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Abstract: The transformation of coordinates between dif-
ferent geodetic datums has been a common practice within
the geospatial profession. Relating different geodetic datums
mostly involves the use of conformal transformation tech-
niques, which could produce results that are not very often
satisfactory for certain geodetic, surveying, and mapping
purposes. This has been attributed to the inability of the
conformal models to resolve the lack (non-exhaustivity)
and the heterogeneity of double points existing within the
Algerian local geodetic networks. Indeed, the Algerian geo-
detic network is divided into two main zones completely
different in accuracy and points exhaustivity. The North
is better and well defined in precision; on the other hand,
the South is poorly defined because of the lack of hetero-
geneity of the points. Mathematical algebraic methods give
closed-form solutions to geodetic transformation problems,
requiring a high-level computer programming background.
In everyday usage, the closed-form solutions are much sim-
pler and have a higher precision than earlier procedures.
Thus, it can be predicted that these new solutions will find
their place in practice. The present work deals with an
important theoretical problem of geodesy: we are looking
for a mathematical dependency between two spatial sys-
tems using common pairs of points whose coordinates
are given in both systems. In geodesy and photogrammetry,
the most often used procedure to move from one coordinate
system to another is the 3D, seven-parameter similarity
transformation (Bursa-Wolf, Molodensky-Badekas, and
Helmert).
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1 Introduction

3D conformal transformations, also known as similarity trans-
formations (since conformal transformations preserve shape
and angles between vectors in space remain unchanged), are
commonly used in surveying, photogrammetry, and geodesy.
These transformations are necessary for the purposes of car-
tography, geodesy, and other topographical and cadastral
work when the coordinates are generally expressed in the
system in effect in a country. The present work consists of
developing a strategy of observation, processing double geo-
detic networks with a view to the comparison between the
different transformation models (Bursa-Wolf, Molodensky—
Badekas, 2D-multiple regression, etc.), and the realization
of a geographical coordinates planimetric conversion grid
between the WGS84 system and other national systems
like the Algerian North Sahara Datum (Kheloufi et al,
2009).

3D transformations are usually applied to convert
coordinates related to one geodetic datum to another;
this operation is commonly known as a datum transforma-
tion. In such applications, the rotations between the two 3D
coordinate axes are small (usually less than 1s of arc), and
certain approximations are used to simplify rotation matrices;
these simplified matrices are a common feature of the
Bursa—Wolf and the Molodensky-Badekas transformations.

The transformation of GPS data into the geodetic local
system, which is the basis of the mapping system in force in
every country and in which the results of geodetic work
must be expressed, requires knowledge of the passage
parameters with the use of a suitable model. The choice
of transformation model requires the availability of a
dataset known in each of the two systems.

The transformation is presented either in similarity
form nor under geographic formalism known as the
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Figure 1: Translations and rotations between two systems.

Molodensky model (Figure 1) or a bi-dimensional 2D affine
regression.

1.1 General shape of geodetic
transformation

Let I, ], K be the orthogonal base of system O, X, Y, Z and i, j,
k be that of system O, x, y, z

WehaveOM =X-T +Y-J +Z-Kin (0, X, Y, 2).

OM = x-

The vector OM has X, Y, and Z as components, which
are the orthogonal projections on OX, 0Y, and OZ.

?+y-7 +Z~Ein(0,x,y,z).

X=OM-T=(&-T+y-j +z-k)T

Y 0_’T=(x-T+y 7+z-?)-7 (4]

Z=0M - I?=(x-?+y ]_'+z-?)-1_().

Hence
g [fTITET
Yi=|i-J j-J k-J| Y] @
Z - =2 D - /o = 4
iK j- K k-K

2 Earlier development of
transformation formalisms
The names of the two transformations are an acknowledg-

ment to the authors Bursa (1962), Wolf (1963), Molodensky
et al. (1960), and Badekas (1969) of technical papers and
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reports on transformation methods related to the orienta-
tion of reference ellipsoids and 3D geodetic networks.
3D conformal transformations for single points are often
given in the vectorial form (Collilieux et al., 2016).
The two most commonly used 3D models (Molodensky
and Bursa) have the following global simplified formalism:
Molodensky-Badekas:

X=X+ T+ 1+ k)T +AR)X - Xo), &)
Bursa-Wolf:
X =T+ @1+Ak)(I+AR)X, @

where X is the coordinate vector in the target system, X
is the coordinate vector in the origin system, X, is the
coordinate vector of barycenter in the origin system, T is
the translation vector, AR is the variation of the two sys-
tems rotation, I is the identity matrix, and Ak is the scale
factor variation between metrics of the two systems, gen-
erally equal to zero, except in the case of projection from
spherical curved coordinates to planar topographical
surface.

