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Abstract: The most common approaches for assigning
weights to observations in minimum L1-norm (ML1) is
to introduce weights of p or p , p being the weights
vector of observations given by the inverse of variances.
Hence, they do not take covariances into consideration,
being appropriated only to independent observations. To
work around this limitation, methods for decorrelation/
unit-weight reduction of observations originally devel-
oped in the context of least squares (LS) have been
applied for ML1, although this adaptation still requires
further investigations. In this article, we presented a
deeper investigation into the mentioned adaptation and
proposed the new ML1 expressions that introduce weights
for both independent and correlated observations; and
compared their results with the usual approaches that
ignore covariances. Experiments were performed in a
leveling network geometry by means of Monte Carlo
simulations considering three different scenarios: inde-
pendent observations, observations with “weak” corre-
lations, and observations with “strong” correlations.
The main conclusions are: (1) in ML1 adjustment of inde-
pendent observations, adaptation of LS techniques intro-
duces weights proportional to p (but not p); (2) proposed
formulations allowed covariances to influence parameters
estimation, which is unfeasible with usual ML1 formula-
tions; (3) introducing weighs of p provided the closest ML1
parameters estimation compared to that of LS in networks
free of outliers; (4) weighs of p provided the highest
successful rate in outlier identification with ML1.
Conclusions (3) and (4) imply that introducing covariances
in ML1 may adversely affect its performance in these two
practical applications.

Keywords: adjustment computations, Cholesky factoriza-
tion, decorrelation of observations, leveling network,
minimum L1-norm, Monte Carlo simulation, weights of
observations

1 Introduction

To relate the parameters to the observations, the linear
(or linearized)model of Gauss–Markov is most commonly
used in geodetic networks (Klein et al. 2019). With m
being the number of observations, n the number of para-
meters (unknown coordinates of network points), Am×n
the design matrix (Jacobian), Lm×1 the vector of the
observed values, vm×1 the vector of the residuals of the
observations (previously unknown), ΣLmxm the covar-
iance matrix of the observations, σ0

2 the priori variance
factor, and Pm×m the (symmetric positive-definite) matrix
of the weights of observations, the parameter vector xn×1
is determined based on the following mathematical model
(Gauss 1809):

Ax L v P σ; .
L0

2 1
∑= + =

− (1)

Thus, the smaller the variance (the better the preci-
sion) of an observation, its weight tends to be higher in
the adjustment of observations. The least squares (LS)
method is the most well-established for adjustment com-
putations in geodetic networks. Its objective function
imposes the minimization of the sum of the squares of
the residuals weighted by the weight matrix of observa-
tions P, that is

v PvLS: min.T = (2)

The first formal reports on LS go back to Legendre
(1805) and Gauss (1809). LS is the best linear unbiased
estimator (BLUE) for the parameters (Teunissen 2018) and
the maximum likelihood estimator in case of normally dis-
tributed observational errors. Its solution for x is given by

x A A PLPA .T T1( )= − (3)
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Also widely explored in the geodetic literature, the
estimator that minimizes the L1-norm of residuals (equa-
tion (4)), herein called minimum L1-norm (ML1), aims
at the minimization of the sum of absolute residuals
weighted by p (Amiri-Simkooei 2003), p being the vector
of weights pi of independent observations, elements of
the main diagonal of P (a diagonal matrix in this case,
as observations are independent). ML1 is usually applied
for outlier identification in geodetic networks (Suraci
et al. 2021). After this intermediate step, final LS estima-
tion can be performed in the set of geodetic observations
free of outliers.

p p vML1 : min.T( ) | |  = (4)

Inal et al. (2018), Amiri-Simkooei (2018), and Klein
et al. (2021) have also adopted the vector p to weigh
independent observations in ML1. Some other authors,
on the other hand, have considered the vector p in
this task, p being the vector of the square root of ele-
ments of p – e.g., Junhuan (2005) and Marshall (2002).
For this latter case, ML1 objective function of equation (4)
is then replaced by

p p vML1 : min.T( ) | | = (5)

Note, however, that such formulations do not take
covariances into consideration in the adjustment of obser-
vations. Therefore, as mentioned, equations (4) and (5) are
appropriated only for independent observations. Never-
theless, correlated observations are common in surveying
engineering, which motivated the use of decorrelation
methods of observations originally developed for LS in
the context of ML1, as in Yetkin and Inal (2011) and Baselga
et al. (2020).

