Obstetrics and Gynecology

Review Article

Romuald Ferre*, MD, FRCR, MsC and Cherie M. Kuzmiak, DO, FACR, FSBI

Upgrade rate of percutaneously diagnosed pure flat epithelial atypia: systematic review and meta-analysis of 1,924 lesions

https://doi.org/10.1515/jom-2021-0206 Received August 22, 2021; accepted December 14, 2021; published online February 14, 2022

Abstract

Context: Management remains controversial due to the risk of upgrade for malignancy from flat epithelial atypia (FEA). Data about the frequency and malignancy upgrade rates are scant. Namely, observational follow-up is advised by many studies in cases of pure FEA on core biopsy and in the absence of an additional surgical excision. For cases of pure FEA, the American College of Surgeons no longer recommends surgical excision but rather recommends observation with clinical and imaging follow-up.

Objectives: The aim of this study is to perform a systematic review and meta-analysis to calculate the pooled upgrade of pure FEA following core needle biopsies.

Methods: A search of MEDLINE and Embase databases were conducted in December 2020. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. A fixed- or random-effects model was utilized. Heterogeneity among studies was estimated by utilizing the I2 statistic and considered high if the I2 was greater than 50%. The random-effects model with the DerSimonian and Laird method was utilized to calculate the pooled upgrade rate and its 95% confidence interval. **Results:** A total of 1924 pure FEA were analyzed among 59 included studies. The overall pooled upgrade rate to malignancy was 8.8%. The pooled upgrade rate for mammography only was 8.9%. The pooled upgrade rate for ultrasound was 14%. The pooled upgrade rate for mammography and

Conclusions: Although the guidelines for the management of pure FEA are variable, our data support that pure FEA diagnosed at core needle biopsy should undergo surgical excision since the upgrade rate >2%.

Keywords: breast; cancer; flat epithelial atypia; high-risk lesion; mammography; ultrasound; upgrade rate.

Ten percent of breast core biopsies represent high-risk lesions [1]. They can be described as borderline lesions that could be a marker of future breast carcinoma. They can correspond to either precursor of breast cancer or an increased risk of oncogenesis [2-6]. Flat epithelial atypia (FEA) has a similar increased risk of subsequent carcinoma as any other benign proliferative changes in the breast. Currently, the high-risk classification includes papillary lesions, radial scar/complex sclerosing lesions, lobular carcinoma in situ (LCIS), atypical hyperplasia (lobular and ductal), and columnar cell lesions (hyperplasia or FEA) [7–10]. FEA is defined by the World Health Organization (WHO) as a "presumably neoplastic intraductal alteration characterized by the replacement of native epithelial cells by a single layer or three to five layers of mildly atypical cells." [10] High-risk lesions are a hot topic in breast imaging; radiologists have to balance the risk of underestimation against the surgical risk to patients.

The management of FEA remains controversial due to the risk that it will upgrade to malignancy. Data demonstrating the frequency of FEA upgrade to malignancy are scant. Namely, observational follow-up is advised by many studies in cases of pure FEA on core biopsy and in the absence of an additional surgical excision. For cases of pure FEA, the American College of Surgeons no longer recommends surgical excision but now recommends clinical observation and follow-up imaging [11]. Surgical excision is recommended, particularly when there is concurrent atypical ductal hyperplasia (ADH) or another high-risk lesion [12]. This approach follows the Second

ultrasound combined was 8.8%. The pooled upgrade rate for MRI-only cases was 27.3%.

^{*}Corresponding author: Romuald Ferre, MD, FRCR, MsC, Centre hospital de la Sarre, 679 Route 111, La Sarre, QC J9Z 2Y9, Canada; and Department of Radiology, Hopital du Grand Portage, 206-55 Wyndham St N, Riviere du Loup, QC, Canada, E-mail: romuald.ferre@gmail.com Cherie M. Kuzmiak, DO, FACR, FSBI, Department of Radiology, UNC School of Medicine, Chapel Hill, NC, USA

International Consensus Conference on Lesions of Uncertain Malignant Potential, which recommends surveillance if a core needle biopsy (CNB) yields FEA [13]. However, other publications recommend surgical excision when FEA is detected by core biopsy [12, 14, 15].

Thus, the purpose of this systematic review and metaanalysis was to estimate the upgrade rate of percutaneously diagnosed pure FEA in relation to surgical excision.

Methods

Study protocol and quality appraisal

No ethical committee approval was performed for this systematic retrospective review. The study was registered on the Open Science Framework (OSF) Center for Open Science (COS, DOI 10.17605/OSF.IO/ KU82T). No specific funding or support was received for this study. Guidelines for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were followed [16-18].

Search strategy and study eligibility criteria

We conducted research of studies in MEDLINE and Embase through December 2020. All of the studies reporting the correlation of FEA with definite pathology were searched. Correlation with the outcome of pure FEA after definite pathology was performed. A malignant finding was defined as invasive mammary carcinoma or ductal carcinoma in situ (DCIS). All of the remaining findings were considered to be nonmalignant.

