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Abstract: There are many systematic errors in the precise
levelling measurements. The most of them we have studied
and their impact on the final accuracy of levelling is solved
by appropriate corrections. The main objective of the current
article is to reveal the greatest systematic error in the proces-
sing of levelling data, i.e., the use of only the averages of the
fore and the back measurements of the elevations in levelling
lines as initial data in the adjustment of the highest order
levelling networks. Regardless of the type of distribution,
simulations of random paired samples reveal that the
averages of each pair only up to 33% of all cases are more
closely located to the known theoretical expectation with
respect to their parents. This fact implies that the collected
data are not processed in the best way. In order not to lose
information, we adjusted a reduced network of the Third
Precise Levelling of Finland network in all possible combina-
tions by the use of the fore, the back, and the mean of each
line elevation. As a result, the final accuracy increases more
than 10 times in comparison to an adjustment with the use of
the averages only.
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1 Introduction

In many scientific and practical tasks, we measure dif-
ferent physical quantities to understand natural processes
or solve some engineering problems. In the interest of
increasing the accuracy of results, we usually measure a
single quantity more than once. Suppose that we measured
n times a single quantity with equal accuracy. As a result,

we can obtain a plausible estimator of this quantity such as
the average of these measurements. If X1, X2, …, Xn are our
independent observation results, we can calculate their
average X̅ by equation (1).
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If the standard deviation of a single measurement is σ,
we can express the standard deviation σ X̅

of the average X̅

by equation (2) (Dekking et al. 2005).
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According to equation (2), when n → ∞, then the stan-
dard deviation σ X̅

of the average X̅ tends to be zero. There-
fore, when the number of measurements n → ∞, then the
value of the average X̅ tends to be the true value of the
determined quantity X. Let us illustrate this theory with a
simple example.

Suppose that we measured n times a levelling loop
with a length of 1 km. The standard deviation of each mea-
surement is σ = 1 mgpu/ km . Because we start and end at
the same point, we should have closing errors equal to 0
mgpu. In fact, we obtain closing errors with different
values and signs. These values usually vary in the range
from –3σ to +3σ. However, if we increase the number of
measurements n, the average of these n measurements
tends to the theoretical value of the closing error, which
is 0 mgpu. Figure 1 illustrates this process.

According to Figure 1, some stabilization of the
averages in respect to the true value of closing error is
possible when n > 30 observations. That is to say, we
need more than 30 independent measurements of a single
quantity, if we want to be sure about the plausibility of the
average of these n measurements (Dekking et al. 2005,
Montgomery and Runger 2014, Cvetkov 2023c). However,
the precise levelling is an expensive and a time-consuming
activity. Due to this fact, we usually measure each line
elevation in precise levelling lines twice in two opposite
directions (Kääriäinen 1966, Saaranen et al. 2021). The basic
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idea behind the second measurement of elevations in the
precise levelling is to avoid gross errors in observations. In
other words, we do the second measurement to control
uncertainties in measurements rather than some signifi-
cant increase in the accuracy of their averages. If the stan-
dard deviations of both measurements are σ, then on the
basis of equation (2), we can write the standard deviation
of their average equation (3).

= ≈σ
σ

σ
2

0.707 .X̅

(3)

In other words, the standard deviation of an average
of two measurements is 1.4 times less than the standard
deviation of each measurement. However, the average of

only two measurements is quite unstable and may be
further from the true value of the measured quantity
than either of parent measurements. According to Figure 1,
the average of the first and the second closing errors of
our example-levelling loop is −0.6 mgpu. This value is far
away from the theoretical value of 0 mgpu, if we assume
that the standard deviation of our measurements is
σ = 1 mgpu/ km .

Figure 2 shows an additional example about the “remo-
teness” of the average of two independent observations and
their average from a known true value of a quantity.

It is a well-known fact that the closing errors in level-
ling loops are true errors, whose values are known earlier.
The red dots in Figure 2 present the closing errors in mgpu
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Figure 1: The averages of n independent measurements of levelling loop with a length of 1 km. All measurements have standard deviation
σ = 1 mgpu/ km .
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Figure 2: The closing errors in the Third Precise Levelling of Finland in 1978–2006. At the beginning of the Third Levelling, the maximum accepted
difference between the back and forth measurements was 1.6 L mm. Since the late 1980s, the limit was 2 L mm, which is a standard deviation of ±
1.0 mm/ km (Saaranen et al. 2021, p. 25).
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of 28 loops in the Third Levelling of Finland network (Saar-
anen et al. 2021), which we denote by the “mean.” The blue
square dots and the orange triangle dots are closing errors
of the same loops, but calculated in clockwise and counter-
clockwise directions in correspondence with the heading
of the lines in Table 2. We calculated their values based on the
information in Appendix C, columns 5–11, as presented in the