1.1 Decorrelation methods originally
developed for LS already applied in the
context of ML1

The goal of the decorrelation of observations is to obtain
an equivalent mathematical model (with the same solu-
tion for the parameters), but with all observations dec-
orrelated (independent, without covariances). Moreover,
as a result of the decorrelation process, usually per-
formed based on the Cholesky factorization of the matrix
P, all the weights of observations in the new model
become equal to 1, which justifies the use of the term
unit-weight reduction. Actually, in order to obtain a
model with all observations of unit weight, the decorrela-
tion process can be applied even to independent observa-
tions (Suraci et al. 2019).

Let D ∈ Rn×n be a positive definite matrix. By the
Cholesky factorization, D can be expressed by D = WTW,
where W ∈ Rn×n is upper triangular with only positive ele-
ments on the main diagonal (Higham 2009). Methods for
computing the respective (unique)matrixW are presented
in Golub and Loan (1996). In geodetic applications, as
presented in Strang and Borre (1997), the matrix of the
weights of observations P can then be decomposed by
the Cholesky method into

P W W .T= (6)

Continuing the approach of Strang and Borre (1997),
multiplying the mathematical model of equation (1) byW,
and adopting the identity matrix Im×m as the matrix of the
weights P′ of observations, we have

A x L v A L WL
v Wv P I

, with WA,
and ; .

′ = ′ + ′   ′ = ′ =

′ = ′ =
(7)

Therefore, it is possible to demonstrate that the LS
objective function (equation (2)) of this mathematical
model of equation (7) (with unit weights) remains the
same as in the model of equation (1) (with the original
weights of P):

v P v v Iv Wv I Wv
v W Wv v Pv

min min min
min min .

T T T

T T T
( ) ( ) (( ) ( ))

( ) ( )

′ ′ ′ = ′ ′ =

= =
(8)

As a consequence, as shown by Suraci et al.
(2019), the LS solution for x in the model of equation
(7) remains the same as in the model of equation (1) as
well:

x IWA IWL
A W IWA A W IWL A PA A PL
WA WA

.

T T

T T T T T T

1

1 1
(( ) ) ( )

( ) ( )

=

= =

−

− −
(9)

Hence, this is a proper procedure to introduce the
weights of P via decorrelation of observations in LS
adjustment computations. From equation (8), it is further
noted that W could be any matrix such that WTW = P,
but the matrix from Cholesky factorization is probably
the most viable option, as it has an established proce-
dure to be computed in the literature (Golub and
Loan 1996).

Still in the LS context, Ingram (1911) demonstrates
that unit-weight reduction can also be obtained by multi-
plying the equation of every original observation by
respective pi . However, this technique has the dis-
advantage of necessarily starting from independent
observations, i.e., it is not suitable for the case of cor-
related observations. This same technique is called
homogenization in LS by Koch (1999). Although useful
for applications that are outside the scope of this
article, this procedure does not provide uncorrelated

66  Stefano S. Suraci et al.



observations if applied to correlated observations
(Prószyński 2010).

Actually, the homogenization is the particular case of
the unit-weight reduction process of Strang and Borre

(1997) where all observations are independent. Let P
be the diagonal matrix (hence also upper triangular)
with pi elements on the main diagonal. Thus, multi-
plying all observations by their respective pi , in the
terms of Ingram (1911), but in matrix format, we have

P Ax P L P v P I; .= + ′ = (10)

Moreover, since P is a diagonal matrix

P P P .T
= (11)

Hence, comparing equations (6) and (7) with equa-
tions (11) and (10), respectively, we can see that, for this

particular case of independent observations, P is the
(unique) upper triangular matrix with only positive ele-
ments on the main diagonal of the Cholesky factorization

of P, i.e., W P= .
ML1, however, has no direct analytical solution

(Suraci et al. 2021), which makes it difficult to algebrai-
cally guarantee that ML1 adjustment of the model of
equation (6) (with unit weights) has the same solution
of the model of equation (1) (with the original weights).
In this context, Suraci et al. (2019) showed by means of
Monte Carlo (MC) simulations that the approach of
Strang and Borre (1997), properly developed to intro-
duce weights of P in LS adjustments, needs further
investigation in ML1 as it presented results different
from ML1(p) (equation (4)) even in scenarios with only
independent observations.

