 
in amniotic fluid bacterial communities were also promi-
nent in bacterial communities of the vagina.

Evidence that ascending infection from the 
lower genital tract is responsible for intra-
amniotic infection

Although several routes of invasion have been proposed 
for intra-amniotic infection, ascension of microorganisms 
from the vagina has been considered the most common 

[2, 5, 17, 57–60]. This hypothesis is based on indirect evi-
dence [17]. First, microorganisms detected in amniotic 
fluid are often those associated with the human vagina 
[4, 59, 61–63, 67]. Second, in twin pregnancies, when there 
is intra-amniotic infection, the microorganisms are found 
in the presenting (rather than non-presenting) sac [100, 
137]. Third, women with bacterial vaginosis, a condition in 
which there is a change in the microbial ecosystem of the 
vagina, are more likely to have intra-amniotic infection [1, 
138, 139]. Fourth, in some cases of early neonatal sepsis 
or neonatal pneumonia, the microorganisms involved 
are similar to those found in the vagina [137, 140–142]. 
Lastly, in an experimental study of non-pregnant women, 
carbon nanoparticles were placed within the vagina prior 
to hysterectomy, and these particles were recovered from 
the fallopian tubes within 28–34  min [143]. The authors 
concluded that uterine contractions, induced by oxytocin 
administered prior to surgery, likely played a role in ascen-
sion of carbon particles from the vagina to fallopian tubes 
[143]. These data suggest that uterine contractions, par-
ticularly during prolonged labor, could promote ascend-
ing infection.

Mechanisms responsible for ascending 
infection

A fundamental question which remains unresolved is why 
some women develop intra-amniotic infection and others 
do not [5]. The uterine cervix, chorioamniotic membranes, 
and amniotic fluid, as well as microbial pathogenic 
factors, may play a role in the likelihood of ascending 
infection. During pregnancy, the uterine cervix produces 
a mucous plug, which has been shown to have antimicro-
bial properties [144–152]. Therefore, some women with 
cervical shortening and the loss of the mucous plug can 
develop intra-amniotic infection, and, even if the mucous 
plug is present, its anti-microbial properties may be 
inadequate, which can also result in ascending infection 
[149, 152–154]. The chorioamniotic membranes represent 
a physical and biochemical barrier to microorganisms, 
given that they produce antimicrobial peptides [155–157] 
and contain cells of the innate immune system capable of 
protecting the host against bacteria [158–163]. Therefore, 
when the membranes rupture, ascension of bacteria into 
the amniotic cavity can occur. This is supported by the 
high frequency of intra-amniotic infection in patients with 
PPROM [18, 34, 164, 165]. Indeed, patients with PPROM 
have higher frequencies of intra-amniotic infection than 
those with intact membranes [19, 102]. Amniotic fluid 
also contains multiple antimicrobial factors which could 

Figure 3: Heat map illustrating similarity in percent relative 
abundances of prominent (≥1% average relative abundance) 
operational taxonomic units (OTUs) among paired amniotic fluid (AF) 
and vaginal swab (VS) samples of six women with intra-amniotic 
infection confirmed through culture.
OTUs that were prominent among amniotic fluid samples are 
highlighted in red. OTUs that were prominent only among vaginal 
swab samples are in black. OTUs that were prominent in both 
amniotic fluid and vaginal swab samples are in bold red font.
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control proliferation of bacteria gaining access to the 
amniotic cavity [97, 99, 166–174]. Similarly, amniotic fluid 
contains cells of the innate immune system, which repre-
sent another means of host defense [117, 175–185].