The mathematical relationship can be written in such
a way as to be able to consider the transformation para-
meters as unknown and thus be able to estimate them.
Such a form is that we can estimate the transformation
parameters knowing the coordinates in both systems by
the following equation (Boateng, 2016):

Tx
Ty
Y| |1z
-z 0 x| |dk| 6)]
Ex
Ey
Ez

y

These two equations could not be obtained without
supposing some assumptions for a geodetic mathematical
hypothesis in order to lead to these canonical linear form-
alisms (equation (7)).

In the Molodensky formalism Molodensky (1960), the
computation of transformation parameters goes in general
through the barycenter coordinates written in both sys-
tems (Kheloufi, 2012):

YiiXi TiiX;
XO nn Xo nn
)_(’0 Y | = 2i=1% A 2i-1)) ©
Z() nn 29 nn
2i=1Zi 2i=1Zi
n n
Systemn®1 Systemn°2
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As a result, in matricial form, the Molodensky form-
alism for a set of n-points is as follows:

X-x) [LO0O0 X0 7z -3

X - % 00%0 % -3

X,-x| [1 00 X% 0 2z -3 TD'X
Yi-y 01 -z X Tz
L=y |(-101 0y -% X ak|, D
G-y | 010y -z0 x g"
Zl—Z1 0 01 i )71 - X 0 E)Z)
ZL-n| (0012 § -X%

Zn=2Z) 10 01 Z J, - % 0

where X;, ¥, and z; are the coordinates of the isobarycen-
ters in both systems (Novikova, 2020). This model (Molo-
densky-Badekas) is known as a Cartesian formalism and is
obtained by the introduction of a vector and an initial
point x, around which (E,, E,, E,) rotations are performed.
This point is generally considered an isobarycenter in both
coordinate systems Collier (2020). This model is often used
for local, wide-scale transformations (land survey, civil
engineering, etc.; equation (7)).

3 Some problems in
Molodensky-Badekas and
Bursa-Wolf transformations

In reality, the Molodensky transformation is described
as shown in Figure 2, where the centroid G is displaced
from O2 by translations ty, ty, and t; measured in the
directions of the X, Y, and Z axes of system 2 and
t,=[tx ty tz]} is the position of the vector of the cen-
troid. The mathematical relationship between the two
systems via this transformation is, in reality, more com-
plex than its final known form and is written as follows
(Zavoti and Kalmar, 2016):

X X - Xg
L=|Y|=|Y-Y|=5L-g. €)]
Zl, |Z-Z¢

The Figure 2 illustrates graphically the complexity and
differences in the implementation of the two 3D transfor-
mations relevant to the type of data (point coordinates)
and the expected accuracy as a function of the purpose
of the transformation.
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3.1 Adopted assumptions

Because the mathematical formalism differs in substance
and the geodetic network is not of the same type and size
(order 0-4), some assumptions are mandatory for an accu-
rate estimation of transformation parameters using either
3D or 2D models Helmert (1907), as shown below.

3.1.1 First assumption

By identifying the scalar products in a real nonlinear rota-
tion matrix, we obtain

= COSEy - cosE,
= CcoSE;- sinEy- sinEy - sinE, - cos Ey
= SinE; - sinEy + cosE;- sinE, - cos Ey
= sinE, - cosE,
= COSE;- COSEy+ SINE;- sinEy - sinEy

=-CcoSE;- SinEy+ sinE,- sinE, - cos Ex

= -sinE,

Cos Ey - sin Ey

SO AR o
T e T T T e

= cos Ey - cos Ey,

where E,, E,, and E, are rotations around the three axes
0X, 0Y, and OZ, respectively.

In this study, the third coordinate, the orthometric
height, would be assimilated as an ellipsoidal height, pro-
vided by satellite observation in the global navigation
satellites systems (GNSS) survey (Marcin, 2011). This assim-
ilation blemished the results considerably, but the assump-
tions made in this article have compensated for the lack of
data and corrected them (Ziggah et al., 2017).

In addition, the double point coordinates have been
attached to the last version of the terrestrial reference frame
built on the base of GNSS permanent stations. These stations
are dispatched all over the world, and their coordinates are
determined by considering crustal deformations and geody-
namics and processed by time series (Kheloufi, 2012).

Case in geodesy

Due to the construction of any two geodetic reference systems
are close to each other and the orders of magnitude of the
rotation angles are relatively small.
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The parameters involved in a transformation are sum-
marized as follows:
* The translations T, T, and T, are less than a few hun-
dred meters.
* The rotations E,, E,, and E, are of the order of a few
seconds of arc.