Although demonstrated only for the LS method, the
approach of Strang and Borre (1997) has already been
applied for unit-weight reduction in the ML1 adjustment
of geodetic networks by Yetkin and Inal (2011). The
approach of Ingram (1911), a particular case of the approach
of Strang and Borre (1997), was also applied in the context
of ML1 by Baselga et al. (2020).

In this sense, this article provides new results that
lead to a better understanding of why these approaches
originally for unit-weight reduction in LS should not be
unrestrictedly applied in the ML1 context, presents an
attempt to formulate ML1 expressions that introduces
weights for both independent and correlated observa-
tions, and analyzes the optimal ways of introducing
weights in ML1 in order to have the best performance in
outlier identification and to provide parameters estima-
tion closer to LS in outlier-free networks.

2 Formulations for both
independent and correlated
observations in ML1

For independent observations, ML1(p) expression of equa-
tion (4) may be rewritten as the minimization of:

p v p v p v p v
p
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where sum(.) refers to the sum of elements of a vector. On
the other hand, if we try to assume the mathematical
model given by the approach of Strang and Borre (1997)
(equation (7)), as done in equation (8), but now to ML1
adjustment (instead of LS), it will provide the following
objective function:

v Wvmin sum min sum .( (∣ ∣)) ( (∣ ∣))′ = (13)

Since W P= for independent observations and P
is a diagonal matrix with only positive elements on
the main diagonal, as mentioned, equation (13) can be
rewritten as

v Wv
P v

P v
p v

min sum min sum
min sum

min sum
min .T

( (∣ ∣)) ( (∣ ∣))

( (∣ ∣))

( ( ∣ ∣))

( | |)

′ =

=

=

=

(14)

As equation (14) is equal to equation (5), it shows that
the approach of Strang and Borre (1997), the way it is
applied in LS without changing its objective function
(equation (8)), introduces weights proportional to p
(but not to p) in ML1 adjustment of independent observa-
tions. Hence, it must not be applied to introduce weights
of P in ML1. Actually, applying the approach of Strang
and Borre (1997) in the context of ML1 with independent
observations results in a model with weights of p . At
this point, it is essential to emphasize that we are not
stating that the adaptation to ML1 of the approach of
Strang and Borre (1997) is inappropriate, but that it forces
weights proportional to p (but not to p), also something
usual in the ML1 context, as mentioned.

However, note that, differently from equation (4), in
the (new) formulation of equation (12), P does not need to
be a diagonal matrix. As a consequence, besides being
equivalent to ML1(p) in case of independent observations,

Introducing covariances of observations in the minimum L1-norm, is it needed?  67



it also allows covariances to be considered in the ML1
adjustment computation. Therefore, it is an alternative in
order to have a general expression for introducing weights
of P in ML1 for both the correlated and independent obser-
vations. Hence, we now define ML1(P), equivalent to ML1(p)
in case of independent observations

P P vML1 : sum min.( ) ( ∣ ∣) = (15)

Considering the general case of correlated observa-
tions in equation (15), we have the minimization of
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We included the restriction k 0i > , which implies
that k v 0T| | ≥ , as a norm function must always be positive
or equal to zero. Besides, k 0i ≤ could cause numerical
instability to ML1 solution, because respective vi| | could
tend to grow higher than expected as an attempt to mini-
mize k vT| | (if k 0i < ) or it would not be considered in the
objective function (if k 0i = ). However, note that pii is
always positive with absolute value usually much higher
than other terms pji that add up to ki; some pji are also posi-
tive; and, many pji are zero even in networks with correlated
observations – refer to many examples of these points in
Ghilani (2010). Therefore, all ki tend to be positive, and so
such restriction is generally satisfied for most geodetic net-
works. The less likely case where the sum of the absolute
values of the terms pji with minus sign is higher or equal to
the sum of pii with the terms pji with positive sign may be a
flaw of this formulation and was not addressed in this article.