All women have microorganisms in the lower genital 
tract; however, changes in the microbial ecosystem, such 
as those observed in bacterial vaginosis, are associated 
with intra-amniotic infection [1, 138, 139, 186]. It is possi-
ble that the dysbiotic shift of the vaginal microbiota from 
communities dominated by Lactobacillus to those com-
prising primarily Gardnerella, Prevotella, Porphyromonas, 
Bacteroides, Peptostreptococcus, Megasphaera, and 
Sneathia, or related changes in bacterial load [187–189], 
predispose to ascending infection. Virulence factors of 
microorganisms may also explain why some gain access 
to the amniotic cavity while others do not – for example, 
genital mycoplasmas are the most common organisms 
found in amniotic fluid in cases of intra-amniotic infec-
tion [26, 75, 76, 190, 191]. Although these microorganisms 
are considered to have less pathogenic potential than 
others (e.g. S. agalactiae, or group B streptococcus (GBS) 
[192–195]), and are present in the vaginal ecosystems of 
many normal pregnant women [69, 70, 196], a consistent 
observation is that these organisms are the most frequent 
microorganisms responsible for intra-amniotic infection 
[26, 75, 76, 190, 191]. Virulence factors have been identified 
in Ureaplasma spp. [197, 198] and Mycoplasma spp. [199], 
which may explain their invasive potential.

What is the origin of intra-amniotic 
infections in which bacteria in amniotic fluid 
could not be detected in the lower genital 
tract?

Three patients in our study had microorganisms in the 
amniotic cavity that were not detected in vaginal swabs, 
suggesting that alternative sources for microbial invasion 
of the amniotic cavity should exist. Previous reports have 
identified microorganisms in amniotic fluid that had also 
been identified in the oral cavity [200–202]. Indeed, for 
animal models of periodontal disease, in which the micro-
organisms involved are found in the peripheral blood, 
hematogenous dissemination has been proposed as a route 
for intra-amniotic and fetal infection [203–209]. Other 
sources of microorganisms could be the gastrointestinal 
tract, as a leaky gut can result in bacteremia [210–213]. For 
example, in the current study, S. warneri and S. anginosus 
were cultured from amniotic fluid but were not present in 
the matching vaginal swabs. Strains of S. anginosus have 

been isolated from the sinus, mouth, throat, and feces, 
and they are associated with a number of infections [214]. 
In addition, S. warneri, a normal inhabitant of human epi-
thelia and mucosal membranes, has also been associated 
with orthopedic infections [215, 216], meningitis [217], 
and endocarditis [218]. Notably, each has been previously 
reported as etiological agents of bacteremia [219, 220]. 
Therefore, the absence of each of these bacteria in paired 
vaginal samples may be due to the hematogenous spread 
of the microbe originating from a distant body site to the 
amniotic cavity, as opposed to ascending from the vagina. 
Alternatively, it is possible that the molecular microbio-
logical methods used in this study have not identified all 
potential microorganisms present in the vagina; further 
studies with a large sample size and sampling of other 
body sites are required to address this question.

Clinical implications of ascending infection

Establishing that microorganisms present in the vagina 
are responsible for most cases of intra-amniotic infection 
increases the value of studying the vaginal microbiota. 
Although the issue is controversial, there is a growing 
body of evidence supporting that changes in the vaginal 
microbiota precede spontaneous preterm birth [84–93]. 
How such alterations translate to increased frequency 
of ascending intra-amniotic infection remains to be 
determined.

Research implications

Additional studies are required to determine why some 
microorganisms ascend and others do not. For example, 
why are Lactobacillus so frequent in the vagina and not 
found in the amniotic cavity? Why are Sneathia and 
Ureaplasma, which are rare in the vaginal ecosystem, so 
frequently found in the amniotic cavity? A possible expla-
nation is that these microorganisms possess pathogenic 
factors that allow them to ascend and invade the intra-
amniotic space [71, 199].

Strengths and limitations

This is the first sequencing-based study to compare the 
amniotic fluid and vaginal microbiota in patients with 
intra-amniotic infection confirmed through bacterial 
culture. It provides evidence of ascending infection as the 
primary cause of intra-amniotic infection. Nevertheless, 
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the observed associations between the vaginal microbiota 
and amniotic fluid infection are implied and not causally 
demonstrated. Future studies are required to comprehen-
sively characterize the cervical, vaginal, oral, and intestinal 
microbiota in women susceptible to microbial invasion of 
the amniotic cavity in order to confirm the origins of intra-
amniotic infection. This will be fundamental to furthering 
prevention and treatment of intra-amniotic infection.

Conclusion
In most women, the microorganisms causing intra-amni-
otic infection are members of the vaginal ecosystem, sup-
porting the hypothesis that an ascending pathway is the 
most common route for microbial invasion of the amniotic 
cavity.
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