The search string was as follows: "(('flat epithelial atypia'/exp OR 'flat epithelial atypia' OR 'FEA'/exp) AND ('biopsy'/exp OR 'biopsy') AND ('intraductal carcinoma'/exp OR 'DCIS' OR 'breast intraductal carcinoma' OR 'carcinoma, intraductal, noninfiltrating' OR 'ductal carcinoma in situ' OR 'intraductal carcinoma' OR 'breast carcinoma'/ exp OR 'breast carcinoma' OR 'carcinoma, infiltrating duct' OR 'carcinoma, mammary' OR 'invasive ductal carcinoma' OR 'mamma carcinoma' OR 'mammary carcinoma')) AND 'article'/it."

Only manuscripts written in English were considered for the analysis. Publications were selected based on the title and abstract by one independent reader (R.F., with 10 years of experience in breast imaging). Once selection was performed, all the studies were read thoroughly by the two authors (C.M.K., with over 20 years of experience in breast imaging). The details regarding the number of pure FEA lesions with correlation with outcome were analyzed, as well as the number of nonmalignant vs. malignancies. The full text was assessed by two readers who performed the first selection.

Data extraction

The two independent readers performed the data extraction. When the two readers did not agree, the manuscript was rejected. When possible, the following data were recorded: (1) year of publication; (2) study design; and (3) number of patients and lesions.

Primary point

The primary and unique outcome was the correlation between the FEA findings and the definite outcome after surgery.

Statistical analysis

This meta-analysis study was conducted utilizing STATA 15 software to seek the relationship between the variables. Heterogeneity among the studies was estimated by utilizing the I2 statistic and was considered high if I2 was greater than 50%. The random-effects model with the DerSimonian and Laird method was utilized to calculate the pooled upgrade rate and its 95% confidence interval (CI).

Results

Literature search and characteristics of the analyzed studies

Figure 1 demonstrates the literature search flowchart. Among 307 retrieved publications, 248 were excluded because they did not meet the inclusion criteria. Thus, 59 (19%) of them met the inclusion criteria and comprised our study cohort.

The articles comprising our study cohort were published from 2007 to 2020 [19-77]. A total of 1,924 pure FEA cases were identified. No details regarding the demographic data or imaging appearance were analyzed because few studies reported them. Forest plots of the overall upgrade rate to breast cancer are detailed in Figure 2.

Percutaneous biopsies

Imaging guidance for CNB was reported in all 59 studies. In 39% (23/59) of the studies, all lesions were biopsied under stereotactic guidance. In 2% (1/59) of the studies, the lesions were biopsied under ultrasound-guidance only. In 5% (3/59) of the studies, the lesions were biopsied with MRI-guidance only. Thirty-six percent (21/59) of the studies reported lesions being biopsied utilizing stereotactic or ultrasound-guidance, whereas in 19% (11/59) of the studies, the lesions were biopsied with any of the imaging modalities: stereotactic, ultrasound-, or MRI-guidance.

The parameter of CNB size could not be assessed in this study because all the studies were not reporting the biopsy needle size.

Overall upgrade rate

Among the 1,924 pure FEA lesions, 255 (13%) were upgraded to malignancy on surgical excision (Table 1 and Figure 2).

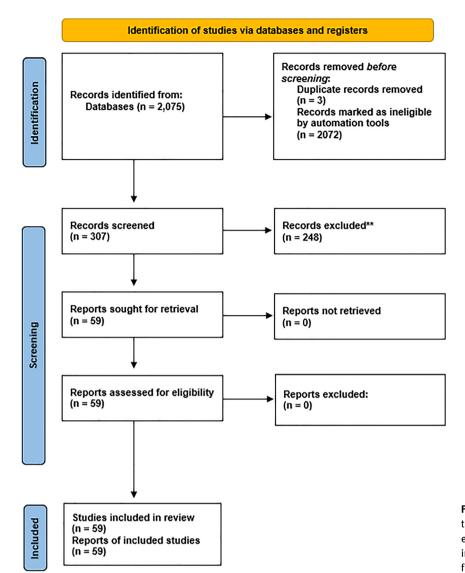


Figure 1: Flow diagram of study selection. Of the 307 initially retrieved articles, 248 were excluded because they did not meet the inclusion criteria, thus 59 were included the final analysis.

The pooled upgrade rate for lesions detected only on mammography was 9%, the pooled upgrade rate for lesions detected only on sonography was 14%, and the pooled upgrade rate for a lesion seen both mammographically and sonographically was 9%. The pooled upgrade rate for MRI-only-detected lesions was 27%.