Similar to equation (15), the general formulation pro-
posed for both independent and correlated observations
that is equivalent to pML1( ) (equation (5)) in case of
independent observations is given by equation (17). A
detailed expression for the general case of correlated
observations of equation (17) is obtained by substituting
every element pij of P with respective wij of W in equa-
tion (16).

W W vML1 : sum min.( ) ( ∣ ∣)  = (17)

3 Numerical results

Experiments were conducted in the leveling network geo-
metry of Figure 1. It consists of one control station with
fixed coordinate hA = 10.0mm, m = 6 observations (height
differences), and n = 3 unknowns (station heights). Corre-
lated observations may occur in leveling networks – e.g.,
Knight, Wang and Rizos (2010) and Schaffrin (1997) – due
to the use of the same equipment in different leveling lines
(observations).

In each experiment, M = 200,000 MC trials were run
with random errors of each observation ei, i = (1,2,…,m =
6), generated according to a multivariate normal dis-
tribution e N Σ0, L( )∼ . ML1 adjustments were computed
by the simplex method of linear programming (Dantzig
1963). Programming codes were developed under Octave
software, version 6.3.0. The reader can contact the first
author to obtain the Octave codes of the experiments.

The MC method enables one to obtain a large number
of independent realizations of the same experiment in a
controlled environment, which is difficult to guarantee
with real data (Yang et al. 2021). From the statistical dis-
tributions of the input variables, repeated samples of
them are generated, allowing an accurate characteriza-
tion of the results of the analyzed model. The larger the
number of simulations M, the greater the accuracy in
characterizing the results. This is a clear advantage over
simple tests with only one geodetic network, which can
lead to wrong conclusions because they are more subject
to random results that are not very representative of the
phenomenon. The quantity ofM = 200,000 was suggested
by Rofatto et al. (2020) in the context of geodetic networks.

For the investigation of the points discussed, the network
was adjusted considering the following five approaches for
introducing weights in ML1 formulation:

Figure 1: Leveling network geometry.
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1) p p vML1 : minT( ) ∣ ∣ = .
2) P P vML1 : sum min( ) ( ∣ ∣) = .

3) p p vML1 : minT( ) ∣ ∣ = .

4) W W vML1 : sum min( ) ( ∣ ∣) = .
5) vML1 decorrelation_LS : sum min( ) (∣ ∣)′ = .

As presented, note that the approaches 1–4 corre-
spond to the objective functions of equations (4), (5),
(15), and (17), respectively. Approach 5 refers to the
approach of Strang and Borre (1997) for unit-weight
reduction of observations in LS (considering the mathe-
matical model of equation (7)), but applied to ML1.

In Experiments 1–3, we also computed the same
200,000 MC scenarios of each experiment, but with
adjustment of observations by LS (instead of ML1). Our
goals were to use LS parameters estimation as a refer-
ence, and to measure the effect of correlations in LS,
also to use as a reference for assessment of the effect
in ML1. For this purpose, LS parameters were calculated
by equation (3), using the LS default matrix of weights
P (considering covariances); then, for comparison, we
assumed the weights of the diagonal matrix Pd (with
the same main diagonal of P, but with no covariances)
in LS parameters estimation.

4 Experiment 1: independent
observations

In the first experiment, observations were assumed to be
independent (ΣL and P were diagonal matrices). For the
MC simulations, the variances of observations σii

2, ele-
ments of the main diagonal of ΣL, adopted were [7.5 10
12.5 15 17.5 20] mm2. Table 1 shows the mean value of the
parameters estimated (considering all 200,000 MC sce-
narios) in each adjustment computation.