study by Saaranen et al. (2021). Each “mean” closing error is
the average of the “clockwise direction” and the “counterclock-
wise direction”measurements. Since the “clockwise direction”
and the “counterclockwise direction” are closing errors, they
are true errors, whose values are known earlier. Thus, we can
assess for each loop, and this measurement has the least
closing errors among the “clockwise direction,” the “counter-
clockwise direction,” or the “mean.” It is obvious that in half of
the loops, the “mean” closing errors are not the least ones. This
fact implies that we do not use themost appropriate data in the
adjustment of the precise levelling networks.

All the aforementioned facts provoke the author to
search for factual answers to the following questions:
• How often is the average of two random observations
from a predefined distribution more closely located to
the theoretical expectation in comparison to its parents?

• Do the averages of both measurements of the heights
between terminal benchmarks of levelling lines in a pre-
cise levelling network minimize the closing errors in this
network?

• Could standard errors of the adjusted geopotential num-
bers of all benchmarks in a national the highest order
geometric levelling network to be smaller than 2 mgpu?

• Can we reduce the number of lines in a levelling network
without lack of accuracy?

Table 2: Summarized data about levelling lines, their length, differences I and II between geopotential numbers of the start and the end line
benchmarks, and the averages of both measurements I and II

Height differences* Mean

Line Distance I II (( ++ ))I II /2

(km) (mgpu) (mgpu) (mgpu)

Kauklahti-Noormarkku 363.778 35284.13 35231.27 35257.70
Noormarkku-Jyväskylä 257.280 42172.85 42164.91 42168.88
Kauklahti-Vaajakoski 337.837 80998.47 81017.91 81008.19
Jyväskylä-Vaajakoski 4.836 3580.65 3581.17 3580.91
Vaajakoski-Särkisalmi 239.680 −16433.88 −16399.66 −16416.77
Kauklahti-Särkisalmi 397.821 64603.73 64598.05 64600.89
Noormarkku-Ylivieska 490.659 21623.15 21533.81 21578.48
Haapajärvi-Ylivieska 64.685 −40398.99 −40415.51 −40407.25
Jyväskylä-Haapajärvi 201.790 19778.81 19749.75 19764.28
Haapajärvi-Ammänsaari 302.491 94304.50 94322.86 94313.68
Sarkisalmi-Ammänsaari 513.336 126924.65 126920.11 126922.38
Ylivieska-Oulu 129.545 −57206.60 −57204.58 −57205.59
Oulu-Kuusamo 254.097 257863.35 257827.31 257845.33
Ammänsaari-Kuusamo 173.309 65926.36 65930.36 65928.36
Oulu-Muonio 434.562 237884.45 237875.21 237879.83
Kuusamo-Sodankylä 266.298 −91600.12 −91656.04 −91628.08
Sodankylä-Inari 210.199 −54031.64 −54184.14 −54107.89
Muonio-Inari 255.329 −125752.04 −125707.40 −125729.72

*The values of the I and the II measurements we calculated based on the information given in Appendix C, columns 5–11 in the study by Saaranen
et al. (2021). All height differences contain rod metre, refraction, and temporal tidal and land uplift corrections.

Table 1: Names, notations with parameters, theoretical expectations,
and standard deviations of the distributions, which we used in our
research

Distribution Notation with
parameters

Expectation Standard
deviation

usp* usp*
Normal N(0, 1) 0.00 1.00
Uniform U(0, 1) 0.50 0.29
Contaminated
normal

CN(0.9, 3) 0.00 Undefined

Laplace Lp(0, 1) 0.00 1.41
Student’s t t(4) 0.00 1.41
Beta B(3, 2) 0.40 0.20
Snedecor’s F F(40, 40) 1.05 0.12
Exponential E(1) 1.00 1.00

*A unit distribution scale parameter.
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2 Simulations and a real data test

In this section, we briefly describe the simulations that we
executed to investigate how often the averages of two
random observations, derived from predefined distribu-
tions with known parameters, are more closely located to
the known expectation of the distributions in comparison
to their parents. Assuming that the true error of either of
the parent observations is less than the true error of their
mean, we adjusted the part of the Third Precise Levelling
of Finland in all possible combinations. In these adjust-
ments, we used not only the average values of the mea-
sured height differences between terminal benchmarks in
the levelling lines but also the height differences from both
measurements in opposite directions.