Upgrade details

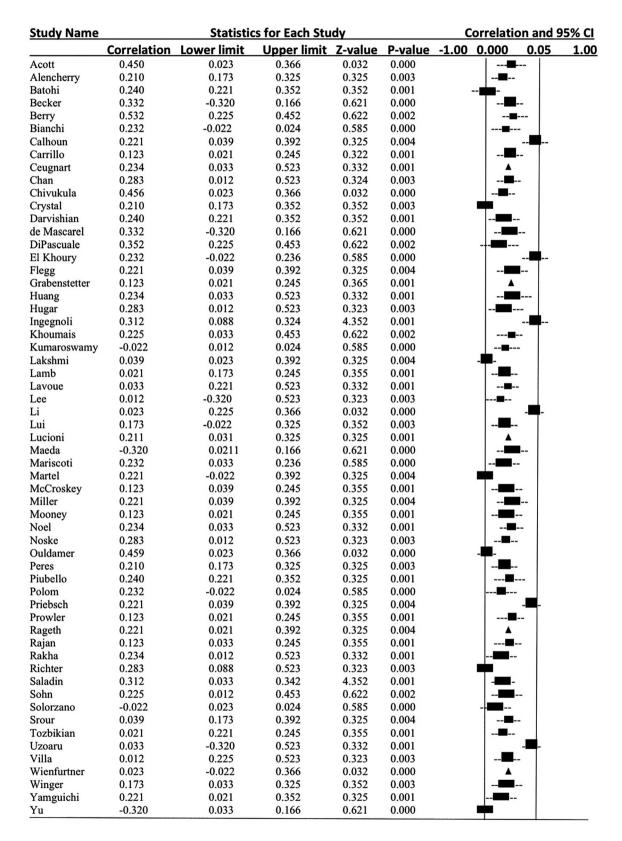
Over the 59 studies, there were 36 studies that detailed the findings among upgrades. They corresponded to 1,660 lesions, of which 193 (12%) were upgraded. Among these 193 upgrades, there were:

- 75 invasive ductal carcinomas no special type (75/ 193, 39%)
- 59 DCIS (59/193, 31%)

- 57 invasive lobular carcinomas (57/193, 30%)
- 2 invasive tubular carcinomas (2/193, 1.0%)

Risk of publication bias

The derived model showed from the forest plot seen above shows that the error analysis had a substantial impact on writing progress. Despite the results, the calculated statistical period for certain experiments crossed the no-effect axis. Because the CIs did not converge, these figures seem to be significantly heterogeneous; thus, both the fixedeffect models and their predictions, which indicate that the analysis could be significantly realistic for the data set and which proved the existence of heterogeneity (p<0.0001), confirm this. Additionally, the mean I2 test,



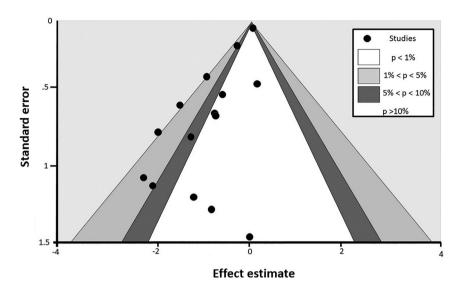

Figure 2: Forest plots of the overall upgrade rate to breast cancer.

Table 1: Findings and recommendation of included studies.

Study	Year	Number for analysis	Upgrade	No upgrade	Recommendation
Acott	2016	46	1	45	Case-by-case discussion
Alencherry	2018	72	2	70	Case-by-case discussion
Batohi	2019	88	20	68	Case-by-case discussion
Becker	2013	239	10	229	Surgery
Berry	2016	27	3	24	Case-by-case discussion
Bianchi	2012	190	18	172	Surgery
Calhoun	2014	73	5	68	Case-by-case discussion
Carrillo	2019	52	2	50	Surgery
Ceugnart	2013	52	3	49	Case-by-case discussion
Chan	2017	68	0	68	Follow-up
Chivukula	2009	35	5	30	Surgery
Crystal	2010	2	1	1	Surgery
Darvishian	2009	12	2	10	Surgery
de Mascarel	2011	24	0	24	Case-by-case discussion
DiPascuale	2019	75	12	63	Follow up
El Khoury	2017	41	4	37	Case-by-case discussion
Flegg	2010	5	2	3	Surgery
Grabenstetter	2019	34	2	32	Case-by-case discussion
Huang	2020	8	3	5	Surgery
Hugar	2018	94	0	94	Follow-up
Ingegnoli	2009	15	3	12	Surgery
Khoumais	2012	94	10	84	Surgery
Kumaroswamy	2015	5	2	3	Surgery
Lakshmi	2007	12	3	9	Surgery
Lamb	2017	200	5	195	Follow-up
Lavoue	2010	60	8	52	Surgery
Lee	2010	7	1	6	Follow-up
Li	2020	2	0	2	Case-by-case discussion
Liu	2019	- 89	0	89	Follow-up
Lucioni	2020	18	2	16	Follow-up
Maeda	2014	22	6	16	Surgery
Mariscoti	2020	158	10	148	Case-by-case discussion
Martel	2007	5	0	5	Follow-up
McCroskey	2018	43	0	43	Follow-up
Miller	2020	33	2	31	Follow-up
Mooney	2016	55	6	49	Case-by-case discussion
Noel	2009	20	0	20	Case-by-case discussion
Noske	2010	30	2	28	Case-by-case discussion
Ouldamer	2018	20	3	17	Case-by-case discussion
Peres	2011	95	9	86	Surgery
Piubello	2009	20	0	20	Case-by-case discussion
Polom	2011	20	2	18	Case-by-case discussion
Preibsch	2011	5	2	3	Surgery
Prowler	2014	24	0	24	Follow-up
	2014	221	40	181	Follow-up
Rageth		37		30	Case-by-case discussion
Rajan	2011		7		
Rakha Richter	2011	24	5	19	Case-by-case discussion
Saladin	2018	69	15 15	58	Surgery
	2015	82	15	67	Surgery
Sohn	2011	24	2	22	Surgery
Solorzano	2011	27	4	23	Surgery
Srour	2019	34	1	33	Follow-up
Tozbikian 	2019	57	3	54	Case-by-case discussion
Uzoaru	2012	95	3	92	Follow-up
Villa	2013	125	5	120	Follow-up
Weinfurtner	2015	4	0	4	Case-by-case discussion