5 Experiment 2: correlated
observations (“weak”
correlations)

In the second experiment, observations were simulated
with “weak” correlations, i.e., with variances relatively
much higher than the magnitude of the covariances. For
the MC simulations, variances adopted were the same as
in Experiment 1, but now covariances were not zero,
being randomly selected from a uniform distribution of
values between −1.0 and 1.0 mm2. Hence, the maximum

absolute covariance was more than 7.5 times smaller than
the minimum variance (which we call “weak” correla-
tions) in Experiment 2. For the respective ML1 adjustment
computations, the elements of p and p were computed
by the inverse of the variances and the square root of the
variances, respectively, without taking covariances into
account. Table 2 shows the mean value of the parameters
estimated (considering all 200,000 MC scenarios) in each
adjustment computation.

Note that even though we had the same variances in
Experiment 1, since covariances were different, the values
of the random errors of observations simulated were also dif-
ferent. Hence, adjustment results of ML1(p) in Experiments 1
and 2 were not equal for the three parameters, for example.
Similarly, this statement can be extended to all adjustment
approaches in all experiments.

6 Experiment 3: correlated
observations (“strong”
correlations)

In the third experiment, observations were simulated
with “strong” correlations, i.e., covariances with values

Table 1: Mean value of the parameters estimated (mm)
(Experiment 1)

hB hC hD

ML1(p) 10.0038 10.0074 10.0139
ML1(P) 10.0038 10.0074 10.0139

ML1( p ) 10.0040 10.0076 10.0141

ML1(W ) 10.0040 10.0076 10.0141
ML1(decorrelation_LS) 10.0040 10.0076 10.0141
LS(P) 9.9993 9.9928 10.0058
LS(Pd) 9.9993 9.9928 10.0058

Table 2: Mean value of the parameters estimated (mm)
(Experiment 2)

hB hC hD

ML1(p) 10.0038 10.0057 10.0123
ML1(P) 10.0038 10.0057 10.0123

ML1( p ) 10.0052 10.0072 10.0138

ML1(W ) 10.0052 10.0072 10.0138
ML1(decorrelation_LS) 10.0049 10.0060 10.0131
LS(P) 9.9996 9.9925 10.0058
LS(Pd) 9.9995 9.9927 10.0057
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relatively closer to those of the variances. For the MC
simulations, variances adopted were the same as in
Experiments 1 and 2, but now covariances were randomly
selected from a uniform distribution of values between
−5.0 and 5.0 mm2. Hence, the maximum absolute covar-
iance was approximately 2/3 of the minimum variance
(which we call “strong” correlations) in Experiment 3.
As in Experiment 2, for the respective adjustment compu-
tations, the elements of p and p were computed by
the inverse of the variances and the square root of the
variances, respectively, without taking covariances into
account. Table 3 shows the mean value of the parameters
estimated (considering all 200,000 MC scenarios) in each
adjustment computation.

7 Experiment 4: outlier
identification

Since outlier identification is the most widely explored
application of ML1 in geodetic networks, the last experi-
ment was designed to verify if correlations in ML1 affect
this process. In Experiment 4, we also computed MC sce-
narios of both Experiments 2 and 3, but now we also
purposely added one gross error with random sign to a
random selected observation in each scenario. In each
case, we simulated 50,000 scenarios with one gross error
with uniform distribution in the interval magnitude 3–6σi,
and 50,000 in the interval 6–9σi, σi being the standard
deviation of respective observation, totaling 100,000 sce-
narios with “weak” correlations and 100,000 of “strong”
correlations, adding up to 200,000 scenarios.

The test statistic for outlier identification was the
ratio between residuals in ML1 adjustment and respective
observation standard deviation, as reported by Klein
et al. (2021) and Hekimoglu and Erenoglu (2007). Outlier
identification was computed with all five approaches for

introducing weights in ML1 formulation. In order to pro-
vide a fair comparison among the 5 approaches, we con-
sidered the same false positive rate α = 5% for all of them.
To make this possible, the procedure for calculating the
critical value for identifying outliers (the value of the test
statistic from which the observation is classified as an
outlier) by ML1 proposed by Suraci et al. (2021) was
applied. Tables 4 and 5 present the results for the 100,000
scenarios of Experiment 2 (“weak” correlations) and Experi-
ment 3 (“strong” correlations), respectively.