2.1 Simulations

To investigate how often the true error of an average of
two random observations is less than the true errors of its
parents, we generated two random samples of size 10,000
from a known distribution. Let us for clarity name these
samples as “I” and “II.” Taking those observations from
samples “I” and “II,” which have the same order, we
arranged 10,000 random pairs. We also calculated the
average of each pair. Thus, we formed 10,000 new random
samples. Each new sample includes three values, those of
two randomly generated numbers from samples “I” and
“II” and their mean. Since we had known the theoretical
expectation of the distribution, it was easy to count how
often each observation in any pair or their mean was near
the expectation. For example, suppose that we have two
random numbers from the standard normal distribution
where the expectation is equal to 0 and the standard devia-
tion is equal to 1, i.e., N(0, 1). Let their values be 2.1 and 0.5,
respectively. The mean of these values is the value 1.3 = (2.1
+ 0.5)/2. As a result, we have a sample of size 3, i.e., 2.1, 0.5,
and 1.3. Because |0.5 − 0| < |1.3 − 0| < |2.1 − 0|, we can
conclude that the true error of the random number with
value 0.5 is less than the true error of the other simulated
random number, namely, 2.1, and less than their average
equal to 1.3. Thus, sample “II” scores a point against the
sample of averages, which we named “mean,” the sample
“I.” To investigate the impact of the type of the applied
distributions on the analysed frequencies, we repeated
the aforementioned simulation by applying nine distribu-
tions with different scale and shape parameters. Table 1
presents the names, notations with parameters, theoretical
expectations, and standard deviations of these distribu-
tions (Montgomery and Runger 2014).

2.2 Real data

To investigate whether 3n independent adjustments of a
geometric levelling, based on the results from both measure-
ments of line elevations and their means, will produce better
results than the classic approach, we used a part of the data
from the study by Saaranen et al. (2021). Table 2 presents
summarized data about levelling lines, their length, differ-
ences I and II between geopotential numbers of the start
and the end line benchmarks, and the averages of both mea-
surements I and II. The symbol I means the levelling in the
direction of the heading of lines and the symbol II means the
opposite direction.

Figure 3 illustrates the scheme of the analysed net-
work, part of the Third levelling of Finland network. We
adjusted this network in four variants. Table 3 presents the
initial heights, which we used in each adjustment variant.
The datum level in our adjustments was the geopotential
number of the benchmark 2,183 in Kauklahti. To reproduce
results more closely to the official ones, we performed all
adjustments with weights inversely proportional to the
length of the levelling lines.
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Figure 3: Scheme of the investigated network, part of the Third levelling
of Finland network.
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Therefore, the initial heights in the adjustment in
Variant 1 are the mean values of both measurements of
the line elevations. The initial heights in the adjustment in
Variant 4 are those values from both measurements of the
line elevations or their means, which we selected by 318 =

387,420,489 independent adjustments of the analysed net-
work. The selection criterion was the minimum value of a
posteriori standard deviation.

3 Results

In this section, we present the results produced by the
simulations, which we described in Section 2.1. We also
present the results from adjustments of the precise level-
ling network shown in Figure 3, performed with the initial
data of Variants 1–4.

3.1 Simulation results

Figure 4 presents the frequencies of occurrence of the “I,”
the “II,” and their “mean” nearby the theoretical expecta-
tion, based on random values from known distribution.
According to Figure 3, the averages of two observations
rarely are more closely to the expectation in comparison

to their parent observations “I” and “II,” regardless of the
distribution.

Figure 5 compares the standard deviations of samples
“I,” “II,” “mean,” and the sample of the so-called the closest
values. “The closest” samples include those observations
in each pair or pair means, for which the absolute differ-
ence between them and the known theoretical expectation
is close to zero. Suppose that we have two random num-
bers from the standard normal distribution where the
expectation is equal to 0 and the standard deviation is
equal to 1, i.e., N(0, 1). Let the values of these numbers be
1.1 and 2.5, respectively. Thus, their mean is equal to 1.8 =

(1.1 + 2.5)/2. Because |1.1 − 0| < |1.8 − 0| < |2.5 − 0|, we will
include the value 1.1 in the sample of “the closest,” instead
of either 1.1 or 1.8.

According to Figure 5, the standard deviations of “the
closest” samples are approximately 1.5 times less than the
standard deviations of the “mean” samples.