For small rotation angles, the rotation matrix may be
simplified by the approximations:

cos & =1

sin g, = g, (rad)

sing,, sing, = 0

From equations (4) and (5), we obtain the simple linear
form of the rotation matrix as in equation (9).
* The scale factor is close to unity; we can write that K=1+

6k and that &k < 0.000001.

The matrix became skew-symmetric and led us to con-
clude that this rotation matrix R (E,, E,, Ey) can be “linear-
ized” as follows:

1 -E E
R=|E, 1 ~-E ©)
-E, E 1

This late equation led to the previous writing of the linear
transformation formalism for both 3D models (Molodensky
and Bursa) in their rotation terms. In reality, the linearization
lightens and facilitates the resolution by ordinary least
squares (OLS) but causes a loss of precision due to concatena-
tion to certain orders of the trigonometric functions Taylor
development. One condition to recover the accuracy loss is to
develop a new formalism, modify the existing one, or use
high-quality data in processing (Navikova, 2020).

In this article, we are dealing with contesting, in one
hand the 3D models with 2D ones like multiple regression
equations (MRE’s) or geodetic lines and in other hand, we
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confront the different resolution methods such as non-
linear Levenberg—Marquardt (LM) and general linear least
square (LLS).

3.1.2 Second assumption

In equation (6), the three coordinates of the barycenter
should take into consideration the ponderation of every
point in the system instead of taking by default the unity
values; the equation above should be rewritten as follows
(equation (10)):

Y i1 PX; Y i1 Pix;
X PI P;
0 Xo
2l | = Y PY; 2yl = Z?zlpﬂ’i
112 [ T e | aw
ZO 1 ZO 1
n
2i=1PiZ; YiPizi
P; P;
Systemn°1 Systemn®2

where P; is the weight affected at every point in both sys-
tems. The ponderation is based on the influence of every
point on the system by its quadratic error precision. Thus,
the transformation deal with the centered reduced coordi-
nates of both systems in consideration and minimize the
effect of orientation by rotation around the barycenters.
An alternative transformation from Cartesian to geodetic
coordinates is considered in this study to face different
types of coordinate files to be transformed (Cartesian and
geodetic curved). For this purpose, a design derivative
matrix Asnxs is implemented in the code source, as illu-
strated in equation (1) of the Appendix (Soler et al., 2012).

3.1.3 Third assumption

In case the linear models do not respond to the error-mini-
mizing purpose of the transformation parameters, I have

P Zy

Figure 2: Illustration of Molodensky-Badekas barycenter and Bursa-Wolf transformation.
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chosen the nonlinear least squares method for performing
the equation system resolution adapted to our specific pro-
blem in order to avoid the accuracy loss due to truncation.

The LM is considered the most appropriate algorithm
to resolve this problem efficiently because it takes into
account the nonlinear aspect of formalism and is powerful
to perform the resolution of nonlinear regression problems
with a least squares stabilization parameter yy to improve
the behavior of the algorithms around the minima.

Like all nonlinear optimization methods, LM is itera-
tive. Initiated at the starting point X,, the method produces
a series of vectors Xj, X,, ... that converge toward a local
minima X" for a regression function F described as follows:

F(X + 6x) = F(X) + 6y, an
where | is the Jacobian of the function based on the first

derivative of F (OF /0X), hence, at each step, it is required to

find §x that minimizes the quantity:
1Y - FX + 80l = IY = F(x) - J&]. 12)

By resolving the equation above with §x as a solution
of nonlinear least squares, we have to bypass the embar-
rassing linearization passage and thus preserve the accu-
racy of the model.

4 Observations quality analysis in
the least squares adjustment

4.1 Variance factor estimation

The variance factor (a posteriori standard deviation) is
given by the following formula:

<

L, VP
GO= n p,

(13)

where n - p is the redundancy factor (number of degrees of
liberty of the problem), V is depending directly on 6¢.

Unity variance value estimation allows to provide
information relevant to the observations weight matrix
and residues vector (lacks in measures, errors of the
model, etc.) (Collilieux et al., 2016).

4.2 Residues and normalized residues
estimation

After geodetic network adjustment, the assessed solution y
allows us to compute the observation residues as follows:

V=A%-Y. (14
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The normalized residues u; are computed from the
following formula:

U; . (15)

In next step, the statstical analysis are shown as below:

4.2.1 Chi-squared test

The chi-squared test has the purpose of assessing a global
judgment about the conformity hypothesis of residue dis-
tribution with normal distribution.

