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Abstract: This note presents formulas to evaluate a spherical
harmonic model of Earth’s gravitational potential for essen-
tial gravimetric quantities without spherical and linear
approximation. Typically, 10–13 significant digits of numer-
ical accuracy for such computations are obtained over the
globe using EGM2008 with FORTRAN 77 code that is also
provided.
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1 Introduction

Gravimetric quantities are defined as physical quantities
related to Earth’s gravitational field that can be measured
directly. To illustrate their corresponding evaluation using
a spherical harmonic expansion (SHE) of the field, consider
the geodetically relevant quantities, the magnitude of gravity,
the components of the deflection of the vertical (DOV),
and the normal height. Gravity magnitude is measured by a
gravimeter; deflection components are determined by mea-
suring astronomic coordinates at a point; and the normal
height follows immediately from measurements of geopoten-
tial differences (formulas are provided in Section 2). In all
cases, the global three-dimensional coordinates of the mea-
surement point must be known, which today is easily
achieved by tracking satellites of a Global Navigation
Satellite System, such as GPS (Global Positioning System).

Several approximations are usually introduced in order
to make the development of an SHE from gravimetric data
reasonably tractable. Although the development of the best
such models incorporates appropriate corrections to these
approximations, one often reverts to these approximations

when using the models to compute the measured quantities.
Usually, such computations are based on their relationships
to the disturbing potential (e.g., Ivanov et al. 2018) and thus
are corrupted by spherical and/or linear approximations.
Generally, the spherical approximation error is of the order
of Earth’s flattening times the disturbing (or anomalous)
quantity being computed, while the linear approximation
error is usually less and of the order of the square of the
disturbing (or anomalous) quantity. The present discussion
concerns evaluating the actual measured quantity using
an SHE without these usual approximations. This permits
direct comparison of the model with measured data, thus
enabling a more direct evaluation of the accuracy of the
model, assuming that the formulation of the model is exact.
That is, the only assumed model error is due to errors in the
estimation of the model parameters, which includes the fact
that only a finite number of parameters, from the theoreti-
cally infinite set, can be estimated. The effect of these model
errors on the computed quantities is outside the scope of
this report, but it is worth knowing that these are the only
errors that could affect the computed quantities and that
spherical and linear approximations are absent.

The basic SHE for Earth’s gravitational field as a finite
series of spherical harmonic functions for the gravitational
potential, V , is given in spherical polar coordinates, θ λ r, , ,
by
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where θ is the co-latitude of the evaluation point, λ is its
longitude, and r is its radius;GM is the product of Newton’s
constant of gravitation and Earth’s total mass (including
the atmosphere); R is a specified constant radius; and the
constants, Cn m, , are real coefficients associated with the
spherical harmonic functions, Y θ λ¯ ,n m, ( ), defined by
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where P̄n m, is a fully normalized associated Legendre func-
tion of the first kind. The normalization is such that the
spherical harmonic functions are orthonormal on the unit



* Corresponding author: Christopher Jekeli, Division of Geodetic
Science, School of Earth Sciences, Ohio State University, Columbus, Ohio,
43210, United States, e-mail: christopher.jekeli@gmail.com

Journal of Geodetic Science 2024; 14: 20220161

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/jogs-2022-0161
mailto:christopher.jekeli@gmail.com


sphere. The gravity potential,W , is the gravitational poten-
tial plus the centrifugal potential due to Earth’s rate of
rotation, ω

E
,

= +W θ λ r V θ λ r ω r θ, , , ,
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The disturbing potential is then defined with respect to
a normal gravity potential, U , by = −T W U . The normal
gravity potential is generated by a co-rotating normal
spheroid that is also an equipotential surface of the normal
gravity field ( =U U

0
). Details of these definitions may be

found in the textbook by Hofmann-Wellenhof and
Moritz (2005).

2 Gravimetric quantities

The geopotential number is defined by

= −C θ λ r W W θ λ r, , , , ,

W
0

0 ( ) ( )( ) (4)

where W
0
is the gravity potential that (regionally or glob-

ally) defines the geoid (a vertical datum). The geopotential
number, CP

W
0

( ), at a point, P, can be measured using its
equivalent definition as a line integral in a conservative
field,
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where = −∂ ∂g W ν/ is the component of gravity in the
direction of the gradient of W .