3.2 Adjustment results

Table 4 illustrates the stepwise decreases of the closing
errors of the loops in the network, presented in Figure 2.
This process is the most obvious in the case of the circum-
ference of the network loop.

Table 3: Height differences between geopotential numbers in lines, which we used in the adjustment variants of the levelling network, presented in
Figure 3

Height differences in lines

Line Variant 1 (mgpu) Variant 2 (mgpu) Variant 3 (mgpu) Variant 4 (mgpu)

Kauklahti-Noormarkku 35257.70 35257.70 35257.70 35257.70
Noormarkku-Jyvaskyla 42168.88 42168.88 42168.88 42164.91
Kauklahti-Vaajakoski 81008.19 81008.19 81008.19 80998.47
Jyvaskyla-Vaajakoski 3580.91 3580.91 3580.91 3580.65
Vaajakoski-Sarkisalmi −16416.77 −16416.77 −16416.77 −16399.66
Kauklahti-Sarkisalmi 64600.89 64600.89 64600.89 64600.89
Noormarkku-Ylivieska 21578.48 21533.81 21533.81 21533.81
Haapajarvi-Ylivieska −40407.25 −40407.25 −40407.25 −40407.25
Jyvaskyla-Haapajarvi 19764.28 19764.28 19764.28 19778.81
Haapajarvi-Ammansaari 94313.68 94313.68 94313.68 94322.86
SArkisalmi-Ammansaari 126922.38 126922.38 126922.38 126920.11
Ylivieska-Oulu −57205.59 −57205.59 −57205.59 −57206.60
Oulu-Kuusamo 257845.33 257845.33 257845.33 257863.35
Ammansaari-Kuusamo 65928.36 65928.36 65928.36 65926.36
Oulu-Muonio 237879.83 237879.83 237879.83 237879.83
Kuusamo-Sodankyla −91628.08 −91628.08 −91628.08 −91628.08
Sodankyla-Inari −54107.89 −54107.89 −54107.89 −54107.89
Muonio-Inari −125729.72 −125729.72 −125752.04 −125752.04

Note: To facilitate the reader, we have bolded those values of the height differences in each variant, which are different from the previous one.
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Figure 6 illustrates the stepwise increase of the accu-
racy from Variants 1–4. According to Figure 6, the accuracy
of Variant 1, which is based on the established adjustment
approach of levelling networks, is approximately 2, 3, and
12 times less than the accuracy of Variant 2, Variant 3, and
Variant 4, respectively.

We calculated a priori accuracy µ on the basis of the
closing errors in Table 4 by equation (4).

∑⎜ ⎟=
⎛

⎝

⎞

⎠=
μ

n
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2
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where n is the number of loops. In our case, n = 7, φ
i
is the

closing error of loop i in mgpu, Fand i is the circumfer-
ence of loop i in km.

Figure 7 shows two important facts: (1) the decrease of
the standard errors of the adjusted geopotential numbers

of the benchmarks in the network (Figure 2) from Variants
1–4 and (2) the strong correlation (p = 0.99) between the
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Figure 4: The frequencies of occurrence of the first, the second observation, or their mean most closely to a known expectation of the applied
distributions.
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Table 4: The closing errors in mgpu of each loop presented by network
shown in Figure 2

Loop Circumference
(km)

Closing errors

Variant
1
(mgpu)

Variant
2
(mgpu)

Variant
3
(mgpu)

Variant
4
(mgpu)

I 963.731 −0.70 −0.70 −0.70 4.79
II 975.338 −9.47 −9.47 −9.47 −2.08
III 1014.414 52.57 7.90 7.90 −2.66
IV 1262.133 −8.56 −8.56 −8.56 0.57
V 924.127 −9.55 −9.55 −9.55 0.28
VI 1420.485 40.75 40.75 18.43 0.41
The
Outer

3234.836 65.04 20.37 −1.95 1.31

0.88

0.48

0.28

0.07

0.83

0.49

0.31

0.07

0.00

0.20

0.40

0.60

0.80

1.00

Variant 1 Variant 2 Variant 3 Variant 4

L.upg
m ni snoitaive

D dradnatS
-0

.5

A Priori A Posteriori

Figure 6: A priori and a posteriori accuracy of each variant in mgpu/ L .
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standard errors of the adjusted geopotential numbers of
the benchmarks and their remoteness from the datum
benchmark in Kauklahti.