Let )(f be considered as a sum of the distribution of
squares of r random normal-centered reduced variables
given by the following formula:

X=Xk (16)
i=1
with x; € N(0;1).
The probability density of this function is
1 r_
hy(x) = TG2" x x2 1 x exp|-=|forx >0, (17
h(x)=0 forx<0,
I'n)=(n-1)! forn €N,
and
1 1) @e\Jr
FH+E]=F[H+E]=W (18)

The test on zero assumption Hy (62 = 6¢) is performed
based on the threshold choice of probability noted a, (e.g.,
the value 0.05 means that the hypothesis is formulated so
that it has a 95% chance of being verified). The computa-
tion of y? values of )(12 and )(22 limits was performed using

the following formulas:
pro <x<xhH=1-a (19)
6t Vv'pv
2=(n-p)x = = , (20)
x*=m-p) g
2
¢ a
2+ Jhuprdr = 2, @)
0
2
%
(22)

a
X Ihn_p(r)dr =1- o
0

where g, and 67 represent, respectively, the variance factor
of a priori estimated variance.

If x> < x* < x}= hypothesis 6 = 6¢ is accepted (hypoth-
esis Hy). If the zero hypothesis is accepted (hypothesis H0), thus
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the adjustment is considered correct. This hypothesis rejection
is assimilated like an anomaly occurrence indicator (Plag,
2020). In this case, the causes are as follows:

* irrealistic observations ponderation;

* errors occurrence;

* residual systematism existence.

4.2.2 Student test

Student test is based on the determination of limits values
b, and b, of tolerance interval as follows:

b1,2=rﬁit-a, (23)

with ¢ as the critical value of Student distribution, given by
usual statistical tables. This value depends on redundance
n -1and probability threshold a (Akyilmaz, 2007). m and o
denote the means and standard deviation of the residues
vector, respectively. If a residues vector component does
not belong to the interval [b;, b,], the corresponding obser-
vation should be rejected.

4.2.3 Tau (t) test

Tau test consists of verifying the conformity of normalized
residues u; to the normal law centred reducted, with risca,
u; is it belonging to the interval N (0,1).
The distribution of Tau () can be derived from the
distribution of student using the following formula:
VNI - thg-
r= —— ndt ©24)
Ndl - 1 + t]%[dl—l
with Ndl (= n - 1) as the number of degree of liberty of
residues and t as the critical value of “Student” distribution.

DE GRUYTER

If a component u; of the vector of normalized residuals
satisfies the inequality: |u| > 7., where 7. is the critical
value of Tau following the probability threshold a, then
the corresponding observation must be rejected.

5 Statistical study and results
validation

For the validation purpose of this study, a set of 12 bench-
marks (points whose coordinates are known in both sys-
tems) from the zero-order North Algerian network (Figure
3) are used. Indeed, the results obtained by implementing
the 3D Molodensky—Badekas and Bursa—Wolf models show
how much the two methods are almost similar but differ
slightly in the triangular superior elements of variance—
covariance matrix (VCV) (Table 2).

The two global methods lead practically to the closed
results on residues except that the Molodensky—Badekas
formalism gives non-correlated parameters which means
that minimal variance is well reached in the case of
Molodensky-Badekas than Bursa—Wolf. Indeed the reduc-
tion of benchmark coordinates according to the centroid
(barycenter) ones mitigates the effect of rotation between
the two systems and thus decreases the errors over the
geodetic points positions (Hashemi et al,, 2013) and even
their root mean square (RMS) (Table 1). The VCV matrix in
Tables 2 and 3 clearly indicates the difference in precision
between Molodensky and Buras—-Wolf as displayed in bold,
higher variance values indicate less precise results. The
normal character denotes less correlation over the trans-
formation parameter errors, thus more precision in the
case of Molodensky-Badekas. In order to increase the
reliability of transformation parameters, another 2D form-
alism should be adopted and compared to the 3D ones to

Figure 3: Distribution of zero-order North Algerian network of used benchmarks set for algorithm validation.
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Table 1: Computed transformation parameters and their accuracies compared with Algerian parameters (Institut National de Cartography et de

Teledetection, INCT): a case of both formalisms (MB, BW)

Parameters Bursa-Wolf Molodensky-Badekas INCT official II
T (m) 76.0382 £ 0.0256 51.815 + 0.01670 209.36300