Having measured the geopotential number at a point,
the dynamic height follows immediately,
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where γ
0

is a constant value of gravity that transforms the
units of the geopotential number from (m2/s2) to (m). A
more geometrical height, the normal height, associated
with P and relative to the vertical datum defined by W

0
,

is given by
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where ′γ̄
P
is the average value of normal gravity along the

normal plumb line between the telluroid point, ′P , and the
normal spheroid. A formula that requires only the normal
gravity, γ

P
0

, on the normal spheroid is given by a truncated
series (Hofmann-Wellenhof and Moritz 2005, p. 168).
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where =m ω a b/GM
E

2 2 , and the parameters, a b f, , , GM,
belong to the normal spheroid. The last term in the outside
parentheses is less than < × −H a/ 2 10P

⁎ 2 6( ) for all topo-
graphic elevations; and thus, the relative accuracy of equa-
tion (8) is of the order of ≃ × −H a/ 3 10P

⁎ 3 9( ) , which
is two orders better than millimeter accuracy in the
normal height. This is better than the linear approximation
inherent in the relationship of the normal height to the
disturbing potential.
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where hP is the geodetic height above a defined geodetic
ellipsoid, and the second term on the right side is also
known as the height anomaly.

The gravity vector in the spherical coordinate system,
θ λ r, , , is the gradient of the gravity potential, W ,

∇∇=θ λ r W θ λ rg , , , , ,θλr( ) ( )( ) (10)

where the gradient operator for spherical coordinates is
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where the components of the centrifugal acceleration are
in the coordinate directions of θ λ r, , , respectively. The
partial derivatives of equation (1), needed in equation
(11), are readily expressed with respect to the longitude
and the radius. For the co-latitude, a formula for the deri-
vative of the associated Legendre function is given for

≤ ≤m n0 and ≥n 1 by Holmes and Featherstone (2002).
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The magnitude of gravity at a point (the quantity that
is measured) is simply

= gg θ λ r θ λ r, , , , .( ) ∣ ( )∣ (13)

The gravity anomaly and gravity disturbance then
follow immediately with an appropriate subtraction by
the normal gravity magnitude (Hofmann-Wellenhof and
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Moritz 2005). For the free-air gravity anomaly, the stan-
dard formula used for evaluating the corresponding SHE is
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which includes both the spherical and the linear approximations.
The deflection of the vertical (DOV) has various defini-

tions (Jekeli 1999); consider the Helmert definition, which
is the angle between the direction of gravity at a point and
the ellipsoid normal through that point for a given geodetic
ellipsoid (Figure 1). The north and east components, ξ and
η, can be determined with measurements of astronomic
latitude and longitude, Φ and Λ, respectively (Pick et al.
1973),
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where ϕ λ,
P P are the geodetic coordinates with respect to

the defined geodetic ellipsoid. The third-order terms may
be ignored; even the second-order term in equation (15) for
maximum deflection angles of ′1 is well below the observa-
tion accuracy of about ″0. 1 (Hirt et al. 2004) and is usually
neglected. In the local, south-east-up, geodetic coordinate
system defined with the up direction along the ellipsoid
normal (Figure 1), the gravity vector has components along

mutually orthogonal unit vectors, ψ̂ λ̂ ĥ, ,
P P P, where

= −ψ ϕ90° is the geodetic co-latitude,
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where δsψ and δsλ are differential elements in the south
and east directions, respectively, and δh is a differential
element in the up direction. Transforming from the sphe-
rical coordinate directions to the south-east-up directions
involves a rotation about the east axis by the angle,

−ψ θ
P P; therefore,
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From Figure 1, the components of the Helmert DOV
thus satisfy
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These are exact formulas, but the differences with
respect to the measurable quantities equations (15) and
(16) are negligible.

Figure 1: The components of the gradient of the gravity potential, drawn
such that the deflections of the vertical, ξ η, , are positive according to
equations (15) and (16).