Figure 8 shows differences among the adjusted geopo-
tential numbers of the benchmarks in the analysed net-
work, yielded by Variants 1–4 and their official values
(Saaranen et al. 2021). Looking at Figure 8, we can detect
the presence of an upward tilt from the south to north.

4 Discussion

The first aim of the current article was to highlight the
behaviour of the averages of two random observations of

positioning around the theoretical expectation under the
assumption that we know their distribution. There are
situations, where both observations are greater than the
expectation. There are cases when both observations are
smaller than the expectation. There are pairs, where either
of the observations is very close to the expectation, but the
other observation is far from the expectation. All these cases
are shown in Figure 2. According to the results presented by
Section 3.1, the aforementioned cases are approximately 70%
of all possible combinations of grouping of averages and their
parents around the expectation of distributions, regardless
of the parameters and type of distributions. In all those cases,
the average of two random observations is further located
to the expectation in comparison to either of its parents. Thus,
the true error of such average is greater than the true error of
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Figure 7: Benchmark standard errors, derived in Variants 1–4. The numbers in the brackets are the distances to the datum point in km, measured
along the shortest route.
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Figure 8: Differences among the official values of the adjusted geopotential numbers of some benchmarks and the geopotential numbers of the same
benchmarks, derived in Variants 1–4. The numbers in the brackets are the distances to the datum point in km, measured along the shortest route.
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either of its parents. Actually, the true error of the average of
a random pair of observations is less than the true errors of
each observation in the pair in almost 30% of all cases. All
those facts show that there are better approaches for data
processing, when we have paired observations.

Let us look at the standard deviations of the simulated
samples, presented in Figure 5. The standard deviations of the
samples, constructed by the averages, are 1.4 times less than
the standard deviations of their parent samples, regardless of
the distribution. This fact fully supports equation (3).

Regardless of the fact that distributions included in
Table 1 have different standard deviations, which depend
on the specific parameters of any distribution, the ratios
between the standard deviations of the samples of means
and the sample of “The Closes” are approximately equal to
1.5. This fact is valid for each distribution, which we gen-
erated in our simulations. In addition, we do not know the
real distribution of precise levelling observations neither if all
observations in levelling lines come from the same distribu-
tion. Therefore, we cannot make any reasonable assumptions
about the expectation of the averages of the fore and the back
measurements in the precise levelling lines. Thus, if we use all
available measurement data, we will obtain higher accuracy
and results that are more plausible than with the use of the
averages only.

The second question, which we raised in Section 1, was
whether the averages of the fore and the back measure-
ments of the heights in a precise levelling network mini-
mize the closing errors in this network. The simple answer
is no. Some of the scientific and probabilistic reasons are
explained earlier in this article. The adjustment of the
reduced network of the Third Levelling of Finland network
(Figure 2) fully supported the simulation results.

Replacing the average values of the elevations in the
lines Noormarkku – Ylivieska and Muonio – Inary by those
values, obtained by their back and fore measurements,
respectively, led to a significant increase in the accuracy
of the network. According to Table 4, the use of the differ-
ence between the geopotential numbers of benchmarks in
Noormarkku and Ylivieska, obtained by the back measure-
ment, decreased the closing error of the third loop in the
network in Figure 2 from 52.57 to 7.90 mgpu. In addition,
the closing error of the outer loop in the network dropped
from 65.04 to 20.37 mgpu.

Replacing the average value of the elevation in the line
Muonio – Inary by the elevation value, obtained by the fore
measurement of this line, reflected on decreasing the
closing error of the sixth loop in the network in Figure 2
from 40.75 to 18.43 mgpu. In addition, the closing error of
the outer loop in the network fell down from 20.37 mgpu in
Variant 2 to −1.95 mgpu in Variant 3.

Because of the only two replaced averages, the a priori
accuracy collapsed from 0.88 mgpu/√L in Variant 1 to 0.28
mgpu/ L in Variant 3, which is more than three times
increase of the network accuracy. By the way, the official a
priori accuracy of the Third Levelling of Finland (Saaranen
et al. 2021), calculated by the closing errors of 29 loops, is
0.86mm/√L.