Table 1: (continued)

Study	Year	Number for analysis	Upgrade	No upgrade	Recommendation
Winer	2019	12	3	9	Surgery
Yamguchi	2012	8	1	7	Surgery
Yu	2015	20	1	19	Case-by-case discussion

Figure 3: Contour-enhanced funnel plot to assess publication bias.

which calculated the quantity of heterogeneity through experiments, indicated the existence of an estimated 97% high heterogeneity.

The funnel plot (Figure 3) described here can therefore be viewed as asymmetric, suggesting that smaller studies appear to yield findings illustrating the analysis. The contour-enhanced plot separated the effects between bias in publication and other sources of asymmetry. The plot shows, however, that smaller findings were found not only in the areas of statistical significance provided by the shaded areas but also in the areas of nonsignificance shown by the nonshaded areas. The level of asymmetry could therefore have been caused by several variables and not solely by publication bias.

The previously mentioned estimates, despite the study having limited meta-analysis, indicate that the number of experiments utilized was adequate to assert the estimation of the addressed effect. In other words, to utilize a large number of experiments to find an overall meaningful impact, the plot provided evidence of the asymmetry of testing.

Discussion

High-risk lesions represent a unique spectrum of breast pathologies that are commonly seen in clinical practice. However, these lesions can be challenging for both radiologists and breast surgeons. The management of breast lesions has always been balanced by two opposite antagonist risks: underdiagnosis and undertreatment vs. overdiagnosis and overtreatment. Data regarding the rates of FEA upgrades are scant and sometimes contradictory. The question of excision or close surveillance can be a source of debate between clinicians and patients. In the literature, it has been reported that surgical excision may not be traditionally performed for breast lesions when the risk of upgrade is lower than 2% [78].

Several previous publications have analyzed the radiology and pathologic correlations of pure FEA diagnosed on CNB, focusing on the malignancy upgrade in the surgical specimen [19–77, 79]. The reported upgrade rates are variable, ranging from 0 to 30% [33]. However, our publication is the largest meta-analysis assessing the upgrade rate of pure FEA diagnosed on CNB with that undergoing surgical excision. In our study, we found a pooled upgrade rate of 9%. Our results are similar to those of other published data [79]. A recent meta-analysis estimated a pooled upgrade rate of 5% [79]. The difference between that study and ours is that study also included imaging follow-up whereas ours only analyzed the surgical excision results.

Compared to other studies [79], our study also included FEA findings under modalities other than mammography only. Our study also included ultrasound- and MRI-detected

lesions. We determined a rate of 9% and 27% pooled upgrade rate for ultrasound and MRI, respectively. Our results also demonstrated that there is a higher likelihood of upgrade for a MRI finding of FEA, which supports the study by Acott and Mancino [19]. This study included 48 pure FEA and recommended surgical excision in a scenario of MRI-guided biopsy yielding pure FEA [19]. Their reported upgrade rate was 25% (4/16). However, other publications have reported that there was no need for surgical excision in cases of MRI-guided biopsy showing pure FEA [12, 80, 81]. Among 16 cases of pure FEA, no cases of upgrade with a CI of 0-21% were reported [12].

Our study has some limitations. All studies in this analysis were retrospective, which can introduce a bias with a variability in design and patient selection. Also, our study did not assess the risk factors for FEA upgrade. The significant reported risk factors are a personal history of breast cancer, calcifications in a segmental distribution, mass lesion, removal of less than 24% of calcifications, calcifications that span greater than 2 cm, and papilloma diagnosis [20]. Similarly, Ouldamer et al. [57] showed there were three factors significantly predictive of underestimation or occurrence of cancer for pure FEA when the radiologic lesions are calcifications: age ≥57 years, radiologic size >10 mm, and number of FEA foci ≥4 on MRI. Another parameter that was not assessed in our study was the size of and type of the CNB device utilized [11]. Jackman et al. [13] reported a difference of the false negative rate of the 11-gauge biopsy vs. the 14-gauge vacuum biopsy with a respective of 0.5% vs. 4%. However, Alencherry et al. [20] showed that there was no significant difference in the number of core samples between upgraded and nonupgraded patients among any of the biopsy modalities (stereotactic, ultrasound, and MRI-guided biopsy modalities). There was also no significant difference between 9-gauge and 12-gauge needles for the stereotactic biopsies (p=1.0) [20, 79]. Additionally, the limitations could have been lessened by having stricter criteria in study selection for analysis.