8 Discussions

8.1 Discussion 1: comparison of parameters
estimation of the five ML1 approaches

In Experiment 1, since observations were independent,
ML1(p) and ML1( p ) were useful to validate the results
of other ML1 formulations. ML1(P) had the same results of
ML1(p), as they are equivalent for independent observations
(equation (12)). Similarly, ML1(W) and ML1 p( ) also had
the same results. Besides, as expected, proposed formula-
tions ML1(P) and ML1(W) had different results between
them, because their adjustments are based on different sto-
chastic models. The most remarkable point to be noted in

Table 3: Mean value of the parameters estimated (mm)
(Experiment 3)

hB hC hD

ML1(p) 10.0038 9.9995 10.0034
ML1(P) 10.0038 10.0038 10.0132

ML1( p ) 10.0051 10.0008 10.0048

ML1(W) 10.0038 10.0038 10.0082
ML1(decorrelation_LS) 10.0036 10.0005 10.0063
LS(P) 10.0010 9.9952 10.0055
LS(Pd) 10.0004 9.9925 10.0055

Table 4: Successful rate in outlier identification (%) – “weak”
correlations

1 outlier
3–6σi (%)

1 outlier
6–9σi (%)

Average
rate (%)

ML1(p) 49.97 74.28 62.13
ML1(P) 49.97 74.28 62.13

ML1( p ) 55.24 85.89 70.57

ML1(W ) 55.24 85.89 70.57
ML1(decorrelation_LS) 54.57 85.03 69.80

Table 5: Successful rate in outlier identification (%) – “strong”
correlations

1 outlier
3–6σi (%)

1 outlier
6–9σi (%)

Average
rate (%)

ML1(p) 48.64 73.57 61.11
ML1(P) 30.50 47.05 38.78

ML1( p ) 53.71 85.06 69.39

ML1(W ) 24.49 45.78 35.14
ML1(decorrelation_LS) 35.03 35.67 35.35
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Experiment 1, however, is that ML1(decorrelation_LS) had
the same results of ML1( p ) and ML1(W), not ML1(p) and
ML1(P), which is in accordance with the theoretical discus-
sion presented. This further confirms that the approaches of
Ingram (1911) and Strang and Borre (1997) for unit-weight
reduction should not be performed in ML1 if one wants to
introduce the weights of P. Actually, for independent obser-
vations, the results of unit-weight reduction in ML1 are

equivalent to those of the weights of P W= .
In Experiments 2 and 3,wehadno reference (ground truth)

to validate the results, because: (a) ML1(p) and ML1( p )
do not consider covariances; (b)ML1(decorrelation_LS), as
mentioned, needs further investigations; and, (c) ML1(P)
and ML1(W) are being proposed (and still under examina-
tion) in this study. In fact, there is no formulation in the
literature that is guaranteed to provide a ground truth for
ML1 adjustment of correlated observations. Nevertheless,
it is possible to identify interesting points from the results
of Experiments 2 and 3.

In Experiment 2, ML1(P) and ML1(p) had the same
results again, even though only ML1(P) takes covariances
into consideration in the adjustment computation. The
same occurred between ML1(W) and ML1 p( ). These
results suggest that with variances relatively much higher
than the magnitude of the covariances, the covariances
do not influence the ML1 parameters estimation for the
network geometry analyzed, considering the formulation
proposed in this study. Since ML1 provides the para-
meters estimation by finding a special non redundant
subset of observations to solve the functional model
with no residuals (Amiri-Simkooei, 2018), it is not unex-
pected that too “weak” correlations may not be able to
modify such subset. One might guess that ML1(decorre-
lation_LS) introduced weights proportional to p (as in
Experiment 1), but its result was not exactly equal to
ML1( p ) because it also captured the “small” covar-
iances. However, since there is no ground truth in Experi-
ment 2, we have no elements to make this or any further
claim about ML1(decorrelation_LS).

