Editorial

Eran Bornstein and Frank A. Chervenak

Ultrasound Doppler waveform assessment: the story continues

https://doi.org/10.1515/jpm-2018-0387

Ultrasound Doppler waveform assessment of the fetal and placental circulatory systems have been studied extensively and successfully applied in clinical practice. These waveforms provide information on the presence and direction of flow, velocity profile, volume of flow and impedance to flow. As such, studies of these waves facilitate monitoring the fetal hemodynamic state as well as identifying circulatory responses to physiologic and pathologic maternal and fetal conditions in a non-invasive way. With the advancements in Doppler utilization in fetal medicine and the extensive research in the field in the past two decades, this technology has proven an invaluable tool of fetal surveillance. Indeed, it has gained wide acceptance and revolutionized the management and antenatal surveillance of several fetal conditions.

For example, the ability to screen fetuses at risk of developing fetal anemia from any etiology is currently based on Doppler measurement of the peak systolic velocity in the middle cerebral artery (MCA) [1, 2]. This screening technique has proved to be an excellent tool that accurately estimates the likelihood of moderate to severe fetal anemia [2, 3]. Furthermore, it was shown to be superior to the previously acceptable invasive methodology of assessing fetal anemia by measuring the amniotic fluid bilirubin levels (delta OD450) [4, 5]. Consequently, delta OD450 is rarely used in current practice and is actually no longer readily available in most laboratories. Indeed, MCA Doppler evaluation emerged as an elegant "game changing", userfriendly non-invasive technology which replaced the need for repeated invasive tests and thus had an enormous impact on the well-being of thousands of fetuses.

Likewise, Doppler evaluation has greatly improved the ability to diagnose surveille and manage clinical scenarios in fetuses with suspected growth restriction. The most utilized Doppler application is that of the umbilical artery which reflects the placental resistance (impedance) to flow throughout the fetal cardiac cycle. Normal diastolic flow in the umbilical artery is commonly used as a reassuring finding suggesting low risk for perinatal morbidity or mortality, thus, allowing for expectant management and delay of delivery to achieve fetal maturity [6]. On the

other hand, placental insufficiency may lead to increase umbilical artery Doppler indices due to decreased enddiastolic blood flow suggesting increased risk to the fetus. Furthermore, poor placental function in severe cases may present with findings of absent or reversed end diastolic flow Doppler signal conferring a particularly high risk for adverse perinatal outcome and mortality [7–13]. In fact, Doppler evaluation of the umbilical artery in cases of fetal growth restriction (FGR) is the most well-studied form of fetal monitoring. Multiple randomized clinical trials, metaanalyses of these trials and a Cochrane review have persistently indicated that screening of at-risk fetuses using the umbilical artery Doppler resulted in improved outcomes with a significant reduction in perinatal mortality [14]. Subsequently, Doppler-related research has expanded to focus on detecting fetal hemodynamic adaptation mechanisms through evaluation of multiple vessels such as the MCA, cerbro-placental ratio (CPR), umbilical vein, aortic isthmus (AOI) and ductus venosus. These investigations provide several insights on the fetal hemodynamic adaptation and circulatory compensation to chronic hypoxia and nutrition deprivation state [15–22]. Such detailed assessment of the fetal hemodynamic adaptation status improves our ability to individualize and fine tune the surveillance frequency and management decisions in FGR [23].

In this issue, two original studies explore the potential use of Doppler ultrasound in specific scenarios in fetal medicine [24, 25]. Although these studies differ greatly in their technique, the vessel that they examine, the clinical application and results, they do share the desire to further improve the utilization of Doppler assessment in a meaningful way that hopefully improves fetal outcome.

The first study by Villalalin et al. was designed to investigate whether reverse flow in the AOI in late onset FGR (diagnosed after 32 weeks of gestation) is associated with adverse perinatal outcomes [24]. The physiological rationale is that blood flow in the AOI is affected by both the cerebral and the systemic resistances which it supplies. It is known that with progression of early onset FGR the increased placental resistance combined with decreased cerebral resistance (secondary to the "brain sparing" effect) results in alteration in the AOI flow that may become reversed from its normal antegrade direction.