Conclusions

As with managing other high-risk lesions, the management of pure FEA will continue to evolve. Nevertheless, our data support that pure FEA diagnosed at CNB should undergo surgical excision because the upgrade rate >2%.

Research funding: None reported.

Author contributions: Both authors provided substantial contributions to conception and design, acquisition of data,

or analysis and interpretation of data; both authors drafted the article or revised it critically for important intellectual content; both authors gave final approval of the version of the article to be published; and both authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Competing interests: None reported.

References

- 1. Mooney KL, Bassett LW, Apple SK. Upgrade rates of high-risk breast lesions diagnosed on core needle biopsy: a singleinstitution experience and literature review. Mod Pathol 2016;29: 1471-84
- 2. Thomas PS. Diagnosis and management of high-risk breast lesions. J Natl Compr Cancer Netw 2018;16:1391-6.
- 3. Allred DC, Mohsin SK, Fugua SA. Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 2001;8:47-61.
- 4. Hartmann LC, Radisky DC, Frost MH. Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. Cancer Prev Res (Phila) 2014;7:211-7.
- 5. Bombonati AS, Groi DC. The molecular pathology of breast cancer progression. J Pathol 2011;223:307-17.
- 6. Hartmann LC, Degnim AC, Santen RJ. Atypical hyperplasia of the breast-risk assessment and management options. N Engl J Med 2015;372:78-89.
- 7. Bahl M. Management of high-risk breast lesions. Radiol Clin North Am 2021;59:29-40.
- 8. Luiten JD, Korte B, Voogd AC, Vreuls W, Luiten EJT, Strobbe LJ, et al. Trends in frequency and outcome of high-risk breast lesions at core needle biopsy in women recalled at biennial screening mammography, a multi-institutional study. Int J Cancer 2019;15: 2720-7.
- 9. Boateng S, Tirada N, Khorjekar G, Richards S, Ioffe O. Excision or observation: the dilemma of managing high-risk breast lesions. Curr Probl Diagn Radiol 2020;49:124-32.
- 10. Tavassoli FA. Intraductal proliferative lesions. In: Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Publishing Group; 2003:63-73 pp.
- 11. Dialani V, Venkataraman S, Frieling G, Schnitt SJ, Mehta TS. Does isolated flat epithelial atypia on vacuum-assisted breast core biopsy require surgical excision? Breast J 2014;20: 606-14.
- 12. ASBrS position statement. Consensus guideline on concordance assessment of image-guided breast biopsies and management of borderline or high-risk lesions; 2016. https://www. breastsurgeons.org/docs/statements/Consensus-Guideline-on-Concordance-Assessment-of-Image-Guided-Breast-Biopsies.pdf [Accessed Mar 2021].
- 13. Jackman RJ, Marzoni FA Jr., Rosenberg J. False-negative diagnoses at stereotactic vacuum-assisted needle breast biopsy: long-term follow-up of 1,280 lesions and review of the literature. AJR Am J Roentgenol 2009;192:341-51.