In Experiment 3, we can verify that now covariances
did influence the results of ML1(P) and ML1(W), since
they were no longer the same of ML1(p) and ML1( p )
results, respectively. This occurred because the magni-
tudes of covariances were much closer to the variances
than in Experiment 2. Nevertheless, since there is no
ground truth in Experiment 3 either, we have no elements
to state if ML1(P) have captured covariances in relation
to ML1(p) in the most proper way, and if ML1(W) or
ML1(decorrelation_LS) captured covariances more appro-
priately in relation to ML1( p ).

As a partial conclusion of Discussion 1, we first recall
that ML1(p) and ML1( p ) do not take covariances into
consideration, and unit-weight reduction techniques ori-
ginally designed for LS introduce weights of p (but not
to p) even in scenarios with only independent observa-
tions, being not appropriate to introduce weights of P. In
this context, even though there is no guarantee that our
approach is the most appropriate for introducing weights
in ML1, the proposed formulations ML1(P) and ML1(W)
presented results that seem reasonable: they were equal
to ML1(p) and ML1( p ), respectively, for both cases of
only independent observations and of “weak” correla-
tions among observations; and, they allowed covariances
to influence parameters estimation in the case of “strong”
correlations, which was not feasible with usual formula-
tions ML1(p) and ML1( p ).

8.2 Discussion 2: comparison of covariances
effect between ML1 with proposed
formulations and LS

From Table 3, we can also verify the “low” effect (of small
magnitude) of covariances in the mean value of para-
meters estimated by ML1 (considering 200,000 MC simu-
lations). The maximum difference between a parameter
computed by ML1(P) or ML1(W), and respective formula-
tion that do not consider covariances ML1(p) or ML1( p ),
respectively, was less than 0.01 mm, being even less than
0.005mm for all other parameters. In this sense, LS
results in Experiments 2 and 3 were important to clarify
that, considering the same analysis with 200,000 MC
scenarios, this alleged “low” effect also occurs in LS con-
text (with its well-established formulation for introducing
weights/covariances). In scenarios of “weak” correlations
(Experiment 2), the maximum difference between the
mean value of a parameter computed by LS(P) and LS
(Pd) was 0.0002 mm. Even in scenarios of “strong” cor-
relations (Experiment 3), the maximum difference was
less than 0.003 mm.

Hence, comparing correlation effects in LS and ML1
(the latter with proposed formulations), they both tend to
increase as correlations increase, as expected. However,
while “weak” correlations had no effect in ML1, “strong”
correlations influenced ML1 results more than LS ones. It
suggests that even though “weak” correlations tend to
have more effect in LS, the influence on ML1 results
may grow even more than in LS as correlations become
“stronger.”
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Moreover, in ML1, those maximum differences for
the parameter hD were always the highest among the
three parameters, and were always the smallest for hB
(Table 3). Since station D is connected by observations
with lower sum of weights (higher sum of variances) than
C, which is connected by observations with lower sum
of weights than B, it suggests that the influence of
“strong” correlations in ML1 tend to grow more in para-
meters of the stations connected by observations with
lower weights. However, the same is not true for LS. Con-
sidering LS adjustments, the highest correlation effects
were on the parameter hc, in both Experiments 2 and 3
(Tables 2 and 3).

8.3 Discussion 3: comparison of parameters
estimation of the five ML1 approaches
with LS

For a comprehensive analysis of the five ML1 approaches,
we must recall that the LS (computed considering the
full weight matrix P) is the BLUE for networks free of
outliers. Hence, in this case, even though LS and ML1
are two different methods and therefore different results
are expected, LS parameters estimation may be considered
as a reference and the proximity degree to it may also be a
criterion for selecting the optimum ML1 approach. Table 6
shows the root mean squared error (RMSE) between the
estimated parameters of LS(P) and each of the five ML1
approaches in Experiments 1, 2, and 3. ML1(p) had the
lowest RMSE in all experiments. Therefore, considering the
geodetic network analyzed, it is the best choice if a geodesist
desires a ML1 parameter estimation closer to the LS one.

