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Abstract: Artificial Intelligence (AI) is integrating itself
throughout the medical community. AI’s ability to analyze
complex patterns and interpret large amounts of data will
have considerable impact on all areas of medicine,
including pediatric endocrinology. In this paper, we review
and update the current studies of AI in pediatric endocri-
nology. Specific topics that are addressed include: diabetes
management, bone growth, metabolism, obesity, and
puberty. Becoming knowledgeable and comfortablewith AI
will assist pediatric endocrinologists, the goal of the paper.
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Introduction

Medical knowledge is expanding rapidly, estimated to
double every 73 days [1, 2]. Today’s physicians are becoming
increasingly reliant on digital tools to better assist them in
medical decisions during this onslaught of information [3].
Artificial Intelligence (AI) is one of the most powerful assets
for information processing that currently exists. AI is

well-suited to analyze vast amounts of information
efficiently, and has the potential to positively influencemany
medical specialties due to its complex pattern analysis
abilities. The applications of AI already have been applied,
and are continuing, to revolutionize various medical
fields, such as genetics [4], oncology [5], imaging [6], and
pharmacokinetics [7]. This paper serves to summarize the
main advancements of AI in pediatric endocrinology.
Furthermore, we provide predictions on what future
challenges AI might address in the field.

Pediatric endocrinology, as a subspecialty of pediatrics,
encompasses a wide range of endocrine abnormalities.
The diseases that pediatric endocrinologists frequently
encounter consist of: growth problems; early or delayed
puberty; thyroid, pituitary, adrenal gland, pancreatic,
ovarian, and testicular dysfunction; diabetes; hypoglycemia;
obesity; and vitamin D problems [8]. AI can enhance the
ability to detect pediatric endocrinologic disease early
and accurately [9]. This can be extremely valuable for timely
interventions and improved outcomes in children. AI also
can be used to effectively automate preventive screening
tools to detect diseases. Becoming knowledgeable and
comfortable with AI can assist pediatric endocrinologists,
the true goal of this paper.

We will now address these individual areas in-depth
with respect to AI.

Diabetes

Type 1 diabetes is characterized by autoimmune destruction
of insulin-producing β cells in the pancreas by CD4+ and
CD8+ T cells and macrophages that infiltrate the islets [10].
A large portion of the patients a pediatric endocrinologist
sees are those with type 1 diabetes. From 2001 to 2017, the
prevalence of type 1 diabetes in children in the United
States increased from 1.48 per 1,000 children to 2.15 per 1,000,
and the prevalence of type 2 diabetes in children in the US
also increased from 0.34 per 1,000 children to 0.67 per 1,000
[11]. Managing the insulin regimen is a major aspect of
these patients’ health. In a study using an AI decision sup-
port system, recommended insulin dose adjustments were
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similar between expert pediatric endocrinologists and AI
[12]. This highlights the potential incorporation of AI as a
decision support tool to assist physicians with insulin dose
adjustments and titrations.

Diabetic retinopathy is a well-known complication of
diabetes and a major cause of vision loss worldwide. The
American Diabetes Association recommends screening for
diabetic retinopathy in children 11 years or older with a
dilated ophthalmologic examination or retinal photography
[13]; unfortunately this is not always feasible or followed.
Detecting early diabetic retinopathy is an area in which AI is
making strides. Utilizing an AI system for diabetic eye exams
may become a reality to aid management in diabetic chil-
dren. In one study involving children with diabetes at a
multidisciplinary pediatric diabetes center, an AI system
was used to detect the presence of diabetic retinopathy with
a sensitivity of 85.7 % and a specificity of 79.3 %. The use of an
AI system also was found to improve adherence to screening
guidelines in this setting [14]. Another adult AI system is
performing at even higher levels compared to the childhood
AI system; AI predicted diabetic retinopathy in a primary
care population with a sensitivity of 87.2 % and a specificity
of 90.7 % [15]. Although this evidence was used in adult
populations, it could potentially be applicable to children in
the future.

Machine learning systems have been developed to pre-
dict the diagnosis of diabetes in adults through electronic
health groups. One group used data by a machine learning
algorithm to determine who had type 2 diabetes, based off
data points listed in the electronic health record out of a
population of over 23,000 people. Some of the data points
included patient demographics, patient communicated
symptoms, laboratory results, medications, and inpatient
and outpatient diagnosis records. This system had a mean
area under the curve (AUC) of 0.98 [16], a testament to the
system’s accuracy. Predictive models show the feasibility of
identifying adults who have a high probability to develop
undiagnosed diabetes. Studies such as these are promising,
and eventually may be applied to predict children who will
develop diabetes.

Another serious complication of diabetes is chronic
kidney disease, defined as elevated urinary albumin excre-
tion or impaired renal function [17], which approximately
one-third of patients with type 1 diabetes will develop [18].
One study in adults used AI to predict diabetic kidney disease
progression with 71 % accuracy [19], which is another
promising example of a potential application for children in
pediatric endocrinology in the future. To date, there are no
studies that have looked at the use of Al for prediction of
diabetic-associated kidney disease in children with diabetes,
although AI’s utility may be anticipated.