- 14. Solorzano S, Mesurolle B, Omeroglu A, El Khoury M, Kao E, Aldis A, et al. Flat epithelial atypia of the breast: pathological-radiological correlation. AJR Am J Roentgenol 2011;197:740-6.
- 15. Miller-Ocuin JL, Fowler BB, Coldren DL, Chiba A, Levine EA, Howard-McNatt M. Is excisional biopsy needed for pure FEA diagnosed on a core biopsy? Am Surg 2020;86:1088-90.
- 16. Page MJ, Moher D. Evaluations of the uptake and impact of the preferred reporting items for systematic reviews and metaanalyses (PRISMA) statement and extensions: a scoping review. Syst Rev 2017;6:263.
- 17. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PLoS Med 2009;6: e1000097.
- 18. Whiting PF, Rutjes AW, Westwood ME. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.
- 19. Acott AA, Mancino AT. Flat epithelial atypia on core needle biopsy, must we surgically excise? Am J Surg 2016;212:1211-3.
- 20. Alencherry E, Goel R, Gore S, Thompson C, Dubchuk C, Bomeisl P, et al. Clinical, imaging, and intervention factors associated with the upgrade of isolated flat epithelial atypia. Clin Imag 2019;54:21-4.
- 21. Batohi B, Fang C, Michell MJ, Morel J, Shah C, Wijesuriya S, et al. An audit of mammographic screen detected lesions of uncertain malignant potential (B3) diagnosed on initial image guided needle biopsy: how has our practice changed over 10 years? Clin Radiol 2019;74:653.e19-25.
- 22. Becker AK, Gordon PB, Harrison DA, Hassell PR, Hayes MM, van Niekerk D, et al. Flat ductal intraepithelial neoplasia 1A diagnosed at stereotactic core needle biopsy: is excisional biopsy indicated? AJR Am J Roentgenol 2013;200:682-8.
- 23. Berry JS, Trappey AF, Vreeland TJ, Pattyn AR, Clifton GT, Berry EA, et al. Analysis of clinical and pathologic factors of pure, flat epithelial atypia on core needle biopsy to aid in the decision of excision or observation. I Cancer 2016:1:7:1-6.
- 24. Bianchi S, Bendinelli B, Castellano I, Piubello Q, Renne G, Cattani MG, et al. Morphological parameters of flat epithelial atypia (FEA) in stereotactic vacuum-assisted needle core biopsies do not predict the presence of malignancy on subsequent surgical excision. Virchows Arch 2012;461:405-17.
- 25. Calhoun BC, Sobel A, White RL, Gromet M, Flippo T, Sarantou T, et al. Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies. Mod Pathol 2015;28:670-6.
- 26. Carrillo M, Maturana G, Maiz C, Romero D, Domínguez F, Oddó D, et al. Breast lesions with atypia in percutaneous biopsies, managed with surgery in the last 10 years. Ecancer Med Sci 2019; 11:923.
- 27. Ceugnart L, Doualliez V, Chauvet MP, Robin YM, Bachelle F, Chaveron C, et al. Pure flat epithelial atypia: is there a place for routine surgery? Diagn Interv Imag 2013;94:861-9.
- 28. Chan PMY, Chotai N, Lai ES, Sin PY, Chen J, Lu SQ, et al. Majority of flat epithelial atypia diagnosed on biopsy do not require surgical excision. Breast 2018;37:13-7.
- 29. Chivukula M, Bhargava R, Tseng G, Dabbs DJ. Clinicopathologic implications of "flat epithelial atypia" in core needle biopsy specimens of the breast. Am J Clin Pathol 2009;131:802-8.
- 30. Crystal P, Sadaf A, Bukhanov K, McCready D, O'Malley F, Helbich TH. High-risk lesions diagnosed at MRI-guided vacuum-assisted

- breast biopsy: can underestimation be predicted? Eur Radiol 2011;21:582-9.
- 31. Darvishian F, Singh B, Simsir A, Ye W, Cangiarella JF. Atypia on breast core needle biopsies: reproducibility and significance. Ann Clin Lab Sci 2009;39:270-6.
- 32. de Mascarel I, Brouste V, Asad-Syed M, Hurtevent G, Macgrogan G. All atypia diagnosed at stereotactic vacuum-assisted breast biopsy do not need surgical excision. Mod Pathol 2011;24: 1198-206.
- 33. DiPasquale A, Silverman S, Farag E, Peiris L. Flat epithelial atypia: are we being too aggressive? Breast Cancer Res Treat 2020;179: 511-7.
- 34. El Khoury M, Sanchez LM, Lalonde L, Trop I, David J, Mesurolle B. Is the outcome at surgery different when flat epithelial atypia and lobular neoplasia are found in association at biopsy? Br J Radiol 2017;90:20160750.
- 35. Flegg KM, Flaherty JJ, Bicknell AM, Jain S. Surgical outcomes of borderline breast lesions detected by needle biopsy in a breast screening program. World J Surg Oncol 2010;8;8:78.
- 36. Grabenstetter A, Brennan S, Salagean ED, Morrow M, Brogi E. Flat epithelial atypia in breast core needle biopsies with radiologicpathologic concordance: is excision necessary? Am J Surg Pathol 2020:44:182-90.
- 37. Huang YY, Park H, McLaren S, Thirunavukkarasu P, Lin JTW, Rajakaruna R, et al. B3 lesion upgrade rates in a tertiary Australian breast centre: a 8-year experience (2012-2019). ANZ J Surg 2020;90:2521-6.
- 38. Hugar SB, Bhargava R, Dabbs DJ, Davis KM, Zuley M, Clark BZ. Isolated flat epithelial atypia on core biopsy specimens is associated with a low risk of upgrade at excision. Am J Clin Pathol 2019;151:511-5.
- 39. Ingegnoli A, d'Aloia C, Frattaruolo A, Pallavera L, Martella E, Crisi G, et al. Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate. Breast J 2010;16:55-9.
- 40. Khoumais NA, Scaranelo AM, Moshonov H, Kulkarni SR, Miller N, McCready DR, et al. Incidence of breast cancer in patients with pure flat epithelial atypia diagnosed at core-needle biopsy of the breast. Ann Surg Oncol 2013;20:133-8.
- 41. Kumaroswamy V, Liston J, Shaaban AM. Vacuum assisted stereotactic guided mammotome biopsies in the management of screen detected microcalcifications: experience of a large breast screening centre. J Clin Pathol 2008;61:766-9.
- 42. Kunju LP, Kleer CG. Significance of flat epithelial atypia on mammotome core needle biopsy: should it be excised? Hum Pathol 2007;38:35-41.
- 43. Lamb LR, Bahl M, Gadd MA, Lehman CD. Flat epithelial atypia: upgrade rates and risk-stratification approach to support informed decision making. J Am Coll Surg 2017;225:696-701.
- 44. Lavoué V, Roger CM, Poilblanc M, Proust N, Monghal-Verge C, Sagan C, et al. Pure flat epithelial atypia (DIN 1a) on core needle biopsy: study of 60 biopsies with follow-up surgical excision. Breast Cancer Res Treat 2011;125:121-6.
- 45. Lee TY, Macintosh RF, Rayson D, Barnes PJ. Flat epithelial atypia on breast needle core biopsy: a retrospective study with clinicalpathological correlation. Breast J 2010;16:377-83.
- 46. Li X, Ma Z, Styblo TM, Arciero CA, Wang H, Cohen MA. Management of high-risk breast lesions diagnosed on core biopsies and experiences from prospective high-risk breast lesion conferences at an academic institution. Breast Cancer Res Treat 2021;185:573-81.