According to Table 4 and Figures 6 and 7, the process of
increasing in the adjustment accuracy from Variant 1
through Variants 2 and 3 to Variant 4 is obvious and clear.
A posteriori accuracy dropped from 0.83 mgpu/ L in Var-
iant 1 to 0.07 mgpu/ L in Variant 4. The median value of
the standard errors of the adjusted geopotential numbers
in Variant 1 is 14.30 mgpu, but 1.15 mgpu in Variant 4. The
maximum values of the standard errors of the adjusted
geopotential numbers in Variant 1 and Variant 4 are
20.49 and 1.64 mgpu, respectively. Thus, we have given
answers to the third and the fourth questions in Section
1. We can reduce the number of lines in a levelling network
without any lack of accuracy. In addition, the standard
errors of the adjusted geopotential numbers of all nodal
benchmarks in a state levelling network, even if some
benchmarks are located more than 1,500 km far away
from the datum point, are possible to be below 2 mgpu.

The main aim of data proceeding approaches and algo-
rithms is to produce results that are more plausible. Since
the standard deviations are criteria for uncertainty, i.e., for
plausibility of results, we give more trust to those results
with less standard errors. Thus, the results obtained in
Variant 4 are more credible than those of Variant 1.
Based on this assumption, the adjusted geopotential num-
bers of the analysed here network reveal a trend of sys-
tematic increase of their values from Variant 4 to Variant 1
and official results, presented by the study by Saaranen
et al. (2021), from south to north. Figure 8 illustrates this
trend. The main reason for tilting of network upward in
Variant 1 in comparison to the other variants is the use of
averages of both measurements of the line elevations in
the adjustment. We can see that in the main part of the
network, the differences between the adjusted geopotential
numbers of benchmarks from Variant 1 and the official
ones are in the range of their standard errors. However,
the differences between the adjusted geopotential num-
bers by Variant 4, Variant 3, and Variant 2 from one side
and Variant 1 and the official variant (Saaranen et al. 2021)
from the other are more than twice higher than their stan-
dard errors produced by Variant 4, Variant 3, and Variant
2, respectively.

Finally, all facts and results, which we discussed here,
are completely similar to the results presented by Cvetkov
(2023a,b).
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5 Conclusions

In this article, we presented the results of simulations of
random paired samples from nine distributions to investi-
gate the frequencies of positioning of the averages of
random pairs nearby the preliminarily known expectation.
On the basis of the results of these simulations, we adjusted
a reduced network of the Third Levelling Network of
Finland in four variants. Based on the results from simula-
tions and adjustments, the following conclusions we made:
• The average of two random observations from prede-
fined distribution is more closely located to the theoretical
expectation in comparison to both its parents between 25
and 33% of all cases. The actual frequency depends on the
distribution of the pairs or more precisely on the shape of
the distribution. In the case of a peaked distribution like the
Laplace (0,1) distribution, we found that the average of two
observations is only 25% nearby the theoretical expectation
than each of its parent observations. In the case of the
Uniform (0,1) distribution, the frequency of occurrence of
the average nearby the expectation is approximately 33%.

• Because of the facts, explained in the aforementioned
point, the averages of the fore and the back measure-
ments of the heights/geopotential units in a precise level-
ling network do not minimize the closing errors in this
network. Only one or two bad fore or back measure-
ments of the line elevations can deteriorate significantly
the adjustment results and the network accuracy (Cvetkov
2023a,b).

• Applying adjustments with all available data is a compu-
tational expensive approach. However, the power of
modern super computers reveals a new opportunity,
unthinkable even a decade ago. Nowadays, we have a
greater capacity to analyse data without any simplification
and loss of information, especially when we talk about the
averages of two observations. Such an approach will be
fruitful. Applying adjustments in all combinations, wemini-
mized the standard errors of the adjusted geopotential
numbers of all benchmarks in a reduced network of the
Third Precise Levelling of Finland network up to 1.64 mgpu.
The median of the standard errors is equal to 1.15 mgpu.
Thus, we obtained the geometric levelling accuracy of a
national vertical network unachievable by other levelling
methods (Apollo et al. 2023, Nsiah Ababio and Tenzer 2022,
Tanaka and Aoki 2022, Peneva and Georgiev 2010).

• The adjustment of the geometric levelling network in 3n

independent combinations is a computational expensive,
but saves field measurements and therefore, is a cheap
approach. In this article, we used less than 2/3 of all data in
the Third Precise Levelling of Finland, but we received
accuracy approximately 10 times greater than the accuracy

announced by Saaranen et al. (2021). This fact reveals some
important future roles of the geometric levelling of the
highest order. The first one is to be a backbone of networks
of Global Navigation Satellite Systems permanent stations
(Borowski, 2015, Apollo et al. 2023) or networks of atomic
clocks. The second role is to be used for verification of the
results, yielded by other levelling methods.
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