Ty (m) -46.4270 + 0.0247 -62.000 + 0.0121 087.81700

T (m) -114.334 + 0.0312 -106.000 + 0.03070 -404.61900

Sk (ppm) 1.4344 + 0.0261 1.6340 + 0.00216 1.4547220

& (s) -0.12494 + 0.0660 -1.40041 + 0.04820 -0.0046122

& (s) -0.4534 + 0.1067 2.50843 + 0.1300 —3.4784221
&(s) 0.0998 + 0.0668 -0.04657 + 0.0500 -0.5804847

Table 2: Correlation matrices of transformation parameters obtained by
two formalisms (MB and BW) with assumptions

Correlation matrix (Bursa-Wolf)

1 -0.402 -0.242 -0.591 -0.267 -0.790 0.602
-0.406 1 0.570 -0.236  0.785 0.290 -0.842
-0.242 0.578 1 -0.566 -0.259 0.728 -0.098
-0.491 -0.236 -0.566 1 -0.154 -0.817 0.576
-0.267 0.785 -0.259 -0.154 1 0.164 -0.408
-0.790 0.290 0.728 -0.817 0.164 1 -0.324
0.602 -0.842 -0.098 0.576 -0.408 -0.324 1
Correlation matrix (Molodensky-Badekas)

1 0.137 0.497 -0.099 -0.777  0.294 0.199
0.137 1 0.2.76 -0.744 0.464 0.0918  -0.108
0.497 0.276 1 -0.079 0.186 0.380 -0.430
-0.993 -0.734 -0.079 1 0.193 -0.710 0.278
-0.771 0.464 0.186 0.193 1 0.174 -0.415
0.294 0.095 0.382 -0.746 0.174 1 -0.266
0.199 -0.108 -0.433 0.278 -0.415 -0.266 1

Bold values are the more significant.

carry out the effect of the third dimension on the accuracy
of these parameters (Zavoti and Kalmar, 2016).

Among these most commonly used formalisms, we can
note multiple regression MREs, affine transformation, and
others. For this purpose, we have converted geographic

coordinates in both systems to Cartesian ones (Ligas and
Banasik, 2011).

Institute of Cartography and Remote Sensing (INCT)
undertook the computation of transformation parameters
over the same GNSS observation points (12 points in North
of Algeria) and found the values reported in Table 1.

The global RMS of these computations, which is approx-
imatively equal to 0.9288 m for translations and 0.143 s for
rotations for all components, is considered acceptable for
cartographic work. In comparison to the standard deviation
of INCT transformation parameters reported in the last
column of Table 1, the accuracy reached in our case seems
to be satisfactory (the maximum value was 0.03 m for Bur-
sa-Wolf in Z-translation). In the histogram of Figure 5, RMS
values of the determined parameters are far less than the
values of the adopted parameters (INCT) because, wherever
the method is used, it does not exceed 0.25m. The geo-
graphic transformation as “VEIS” formalism is converted
to a Cartesian one by the conversion of geographic coordi-
nates (Featherstone, 2008), (George, 1999).

In Table 2, it is well demonstrated that the number
of correlation coefficient values greater than half is 19
for the Bursa Wolf (BW) model and six for the Molodensky
Badekas (MB) model. It denotes that Molodensky—Badekas
formalism Astrom (2001), by introducing the barycenter,
decreases the correlations between the double points and

Table 3: Accuracies obtained by GLS resolution for two global models without assumptions compared to MRE’s

Model Component Minimum (m) Maximum (m) Mean (m) RMS (m)
Bursa-Wolf X -1.685 2.686 1.293 1.838

Y -1.221 1.164 0.697 0.834

z -2.144 1.307 0.461 1.018
Molodensky Badekas model X -1.957 0.407 -0.941 1.014

Y 1.242 0.541 0.602 0.413

z 2.120 2.019 -1.398 2.058
Multiple regression equations A -0.063 0.319 0.110 0.164

(o} -0.407 0.634 -0.164 0.366




8 —— Noureddine Kheloufi and Abdellatif Dehni DE GRUYTER
Table 4: Accuracies obtained by GLS resolution for two global models with assumptions compared to MRE’s
Model Component Minimum (m) Maximum (m) Mean (m) RMS (m)
Bursa-Wolf X -1.426 2.686 1.293 0.238

Y -0.301 1.164 0.697 0.434

z -1.491 1.307 0.461 1.018
Molodensky-Badekas model X -1.417 0.407 -0.841 0.801

Y 0.238 0.541 0.404 0.354

Z -2.033 2.019 -1.308 1.158
Multiple regression equations A -0.063 0.319 0.110 0.164

(] -0.407 0.634 -0.164 0.366

thus attenuates the propagation of errors on the transfor-
mation parameters. If a point is suspect or badly defined,
the reduction of its coordinates to those of the barycenter
is supposed to decorrelate the errors and thus reduce their
propagation.