- 47. Liu C, Dingee CK, Warburton R, Pao JS, Kuusk U, Bazzarelli A, et al. Pure flat epithelial atypia identified on core needle biopsy does not require excision. Eur. J Surg Oncol 2020;46:235-9.
- 48. Lucioni M, Rossi C, Lomoro P, Ballati F, Fanizza M, Ferrari A, et al. Positive predictive value for malignancy of uncertain malignant potential (B3) breast lesions diagnosed on vacuum-assisted biopsy (VAB): is surgical excision still recommended? Eur Radiol 2021:31:920-7.
- 49. Maeda I, Kanemaki Y, Tozaki M, Koizumi H, Oana Y, Okanami Y, et al. Positive predictive value for malignancy of pure flat epithelial atypia diagnosis by percutaneous needle biopsy of the breast: management of FEA in ultrasonography. Breast Cancer 2015;22:634-40.
- 50. Mariscotti G, Durando M, Ruggirello I, Belli P, Caumo F, Nori J, et al. Lesions of uncertain malignant potential of the breast (B3) on vacuum-assisted biopsy for microcalcifications: predictors of malignancy. Eur J Radiol 2020;130:109194.
- 51. Martel M, Barron-Rodriguez P, Tolgay Ocal I, Dotto J, Tavassoli FA. Flat DIN 1 (flat epithelial atypia) on core needle biopsy: 63 cases identified retrospectively among 1,751 core biopsies performed over an 8-year period (1992-1999). Virchows Arch 2007;451: 883-91.
- 52. McCroskey Z, Sneige N, Herman CR, Miller RA, Venta LA, Ro JY, et al. Flat epithelial atypia in directional vacuum-assisted biopsy of breast microcalcifications: surgical excision may not be necessary. Mod Pathol 2018;31:1097-106.
- 53. Miller-Ocuin JL, Fowler BB, Coldren DL, Chiba A, Levine EA, Howard-McNatt M. Is excisional biopsy needed for pure FEA diagnosed on a core biopsy? Am Surg 2020;86:1088-90.
- 54. Mooney KL, Bassett LW, Apple SK. Upgrade rates of high-risk breast lesions diagnosed on core needle biopsy: a single-institution experience and literature review. Mod Pathol 2016;29:1471-84.
- 55. Noël JC, Buxant F, Engohan-Aloghe C. Immediate surgical resection of residual microcalcifications after a diagnosis of pure flat epithelial atypia on core biopsy: a word of caution. Surg Oncol 2010:19:243-6.
- 56. Noske A, Pahl S, Fallenberg E, Richter-Ehrenstein C, Buckendahl AC, Weichert W, et al. Flat epithelial atypia is a common subtype of B3 breast lesions and is associated with noninvasive cancer but not with invasive cancer in final excision histology. Hum Pathol 2010;41:522-7.
- 57. Ouldamer L, Poisson E, Arbion F, Bonneau C, Vildé A, Body G, et al. All pure flat atypical atypia lesions of the breast diagnosed using percutaneous vacuum-assisted breast biopsy do not need surgical excision. Breast 2018;40:4-9.
- 58. Peres A, Barranger E, Becette V, Boudinet A, Guinebretiere JM, Cherel P. Rates of upgrade to malignancy for 271 cases of flat epithelial atypia (FEA) diagnosed by breast core biopsy. Breast Cancer Res Treat 2012;133:659-66.
- 59. Piubello Q, Parisi A, Eccher A, Barbazeni G, Franchini Z, Iannucci A. Flat epithelial atypia on core needle biopsy: which is the right management? Am J Surg Pathol 2009;33:1078-84.
- 60. Polom K, Murawa D, Murawa P. Flat epithelial atypia diagnosed on core needle biopsy-Clinical challenge. Rep Pract Oncol Radiother 2012;17:93-6.
- 61. Preibsch H, Wanner LK, Staebler A, Hahn M, Siegmann-Luz KC. Malignancy rates of B3-lesions in breast magnetic resonance imaging - do all lesions have to be excised? BMC Med Imag 2018; 10;18:27.