There are currently 3 FDA approved AI-based devices
related to diabetes management [20]. Two are designed
to manage blood glucose monitoring with continuous
glucose monitoring predictive alerts [21]. The third
interprets ophthalmologic results to detect early diabetic
retinopathy [22].

Short stature and bone growth

Monitoring that recognizes abnormalities in growth can
indicate serious diseases accurately [23]. Bone age is one of
many parameters pediatricians use to determine potential
causes of growth abnormality, although assessing bone
maturation does not necessarily translate into improved
diagnostic accuracy. Deep learning neural networks have
been shown to estimate pediatric skeletal maturity from
ages 1.5–18.2 years with similar accuracy to expert radiolo-
gists [24]. Additionally, screening of growth disorders using
algorithms integrated into a Finland EHR system resulted
in higher and earlier rates of detection and referrals to
specialists, compared to standardized growth monitoring.
Some of these diagnoses include celiac disease and Turner’s
syndrome [25].

A system called the fully automated deep learning
system for bone age assessment was created in 2017
by a group of researchers from Massachusetts General
Hospital. This convoluted neural network was able to
assess bone age using female radiographs within 1 year
with 90.39 % accuracy; male radiographs could be
predicted accurately at 94.18 % to within 1 year of actual
bone age [26]. The Radiology Society of North America in
2017 created a competition to best estimate bone age
assessment using machine learning. One AI company
achieved accuracy of hand bone age within an average of
4.3 months [27].

Another fully automated AI system studied pediatric
Chinese patients with abnormal growth and development to
predict bone age. The accuracy of this automated AI system
within 1 year was 84.60 %, compared to the reference stan-
dard, with the highest percentage of 89.45 % in the 12- to
18-year group [28].

An area in which AI and machine learning shine, is
in interpreting medical images and helping physicians
make diagnoses. AI can assist in analyzing heterogeneous
variables such as facial structure. One machine learning
algorithm showed better sensitivity, specificity, positive
predictive value, and negative predictive value compared
to physicians for diagnosing acromegaly by using early
detection of facial changes imaging [29].
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Thyroid nodules

The incidence of thyroid cancer in the US adolescence is
increasing, with an annual percentage change of 3.44 for
males, and 3.81 for females [30]. Therefore, a reliablemethod
to differentiate benign from cancerous nodules accurately
would be valuable clinically. AI is being used to help
establish the diagnosis and management of pediatric thy-
roid diseases. One deep learning algorithm was used to
differentiate benign and malignant thyroid nodules on
ultrasound in children and young adults. The algorithm
had a sensitivity of 87.5 %, which was higher compared to
the average sensitivity of 58.3 % from radiologists, although
lower for specificity (36.1 % compared to average of 79.9 %)
[31]. It is suggested that this improvement in diagnostic
performance could help reduce unnecessary fine needle
biopsies for thyroid nodules [32].

Metabolism and obesity

Another focus of pediatric endocrinology is childhood
obesity andmetabolism. According to the CDC, “For children
and adolescents aged 2–19 years in 2017–2020, the preva-
lence of obesity was 19.7 % and affected about 14.7 million
children and adolescents.” [33].

Using AI to analyze clinical signs and symptoms to help
predict childhood obesity can lead to earlier interventions
and lifestyle modifications. Current non-AI tools to estimate
future obesity are imprecise, and utilize variables such as
family history, eating habits, exercise levels, and overall
activity levels. AI has numerous opportunities to improve
patient outcomes in this area. Using machine learning
techniques, one group was able to predict childhood obesity
in children less than 2 years oldwith an accuracy of 85 % and
a sensitivity of 89 %. They analyzed nine years of clinical
information from 7,519 patients from four hospitals. The
machine learning algorithm included biometrics, including
child weight, height, race, and vital signs, as well as other
variables including insurance status and use of a walker.
They determined the most important factor for predicting
obesity was overweight before 24 months [34].

Resting energy expenditure represents the expended
energy while patients lay quietly with little movement. It is
the largest component of daily caloric expenditure, and
the gold standard of measuring it, an indirect calorimetry,
often is not available in the clinical setting. One group
developed a neural network, using weight, height, and sex
as clinical inputs, that was able to measure the resting

energy expenditure in obese patients to a better degree
than established equations. This is clinically significant
because an accurate assessment of energy needs is neces-
sary to determine what appropriate dietary changes can be
recommended; this can guide proper nutritional prescrip-
tion in critically ill children [35, 36]. Another artificial neural
network estimated resting energy expenditure in pediatric
ICU patients using data input. The data includes nutritional
status, vital signs, biochemical values, and VC02, and reached
an accuracy of 89.6 %, greater than commonly used predic-
tive equations [36].