5.1 Comparison between linear (general
least square, GLS) and nonlinear
adjustment (LM)

The comparison is not only limited to the use of transfor-
mation formalism but also concerns the adjustment tech-
nique used in relation to the type of problem to be resolved.
Indeed, we are sometimes faced with particular cases of
nonlinear systems that need special fitting techniques like
“Levenberg-Marquardt,” “Steepest Decent,” “Newton algo-
rithm” and many others (Ruffhead, 2020, 2021).

In this work, I have opted for LM to analyze and com-
pare its purpose with that of the linear method “GLS” as it

GRID INTERPOLATION SURFACE DE CORRECTION DE LONGITUDE
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occurs. As mentioned in the third assumption above, this
method does not take into consideration the linearization
problem and thus avoids truncation of the equation using
the Taylor development until certain order and no infor-
mation about the system would be lost, thus preserving the
accuracy of the results shown in Tables 3 and 4. Consid-
ering the Bursa-Wolf transformation as an example, the
equation can be written as follows:

L=>0AQ+ds)I+ U+t (25)

where [ =[X Y Zand L =[X Y Z]I,

ds is a very small quantity, and , = [ty ty 7]} is a vector
of translation between the two systems (Deakin, 2006).

The above equation is considered simultaneously for a
nonlinear process using the LM algorithm and a linear
one illustrated by GLS. In the following, we present the
comparison of results between the two fitting methods
for both transformations.

The Table 4 present the results of statistical analysis
for the global models and the multiple regression MRE’s
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Figure 4: Screenshot of the application interface including both techniques.
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algorithm. Table 3 concerns the generalized least squares,
and Table 4 shows the nonlinear fitting of the global (3D)
models. Globally, the RMS turn around the meters in the
worst case (>2.058 for Molodensky—Badekas) and less than
20 cm for the MRE’s model. This denotes the possibility of
improving the precision of position in the optimum case;
geodetic positioning sometimes needs sub-centimeter (geody-
namics and technical auscultation) as accuracy to be satisfied.
In Table 5, was reported the same models processed by LM
algorithm with resolving the equation (12), §x is thus a solution
of the nonlinear system applied for all models. For this pur-
pose, all models and both linear and nonlinear algorithms
have been implemented in the « Delphil0 » application
(Figure 4). A GLS solution has been introduced to determine
a unique set of geodetic coordinates, with accompanying accu-
racy prediction coordinates from different observing sce-
narios (Soler et al.,, 2012).

=

=

il

M. Badekas MRE1

Figure 5: Variation of parameters RMS in meters for the used techniques
(global models adjusted with GLS) and MREs.
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According to the Table 5, the LM algorithm improves the
accuracy of the global models if we take into consideration
different assumptions (Acar, 2006). In this case, there is no
need to appeal the multiple regression method because, for
certain applications (geodetic works), we need to transform 3D
cartesian components (X, Y, 2).

Nevertheless, the MRE remains interesting for limited
area transformation in the case of cadastral surveys. In
Figure 4, the choice of the degree of MRE is decisive
for better accuracy; in our example, the choice of degree two
in the interface (red framed degrees choices in Figure 4) is
more suitable to obtain less error in transformation calculus
(Figure 5), whereas degree three is not numerically stable
because of the minus sign in the regression factors.

We could improve the quality of transformation para-
meters issued by GLS by Zoning fitting and considering a
zonage for a wide area, i.e., processing the method by set of
benchmarks belonging to several restricted areas. In this
case, we have partially resolved the problem because the
obtained parameters are regional and not global, which is
useful for a restricted area (Hok Sum, 2003).

In Tables 3-5, we present the results of data processing
by both 3D and 2D models (Bursa—-Wolf, Molodensky—
Badekas, and MRE) with and without the assumptions
explained above for carrying out the contribution of each
model and also the contribution of assumptions taken into
account in the improvement of precision in the processing
of geodesic networks.

For the global models, it is clear from tales that the
three considered assumptions have brought improve-
ments in accuracy (Table 4) better than the improvements

Table 5: Results and analysis of the nonlinear (LM) process over the two global models

Model Component Minimum (m) Maximum (m) Mean (m) RMS (m)
Bursa-Wolf X 0.126 0.686 1.293 0.213

Y -0.101 0.164 0.697 0.762

Z 0.572 1.102 0.461 1.015
Molodensky-Badekas model X -1.223 0.311 -0.841 0.906

Y 0.103 0.264 0.404 0.325

z -1.695 1.019 -1.308 1.065

Table 6: Student and chi-square test over the longitude

Sigma a priori (gy) Sigma a posteriori (6p)

Chi-square test Student test

0.025 s 0.014

Positive Zero suspect observation

The variable gy denotes the a priori standard deviation, which is equal to £0.025 s relevant to the reference “Nord Sahara” benchmarks in the North
Algeria zone (Figure 3), and &, denotes the calculated standard deviation of the residues vector.