Indeed, reversed AOI flow is thought to represent circulatory redistribution reflecting fetal hemodynamic decompensation [26, 27].

In this issue, Villalalin et al. compared pregnancy and perinatal outcomes such as the mode of delivery, indications for cesarean section, Appar score at 5 min, umbilical artery pH, neonatal intensive care unit (NICU) admission, and composite neonatal morbidity, between late onset FGR (diagnosed after 32 weeks of gestation) with antegrade and those with reversed AOI flow. They performed Doppler surveillance of the AOI in 148 singleton FGR cases with mild Doppler abnormalities defined as umbilical artery pulsatility index (PI) >95th centile, MCA PI <5th centile or CPR < 5th centile. The authors did not find significant difference in any of these variables between the groups. Based on the negative results they concluded that Doppler evaluation of the AOI does not provide any clinically useful information for predicting the perinatal outcome or the tolerance to labor in late onset FGR with mild Doppler alterations [24]. Despite these negative findings this study is important as it points to the potential different pathophysiology or hemodynamic adaptation in late vs. early-onset FGR. It is already known that the common umbilical artery alterations seen in early-onset FGR may not present in late-onset FGR [28]. Indeed, evaluation of the MCA and CPR appears to be superior to umbilical artery Doppler in the subgroup of late-onset FGR. This study suggests that there are multiple factors affecting the flow in the AOI apart from brain sparing affect. More significantly, unlike prior data suggesting increased risk for cesarean delivery and poor neurodevelopmental status in early-onset FGR with reversed AOI flow, the current study provides clinical support that the direction of flow in the AOI may not provide reliable prognostic information in late-onset FGR [29, 30].

The second study in this issue sets the ground for potential new use of Doppler wave form technology which is the assessment of the fetal main pulmonary artery pressure (FMPAP) [25]. Sosa-Olavarria et al. evaluated the use of a previously reported Doppler technique used in adults to estimate the FMPAP and correlated it with gestational age. They utilized the formula by Dabestani et al. in 337 healthy fetuses with normal growth between 13 and 38 weeks of gestation by measuring the time interval from the onset of the systolic flow to the peak systolic velocity through the pulmonary valve, i.e.: acceleration time [31]. The authors found that the acceleration time was increased and FMPAP decreased with advanced gestational age. These findings are not surprising given that the fetal pulmonary vasculature has low impedance at term in preparation for postnatal life. A similar

technique has been suggested for predicting fetal lung maturity [32]. In addition, it is consistent with previous data that evaluated the pulmonary artery pressure in the post-natal period by using a different Doppler based technique [33-36].

If this technique proves to be a reliable mode of assessment of the FMPAP, it may be used to identify potential abnormalities in the pulmonary artery pressure. Such evaluation has the potential to have clinical utility in screening pregnancies that may be at risk for developing neonatal pulmonary hypertension due to a variety of causes. As such, its role in predicting pulmonary hypertension in cases of fetal arrhythmias, suspected meconium stained amniotic fluid, structural malformations such as congenital diaphragmatic hernia, expected prematurity, exposure to medication which have been associated with pulmonary hypertension and more could be assessed.

Further research in the field may assist in fine tuning the use of Doppler assessment in different clinical scenarios. Both negative and positive studies will shape the future of this technique and better determine the clinical utility to assess the fetal and maternal circulatory systems and improve neonatal outcome.