Metabolic syndrome is a group of various disorders
that ultimately can lead to heart disease, stroke, or type 2
diabetes. Clinical data also have been able to help predict
Metabolic syndrome using an artificial neural network. It
is difficult to estimate the prevalence of metabolic syndrome
in children because many different criteria have been
used in its various definitions. Different publications have
described prevalence numbers ranging from 0.2 to 38.9 %.
The incidence of metabolic syndrome is a range, depending
on criteria used, although it is certain that the overall
incidence has increased over time [37]. One machine
learning algorithm used data input that included
demographic information, home address, vital signs,
medications, maternal vital signs, and maternal laboratory
results, before, during, and post-pregnancy. It was able to
predict obesity at year 5 from children less than 2 years old,
with an AUC of 81.7 % for girls and 76.1 % for boys [38].
Machine learning algorithms also have been deployed to
predict the success of therapies for decreasing childhood
obesity and related outcomes. One study aimed to predict the
success of a 6-month weight loss therapy for a cohort of
20 adolescents from Switzerland. The machine learning
algorithm used factors including weight, age, BMI, height,
and heartrate during a run test; it was able to predict success
of therapy with an 85 % accuracy, performing better than
domain expert predictions [39].

Puberty

Central precocious puberty, or the early activation of
the hypothalamic-pituitary-gonadal axis, is defined by,
“the early development of secondary sex characteristics,
acceleration of linear growth, advanced bone age, and a
pubertal response to gonadotropin-releasing hormone
(GnRH) test” [40]. Pediatric endocrinologists diagnose
and treat patients with pediatric precocious puberty and
other areas of puberty dysfunction.
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A machine-learning based diagnostic model was used
to determine if female children with an already established
diagnosis of precocious puberty had a central cause. Of
the 614 patients with this already established diagnosis,
85 % had central precocious puberty. The machine learning
tool used inputs including age, BMI, secondary sex
characteristics, bone age x-ray results, and laboratory tests.
This machine learning model was able to predict central
precocious puberty with a positive predictive value of
0.987, area under the curve of 0.972, and a specificity
of 0.893 [41]. The benefits of this technology would be to
reduce the number of blood samplings, as well as to provide
results more efficiently than the standard GnRH stimula-
tion test. A different machine learning diagnostic model,
using laboratory data on 1,757 girls, was able to predict
central precocious puberty with sensitivity ranging
from 77.91 to 77.94 %, and specificity ranging from 84.32 to
87.66 %. They determined that serum luteinizing hormone,
follicle-stimulating hormone, and insulin-like growth
factor levels were the most important predictive input
factors [42].

Machine learning algorithms have been applied to the
detection of subtle dysmorphic facial features. Congenital
adrenal hyperplasia (CAH) is a common pediatric primary
adrenal insufficiency condition that leads to a hormonal
excess, such as from testosterone and estrogen. Although
there aremany distinct characteristics of CAH, differences in
morphologic facial features are not a classic aspect of it. A
cross-sectional study in Southern California used a machine
learning algorithm to determinewhether subtle dysmorphic
facial changes would be enough to predict CAH. This study
was able to achieve a mean AUC of 92 % for predicting CAH,
from just facial images that had distinct, subtle, and
morphologic changes [43].

Early timing of menarche has been linked to adverse
health outcomes, including obesity, asthma, and type 2
diabetes [44]. Certain endocrine disrupting chemicals can
impact when female patients begin menarche. One study
used machine learning to determine if exposure to certain
combinations of endocrine disrupting chemicals had an
impact when menarche began; it was able to determine
several interpretable combination of biomarkers. For
example, lower levels of mono-(2-ethyl-5-hexyl) phthalate
(MEHP), a metabolite of Di-2-ethylhexyl phthalate (DEHP)
that is a type of phthalate that often is used in plastics to
increase flexibility [45], corresponded to earlier onset of
menarche [46]. This information is an example of how
machine learning can be used to screen efficiently for new
chemicals with appreciable effects on disruptions to human
endocrinologic pathways.

Limitations of AI

Although AI offers much potential to enhance pediatric
endocrinology, it has limitations. Machine learning algo-
rithms are most effectively trained on large, standardized
data-sets; thus, since psychological status and changes in
social factors are not standardized data-sets, they are not
amenable to machine learning algorithms.

Breach of private health data used in electronic health
records that could be used to train AI algorithms would be
catastrophic [47]. Currently, there is no focus on training or
educating endocrinologists in the use of these technologies
for diagnosis or research [9].

Most importantly, AI does simulate the doctor–patient
relationship. Patients want and deserve human connection
when interacting within the health care system, and that is
something that physicians do, but AI cannot.

Conclusions

AI’s ability to analyze complex patterns and interpret large
amounts of datawill have considerable impact on all areas of
medicine, including pediatric endocrinology. While the in-
fluence of AI surely will expand in the future, it is already
having an impact. This paper has highlighted advances AI
has made in diabetes management, bone growth, meta-
bolism, obesity, and puberty. The future is bright for AI to be
a valuable adjunct for pediatric endocrinologists.
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