10 —— Noureddine Kheloufi and Abdellatif Dehni

Table 7: Student and chi-square test over the latitude
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Sigma a priori (go) Sigma a posteriori (Gp)

Chi-square test Student test

0.025 s 0.017

Positive Zero suspect observation

The variable gy denotes the a priori standard deviation, which is equal to £0.025 s relevant to the reference “Nord Sahara” benchmarks in the North
Algeria zone (Figure 3), and Gy denotes the calculated standard deviation of the residues vector.

brought about by the implementation of nonlinear least
squares analysis “LM”. Indeed, the precisions revolve
around 35 cm with Molodensky-Badekas and 40 cm with
Bursa—-Wolf once the assumption is considered (Table 4)
compared to the results of Table 3, where these hypoth-
eses have been omitted (Yang, 2014).

The results of Tables 3 and 4 show that 2D model MRE
minimizes errors, and even its statistical analysis is very
good considering the tests undertaken on it.

5.2 Results of statistical analysis over MREs

For the degree of freedom (DOF) = 4, a statistical test was
performed over the multiple regression method relevant to
the equation 24 of paragraph 3.2. The results obtained from
the Student and chi-square tests (Zeggai, 2006) are shown
in Tables 6 and 7.

5.3 Over the latitude

The origin of the ITRF2020 long-term frame is defined in
such a way that there are zero translation parameters
at epoch 2015.0 and zero translation rates between the
ITRF2020 and the international laser ranging service solar
lunar ranging long-term frame over the time span 1993.0-
2021.0 UNGGIM (2017), (Table 8).

Altamimi (2022) considered that ITRF 2020 is very close
to WGS84 in such a way as to consider them almost con-
fused. That lead to consider a part of WGS84 data as of
good quality even the classical North Sahara coordinates
are badly determined as cited in the Introduction.

6 Discussion

After considering these assumptions, we can say that we
are in conformity with the directives and resolutions of the
“UN-GGIM”* concerning the use of the international geo-
detic frames and attachment of our local systems to
the latest versions of ITRF to minimize position errors
during compensations because the difference between
the ITRF2018 and the WGS84 is some centimeters. The
global 3D models processed with OLS seem to be the
most used and famous for this purpose. Nevertheless, in
different fields of engineering and earth science, certain
cases need more accuracy; the ordinary linear least squares
prove to be limited.

Thus, we have to use new numerical methods of reso-
lution that can provide great efficiency in polynomial mod-
elization. Therefore, instead of being limited to linear
models, we have to apply the nonlinear least squares reso-
lution to resolve the transformation problem between geo-
detic systems.

This need appears especially in the case of the Nord
Sahara datum (Algeria), on which the linear models are not
very appropriate because of the lack of information about
the geoid’s undulation (the third component is not accu-
rately determined). In this article, our main aim is to carry
out the importance of using the nonlinear least squares
method (LM) applied over two 3D (global transformation)
models and a 2D one (MRE) on a huge area benchmarks
network (North Algeria).

Coordinate transformation parameters and their RMS
have been computed by both the OLS and LM algorithms
compared with multiple regression (Kheloufi et al., 2009) to
compare, on the one hand, the linear adjustment within its
two variants (local and global) with the MRE’s and, on the

Table 8: Transformation parameters at epoch 2015.0 and their rates from ITRF2020 to ITRF2014 (ITRF2014 minus ITRF2020)