References

- 1. Mari G, Norton ME, Stone J, Berghella V, Sciscione AC, Tate D, et al. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #8: the fetus at risk for anemia - diagnosis and management. Am J Obstet Gynecol 2015;212:697-710.
- 2. Mari G, Deter RL, Carpenter RL, Rahman F, Zimmerman R, Moise KJ Jr, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med 2000;342:9-14.
- 3. Pretlove SJ, Fox CE, Khan KS, Kilby MD. Noninvasive methods of detecting fetal anaemia: a systematic review and meta-analysis. Br J Obstet Gynaecol 2009;116:1558-67.
- 4. Oepkes D, Seaward PG, Vandenbussche FP, Windrim R, Kingdom J, Beyene J, et al. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med 2006;355:156-64.
- 5. Picklesimer AH, Oepkes D, Moise KJ Jr, Kush ML, Weiner CP, Harman CR, et al. Determinants of the middle cerebral artery peak systolic velocity in the human fetus. Am J Obstet Gynecol 2007;197:526.e1.
- 6. O'Dwyer V, Burke G, Unterscheider J, Daly S, Geary MP, Kennelly MM, et al. Defining the residual risk of adverse perinatal outcome in growth-restricted fetuses with normal umbilical artery blood flow. Am J Obstet Gynecol 2014;211:420.e1-5.
- 7. Society for Maternal-Fetal Medicine Publications Committee, Berkley E, Chauhan SP, Abuhamad A. Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol 2012;206:300-8.

- 8. Bilardo CM, Nicolaides KH, Campbell S. Doppler measurements of fetal and uteroplacental circulations: relationship with umbilical venous blood gases measured at cordocentesis. Am J Obstet Gynecol 1990;162:115-20.
- 9. Yoon BH, Romero R, Roh CR, Kim SH, Ager JW, Syn HC, et al. Relationship between the fetal biophysical profile score, umbilical artery Doppler velocimetry, and fetal blood acidbase status determined by cordocentesis. Am J Obstet Gynecol 1993:169:1586-94.
- 10. Valcamonico A, Danti L, Frusca T, Soregaroli M, Zucca S, Abrami F, et al. Absent end-diastolic velocity in umbilical artery: risk of neonatal morbidity and brain damage. Am J Obstet Gynecol 1994;170:796-81.
- 11. Karsdorp VH, van Vugt JM, van Geijn HP, Kostense PJ, Arduini D, Montenegro N, et al. Clinical significance of absent or reversed end diastolic velocity waveforms in umbilical artery. Lancet 1994;344:1664-8.
- 12. Maggio L, Dahlke JD, Mendez-Figueroa H, Albright CM, Chauhan SP, Wenstrom KD. Perinatal outcomes with normal compared with elevated umbilical artery systolic-to-diastolic ratios in fetal growth restriction. Obstet Gynecol 2015;125:863-9.
- 13. Vasconcelos RP, Brazil Frota Aragão JR, Costa Carvalho FH, Salani Mota RM, de Lucena Feitosa FE, Alencar Júnior CA. Differences in neonatal outcome in fetuses with absent versus reverse end-diastolic flow in umbilical artery Doppler. Fetal Diagn Ther 2010;28:160-6.
- 14. Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 2017;6:CD007529.
- 15. Baschat AA, Gembruch U, Weiner CP, Harman CR. Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet Gynecol 2003;22:240-5.
- 16. Turan OM, Turan S, Berg C, Gembruch U, Nicolaides KH, Harman CR, et al. Duration of persistent abnormal ductus venosus flow and its impact on perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol 2011;38:295-302.
- 17. Bilardo CM, Wolf H, Stigter RH, Ville Y, Baez E, Visser GH, et al. Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction. Ultrasound Obstet Gynecol 2004;23:119-25.
- 18. Mari G, Deter RL. Middle cerebral artery flow velocity waveforms in normal and small-for-gestational-age fetuses. Am J Obstet Gynecol 1992;166:1262-70.
- 19. Schenone MH, Mari G. The MCA Doppler and its role in the evaluation of fetal anemia and fetal growth restriction. Clin Perinatol 2011;38:83-102.
- 20. Conde-Agudelo A, Villar J, Kennedy SH, Papageorghiou AT. Predictive accuracy of cerebroplacental ratio for adverse perinatal and neurodevelopmental outcomes in suspected fetal growth restriction: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018;52:430-41.
- 21. Khalil AA, Morales-Rosello J, Morlando M, Hannan H, Bhide A, Papageorghiou A, et al. Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission? Am J Obstet Gynecol 2015;213:54.e1.
- 22. Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, Schoonmade LJ, Bossuyt PMM, Mol BWJ, et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018;51:313-22.