- 62. Prowler VL, Joh JE, Acs G, Kiluk JV, Laronga C, Khakpour N, et al. Surgical excision of pure flat epithelial atypia identified on core needle breast biopsy. Breast 2014;23:352-6.
- 63. Rageth CJ, O'Flynn EAM, Pinker K, Kubik-Huch RA, Mundinger A, Decker T, et al. Second International Consensus Conference on lesions of uncertain malignant potential in the breast (B3 lesions). Breast Cancer Res Treat 2019;174:279-96.
- 64. Rajan S, Sharma N, Dall BJ, Shaaban AM. What is the significance of flat epithelial atypia and what are the management implications? J Clin Pathol 2011;64:1001-4.
- 65. Rakha EA, Lee AH, Jenkins JA, Murphy AE, Hamilton LJ, Ellis IO. Characterization and outcome of breast needle core biopsy diagnoses of lesions of uncertain malignant potential (B3) in abnormalities detected by mammographic screening. Int J Cancer 2011:129:1417-24.
- 66. Richter-Ehrenstein C, Maak K, Röger S, Ehrenstein T. Lesions of "uncertain malignant potential" in the breast (B3) identified with mammography screening. BMC Cancer 2018;18:829.
- 67. Saladin C, Haueisen H, Kampmann G, Oehlschlegel C, Seifert B, Rageth L, et al. Lesions with unclear malignant potential (B3) after minimally invasive breast biopsy: evaluation of vacuum biopsies performed in Switzerland and recommended further management. Acta Radiol 2016;57:815-21.
- 68. Sohn V, Porta R, Brown T. Flat epithelial atypia of the breast on core needle biopsy: an indication for surgical excision. Mil Med 2011;176:1347-50.
- 69. Solorzano S, Mesurolle B, Omeroglu A, El Khoury M, Kao E, Aldis A, et al. Flat epithelial atypia of the breast: pathologicalradiological correlation. AJR Am J Roentgenol 2011;197:740-6.
- 70. Srour MK, Donovan C, Chung A, Harit A, Dadmanesh F, Giuliano AE, et al. Flat epithelial atypia on core needle biopsy does not always mandate excisional biopsy. Breast J 2020;26:679-84.
- 71. Tozbikian G, George M, Zynger DL. Diagnostic terminology used to describe atypia on breast core needle biopsy: correlation with excision and upgrade rates. Diagn Pathol 2019;29;14:69.
- 72. Uzoaru I, Morgan BR, Liu ZG, Bellafiore FJ, Gaudier FS, Lo JV, et al. Flat epithelial atypia with and without atypical ductal hyperplasia: to re-excise or not. Results of a 5-year prospective study. Virchows Arch 2012;461:419-23.
- 73. Villa A, Chiesa F, Massa T, Friedman D, Canavese G, Baccini P, et al. Flat epithelial atypia: comparison between 9-gauge and 11-gauge devices. Clin Breast Cancer 2013;13:450-4.
- 74. Weinfurtner RJ, Patel B, Laronga C, Lee MC, Falcon SL, Mooney BP, et al. Magnetic resonance imaging-guided core needle breast biopsies resulting in high-risk histopathologic findings: upstage frequency and lesion characteristics. Clin Breast Cancer 2015;15: 234-9.
- 75. Winer LK, Hinrichs BH, Lu S, Hanseman D, Huang Y, Reyna C, et al. Flat epithelial atypia and the risk of sampling error: determining the value of excision after image-guided core-needle biopsy. Am J Surg 2019;218:730-6.
- 76. Yamaguchi R, Tanaka M, Tse GM, Yamaguchi M, Terasaki H, Akiba J, et al. Pure flat epithelial atypia is uncommon in subsequent breast excisions for atypical epithelial proliferation. Cancer Sci 2012:103:1580-5.
- 77. Yu CC, Ueng SH, Cheung YC, Shen SC, Kuo WL, Tsai HP, et al. Predictors of underestimation of malignancy after image-guided core needle biopsy diagnosis of flat epithelial atypia or atypical ductal hyperplasia. Breast J 2015;21:224-32.

- 78. D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA. ACR BIRADS atlas, breast imaging reporting and data system, 5th ed. Reston, VA: NAmerican College of Radiology; 2013.
- 79. Wahab RA, Lee SJ, Mulligan ME, Zhang B, Mahoney MC. Upgrade rate of pure flat epithelial atypia diagnosed at core needle biopsy: a systematic review and meta-analysis. Radiol Imag Cancer 2021;22:200116.
- 80. Heller SL, Elias K, Gupta A, Greenwood HI, Mercado CL, Moy L. Outcome of high-risk lesions at MRI-guided 9-gauge vacuumassisted breast biopsy. AJR Am J Roentgenol 2014;202:237-45.
- 81. Dialani V, Venkataraman S, Frieling G, Schnitt SJ, Mehta TS. Does isolated flat epithelial atypia on vacuum-assisted breast core biopsy require surgical excision? Breast J 2014;20: 606-14.