8.4 Discussion 4: comparison of outlier
identification performance of the five
ML1 approaches

In Experiment 4, we tested all five ML1 approaches in
outlier identification, the main point in ever applying

ML1 in geodetic networks, as mentioned. From Table 4,
we can see that ML1(P) and ML1(p) had the same suc-
cessful rates. Similarly, ML1(W) and ML1 p( ) had the
same successful rates between them as well, ML1(decor-
relation_LS) rate also being very similar. Hence, it is clear
that “weak” correlations did not affect outlier identification
success rate, and one can safely consider (for simplicity) the
observations to be independent, without decreasing ML1
outlier identification performance. From Table 5, however,
we can verify that taking “strong” correlations into account
adversely affected the outlier identification property of ML1.
The average rate of ML1(p) was higher than that of ML1(P)
by a significant margin. Similarly, the average rate of
ML1 p( ) was higher than that of ML1(W) and of ML1(de-
correlation_LS) by a significant margin as well. Hence,
assuming that observations are independent is the best
option for any strength of correlations in the context of
outlier identification with ML1. In addition, considering
the two approaches ML1(p) and ML1 p( ) that assume
observations to be independent, ML1( p ) had the best per-
formance and is the best choice for the network analyzed.

8.5 Final remarks

This study drew attention to introducing covariances of
observations in ML1. It is well-known that the most
common approaches in the literature, herein represented
by ML1(p) and ML1( p ), do not take covariances into
considerations, being appropriated only to independent
observations. Methods for decorrelation/unit-weight reduc-
tion of observations originally developed for LS adjustment
computations have been previously applied to ML1 in the
literature. However, we pointed out that they should not be
unrestrictedly performed in the ML1 context, as we have
theoretically and experimentally shown that they intro-
duced weights proportional to p (but not p) even in ML1
adjustment of independent observations.

In this context, we presented an attempt to formulate
ML1 expressions that can introduce weights of both indepen-
dent and correlated observations, they being proportional to
p or p . Actually, we proposed two new formulations for

Table 6: RMSE between LS(P) and each of the five ML1 approaches

Experiment 1 Experiment 2 Experiment 3

ML1(p) 0.0100 0.0088 0.0032
ML1(P) 0.0100 0.0088 0.0069

ML1( p ) 0.0102 0.0102 0.0040

ML1(W ) 0.0102 0.0102 0.0054
ML1(decorrelation_LS) 0.0102 0.0094 0.0034
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ML1, herein called ML1(P) and ML1(W), extensions of
ML1(p) and ML1( p ), respectively, that can be applied to
both independent and correlated observations. Our formu-
lations allowed covariances to influence parameters esti-
mation in ML1, something impossible to accomplish with
usual formulations ML1(p) and ML1( p ).

We compared the effects of covariances in LS and
ML1 adjustments (an unprecedented analysis in geo-
desy). Considering the proposed expressions for ML1
and the network geometry analyzed, “weak” correlations
seem to have more effect in LS, but the effect in ML1 tends
to be even higher than in LS as the correlations grow.

We also compared the proximity degree to LS of esti-
mated parameters by ML1 with the five approaches tested,
and concluded that ML1(p) was the closest to LS. Finally,
regarding outlier identification (the usual duty of ML1 in
geodetic networks), ML1( p ) had the best performance.
Hence, considering these two practical applications, one
can safely assume observations to be independent, but the
choice between introducing weights proportional to p or

p is an important issue.
Since ML1 solution may not be unique (Abdelmalek

and Malek 2008), we highlight that the conclusions pre-
sented refer to ML1 solution by the simplex method of
linear programming. For future works, one should try to
collect further theoretical and experimental evidences of
the validity of the new formulations presented, and experi-
ments of this article must be extended to other geodetic
networks to further support the points raised. Besides,
new approaches for introducing covariances in ML1 more
appropriated than the unit-weight reduction processes ori-
ginally from LS and than our proposed formulations must
be investigated.
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