T; (mm) T, (mm) T3 (mm) D (107 R, (mas) R, (mas) R3 (mas)
-1.4 -0.9 1.4 -0.42 0.000 0.000 0.000
+ 0.2 0.2 0.2 0.03 0.007 0.006 0.007
Rates 0.0 -0.1 0.2 0.00 0.000 0.000 0.000
+ 0.2 0.2 0.2 0.03 0.007 0.006 0.007
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other hand, the linear adjustment and the nonlinear one.
In this context, a set of 12 benchmarks localized in North
Algeria have been integrated to compute the transforma-
tion parameters (3D and 2D). Tables 3, 4, and 5 show the
difference in accuracies between different models (BW,
MB, and MRE’s) processed by the same method (GLS) and
also the difference between the methods themselves, i.e.,
GLS vs. LM. For example, the Molodensky formalism
(Deakin, 2006) generally gave better precision when pro-
cessed by GLS for the X and Y components (1.014 m against
1.838 m) except for the Y component, where Bursa—Wolf is
near the meter when Molodensky-Badekas is about 2 m.
Multiple regression, which is a 2D formalism, ensures sub-
meter accuracy and is adapted for wide-area transforma-
tion processing like in North Algeria. In our case, for a near
500 km baseline length, the method turned out to be very
efficient because it did not exceed a meter. For the global
models, we could reach these performances with precision
only because we have taken into consideration the assump-
tions cited above (assumptions 1, 2, and 3).

Previous studies that have been performed without
including a hypothesis have given error-blemished results
with less accuracy (Table 5). For both global models, we
could not reach the submeter for several components,
where even the X and Y components outperformed the
geodetic expected errors.

The purpose of this work was to develop a solution to
the crucial problem of transformations between geodetic
reference frames, particularly between the system in force
in Algeria, the North Sahara — Clarke 1880, and the system
in which the coordinates resulting from the GPS campaigns
are expressed, Le., the WGS84. Through this multicriteria
analysis, we could prove that the coordinate transforma-
tion problem could be solved to carry out reliable trans-
formations within acceptable precisions for different
applications (geodetic, geodynamic, and land survey). The
calculation of these parameters required an investigation
into the existence of double-point files of impeccable
quality and homogeneous and dense exhaustiveness. This
led us to use some files from previous undertaken by dif-
ferent institutions (centre des techniques spatiales, INCT,
entreprise nationale de geophysique) and in different pro-
jects: PUBLIC WORKS DIVISION-DTP-Oran network, Reseau
geodesique de Sonatrach-Sonatrach project, North Algeria
densification campaign, etc., where the set of points are
determined with a priori centimeter precision standard
deviations.

1 “United Nations Committee of Experts on Global Geospatial
Information Management for Arab States”

Transformation parameters between WGS84 and Nord Sahara
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As the determination of the transformation parameters
is also based on the numerical models and mathematical
formalisms, our work focused on the treatment of double
points in our disposition by different methods:
¢ 3D model of Molodensky—Badekas and Bursa—Wolf,

+ 2D model of multiple regression equations,
* Nonlinear LM algorithm confronted with LLS.

The results presented in this study highlight the
strengths and weaknesses of each model on the basis of
the parameter standard deviation and even the position
RMS, as well as the residuals after transformations, as illu-
strated in tables and figures. Indeed, according to the
obtained results, the comparison between the 3D models
gives an advantage for the Molodensky-Badekas formalism
compared to the Bursa-Wolf formalism and the advantage for
the nonlinear adjustment at the expense of the linear one. The
analysis made on the estimated parameters also shows a differ-
ence in precision between the 3D models and the multiple
regression method, which gave low RMS (as shown in Figure
5, 2cm for MREs and 4.5 cm for Bursa—Wolf).

As a perspective, we recommend the use of planimetric
grid method with interpolation methods (plus proche voisin,
bilinear, and kriging) for more accuracy improvement.

Conflict of interest: Authors state no conflict of interest.
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Appendix

The numerical value of matrix A is determined using any
initial approximation of the parameters Xo = [Ay ¢, ho]T.

A1 Mathematical formulation of
coordinates conversion

%h o %
The basic mathematical relationship between Cartesian oA 09 oh
and orthogonal curvilinear geodetic coordinates is attrib- 6_f2 a_fz a_fz
uted to Helmert and can be written in matrix form as oA 0¢ Oh
follows: a_fs 6_f3 6_103
X (N + h)cos ¢ cos A o1 o¢ oh
Y|=| N+ h)cos¢sinA | (A1) 6_f4 6_f4 a_ﬁl
zl |(N( - e?) + h)sin ¢ oA 93¢ oh
RN s =L | LEKL
where N = - is the principal radius of curvature along the 3 T 5x Yol oA 0¢ oh
prime vertical and M = % is the principal radius of of, of, of,
curvature along the meridian with W?=1- e?sin’¢ 91 o¢ oh
and e% = 2f - f2. o, of. of
In all the above equations, a and f are the semi-major rez rz el
axis and flattening of the selected ellipsoid, respectively. oA 9¢  oh
Of Ofa O
oA 93¢  oh
o) 9 o)
A2 Least squares methodology for % a—’; %

coordinates conversion

For the least squares resolution purpose, a derivative
design matrix A called Jacobian is used.
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