- 23. Baschat AA. Doppler application in the delivery timing of the preterm growth-restricted fetus: another step in the right direction. Ultrasound Obstet Gynecol 2004;23:111-8.
- 24. Villalaín C, Herraiz I, Quezada MS, Gómez-Arriaga PI, Simón E, Gómez-Montes E, et al. Prognostic value of the aortic isthmus Doppler assessment on late onset fetal growth restriction. J Perinat Med 2019;47:212-7.
- 25. Sosa-Olavarria A, Zurita-Peralta J, Schenone CV, Schenone MH, Prieto F. Doppler evaluation of the fetal pulmonary artery pressure. J Perinat Med 2019;47:218-21.
- 26. Kennelly MM, Farah N, Turner MJ, Stuart B. Aortic isthmus Doppler velocimetry: role in assessment of preterm fetal growth restriction. Prenat Diagn 2010;30:395-401.
- 27. Walker DM, Marlow N, Upstone L, Gross H, Hornbuckle J, Vail A, et al. The growth restriction intervention trial: long-term outcomes in a randomized trial of timing of delivery in fetal growth restriction. Am J Obstet Gynecol 2011;204:34.e1-9.
- 28. Severi FM, Bocchi C, Visentin A, Falco P, Cobellis L, Florio P, et al. Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2002;19:225-8.
- 29. Figueras F, Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat Diagn 2014;34:655-9.
- 30. Cruz-Martinez R, Tenorio V, Padilla N, Crispi F, Figueras F, Gratacos E. Risk of ultrasound-detected neonatal brain abnormalities in intrauterine growth-restricted fetuses born between 28 and 34 weeks' gestation: relationship with gestational age at birth and fetal Doppler parameters. Ultrasound Obstet Gynecol 2015;46:452-9.
- 31. Dabestani A, Mahan G, Gardin JM, Takenaka K, Burn C, Allfie A, et al. Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography. Am J Cardiol 1987;59:662-8.
- 32. Schenone MH, Samson JE, Jenkins L, Suhag A, Mari G. Predicting fetal lung maturity using the fetal pulmonary artery Doppler wave acceleration/ejection time ratio. Fetal Diagn Ther 2014;36:208-14.
- 33. Guan Y, Li S, Luo G, Wang C, Norwitz ER, Fu Q, et al. The role of doppler waveforms in the fetal main pulmonary artery in the prediction of neonatal respiratory distress syndrome. J Clin Ultrasound 2015;43:375-83.
- 34. Martin-Duran R, Larman M, Trugeda A, Vazquez de Prada JA, Ruano J, Torres A, et al. Comparison of Doppler-determined elevated pulmonary arterial pressure with pressure measured at cardiac catheterization. Am J Cardiol 1986;57:859-63.
- 35. Weyman AE, Dillon JC, Feigenbaum H, Chang S. Echocardiographic patterns of pulmonic valve motion with pulmonary hypertension. Circulation 1974;50:905-10.
- 36. Subhedar NV, Shaw NJ. Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed 2000;82:F243-7.

Corresponding author: Eran Bornstein, Lenox Hill Hospital, Northwell Health, New York, NY 10075, USA; and Zucker School of Medicine at HOFSTRA/Northwell, New York, NY 11549, USA, E-mail: ebornstein@northwell.edu

Frank A. Chervenak: Lenox Hill Hospital, Northwell Health, New York, NY, USA; and Zucker School of Medicine at HOFSTRA/Northwell, New York, NY, USA