The exact implementation of a spherical harmonic model for gravimetric quantities  3



These formulas differ from the standard formulas
used to evaluate the SHE for the DOV components,
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which contain spherical and linear approximations (Jekeli 1999).
Given the geodetic coordinates, ϕ λ h, ,

P P P , of a point, P,
its spherical coordinates are
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where = −e f f2

2 2 is the square of the first eccentricity of
the geodetic ellipsoid and = −N a e ϕ/ 1 sinP P

2 2 , where
a f, are the semi-major axis and flattening of the ellipsoid.
Thus, the gravimetric quantities, geopotential number, gravity
magnitude, and components of the DOV can be readily com-
puted from the SHE equation (1) using, respectively, equation
(4), equations (11) and (13), and equations (19) and (20).

3 Numerical precision of evaluating
the SHE

While the SHE-derived formulas for the gravimetric quan-
tities are exact, there remains the question of the

numerical precision of computing the SHE. This ques-
tion arises particularly as the model parameter, n

max
,

increases and the recursion formulas for the associated
Legendre function and its derivative tend to deteriorate in
precision. Using Fukushima’s extended-exponent algorithm
(Fukushima 2012), and a comparison of double and quad-
ruple precision in FORTRAN, the number of significant digits
in the double precision evaluation of the model, EGM2008

=n 2,190
max

( ) (Pavlis et al. 2012), over the full range of lati-
tudes is established. The reliability of FORTRAN quadruple
precision as a standard for comparison is verified by coding
the same evaluation in the programming language, Python,
using 32-digit arithmetic. Figure 2 shows the absolute relative
differences between the double and quadruple precision
values of the gravity magnitude and the DOV components
for geodetic latitudes from equator to pole. Better than 12
significant digits of accuracy are obtained for the gravity
and east deflection components, while generally 10 or more
significant digits are obtained for the north component (likely
because derivatives of the associated Legendre functions
are involved exclusively). In all cases, the numerical accuracy
of evaluating gravimetric quantities using EGM2008 as
described above is many orders of magnitude better than
the corresponding measurement accuracy.

Finally, it should be noted that the provided FORTRAN
code developed for these computations is designed for a
relatively small number of data points, commensurate
with the amount of data gathered with typical ground sur-
veys. It is not designed for efficiency in generating very
large grids of data. Of course, efficiency is a fluid concept
in view of ever-increasing computational capabilities. The

Figure 2: Absolute relative numerical accuracy in gravimetric quantities evaluated by EGM2008 =n 2, 190
max

( ).
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double precision values associated with Figure 2 were
achieved at an average rate of 0.25 s per point running in
a Microsoft Windows environment using the Microsoft For-
tran 77 compiler on a laptop with an Intel 8th generation i5
core processor running at 1.6 GHz and with 16 Gbytes of
random access memory (actual central processing unit
(CPU) time is vastly less).

4 Summary

A spherical harmonic expansion (SHE) of Earth’s gravita-
tional potential is used to formulate exact expressions for
gravimetric quantities, such as the geopotential number
(which leads immediately to the dynamic height and also
the normal height), the magnitude of gravity, and the com-
ponents of the deflection of the vertical. This contrasts with
the usual corresponding expressions derived from the SHE
that are corrupted by spherical and linear approximations.
Other quantities of interest, such as the gravity anomaly
and geoid undulation, can be derived from these expres-
sions, but only with additional assumptions. For example,
the geoid undulation requires an assumption on the mass-
density of the crust; and the free-air gravity anomaly typi-
cally requires a model for the vertical gradient of gravity.
Other quantities, such as the Molodensky gravity anomaly,
require only the three-dimensional definition of a normal
field. Further derivatives of the potential, such as the ele-
ments of the gradient tensor, follow similarly as derived
here. A FORTRAN program and sample output based on
the full EGM2008 model are given as supplemental material
that illustrates the computations for the basic quantities
discussed in this report. It is also demonstrated that such
computations (using the Fukushima extended-exponent algo-
rithm) yield aminimum of 9 significant digits, and typically 10
to 13, when using the full EGM2008 expansion.
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