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Abstract: Representing the Earth’s physical features onto
a flat surface is a critical and challenging issue for geo-
desists to build topographic mappings at field scale in
various applications. Artificial satellite positioning data
are currently defined on a global geocentric frame, while
terrestrial geodetic networks are determined on a local
ellipsoid. Hence, coordinate transformations in three-
dimensional space are required for data fusion involving
different coordinate systems utilizing common points in
two sets of coordinates. On the other hand, small compa-
nies in many developing countries have some data con-
version difficulties due to the need for high-cost software
and qualified persons. A low-cost automated tool is helpful
in achieving this task and ensuring quality and positional
accuracy. In this investigation, the problem was under-
taken by establishing a software tool in the Microsoft
Visual Studio environment for map-matching with global
coordinates based on similarity transformations and a con-
formal polynomial approach. The tool’s performance was
evaluated through a numerical example to assign trans-
formation parameters and derive coordinates of check-
points from the prediction surface.
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1 Introduction

The main issue in geodesy is (Hirvonen 1960): “Find the
space coordinates of any point P at the physical surface S
of the earth when a sufficient number of geodetic opera-
tions have been carried out along S.” Hence, the selection
of a suitable frame to define the point P on spatial coor-
dinates is critical. Nowadays, the world is witnessing a
new era in data collection methods and visualizing the
Earth’s physical features on a map due to the tremendous
development in geospatial technologies. In practice, the
position of each point on a map is determined by a parti-
cular reference system, which must be identified accu-
rately to attain a high positional quality of spatial data
(Snyder 1997, Kneissl et al. 2011). In contrast, most existing
maps were created by classical surveys adopted on various
local or regional datums that are non-geocentric and
chosen to provide the best fit for the Earth’s shape in a
specific geographic area. The advent of satellite posi-
tioning techniques such as the global navigation satellite
system (GNSS) revolutionized position fixing methods in
geodetic sciences. The GNSS observations are based on the
world geodetic system 1984 (WGS84), and with the growing
exchange of geographic data, both locally and globally,
position information has to be given in both datums
(Yang 1999, Kumar 1988). As a result, there is a necessity
to establish a relationship between two reference frames to
ensure the consistency of the coordinates (Vanicek and
Steeves 1996).

Three-dimensional coordinate transformation is broadly
applied for data fusion of various coordinate systems to
build an interpolation surface with minimal distortions
and estimate the coordinates of non-common locations
(Chen and Hill 2005, Even-Tzur 2018). In general, several
datum shift methods have been investigated in the litera-
ture to change between WGS84 and local datums that
require a case-by-case evaluation due to deformation in
terrestrial networks (Harvey 1986, Abd-Elmotaal 1994, Deakin
and Leahy 1994, Newsome and Harvey 2003, Chuan and Yi
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2014, Marx 2017, Yang et al. 2020, Yang et al. 2022). According
to their simplicity and accuracy, 3D conformal models such
as Helmert, Molodensky—Badekas, Bursa-Wolf, and polyno-
mials (Bursa 1962, Molodensky et al. 1962, Wolf 1963, Krakiwsky
and Thomson 1974, Kutoglu et al. 2002, Soycan 2005) are widely
utilized in surveying, photogrammetry, geographic informa-
tion systems, geodesy, LIDAR, and terrestrial laser scanning
(Kashani 2006, Paffenholz and Bae 2012, Zeng et al. 2018).

The transformation of parameters from GNSS-derived
coordinates to national terrestrial datum or vice versa
include axes rotations, origin transitions, and scaling fac-
tors (Deakin 1998). They are defined using reference
points in two sets of coordinates such that their spatial
distribution and quantity impact the accuracy of results
(Zavoti and Kalmar 2016, Ioannidou and Pantazis 2020).
The redundant stations, which are more than the minimum
necessary number of common ones, are required to provide
the best solution because the least-squares method can be
employed to calculate the polynomial coefficients (Johnson
and Faunt 1992, Challis 1995). Besides, the performance of
the transformation algorithm is primarily evaluated by com-
puting its parameters accuracy and the root mean square
error of control points. This contribution aims to develop a
low-cost spatial tool in the Microsoft Visual Studio environ-
ment to convert positional information to an alternative
datum using 7-parameters similarity models and second-
order conformal polynomial fit.

2 Materials and methods

Sustainable development goals (SDGs) as a roadmap to
construct a better society for humankind must balance
socio-economic and environmental components (GA 2015).
Human capital formation, government policies, and tech-
nological progress are essential for carrying out these aims
(Benhabib and Spiegel 2005, Banerjee and Roy 2014). A
Geospatial database is a vital pillar in digital government
transformation to underpin SDG attainment. In addition,
implementing geodetic infrastructure based on an accurate
and stable coordinate reference frame is significant and will
provide a tie between scientists, policymakers, and geospa-
tial society (Barbero et al. 2019). Previously, the geographic
coordinates, including latitude ¢, longitude A, and ortho-
metric or geoidal height H, have been established world-
wide by classical surveying techniques, but at present,
GNSS technology is applied to measure latitude and long-
itude and ellipsoidal height h on WGS84, as indicated in
Figure 1. Hence, the most central issue in building geoda-
tabases is to unify multi-sources spatial referenced data.
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Figure 1: Geodetic and Cartesian coordinate system.

2.1 Case study description

The test site is situated in the Golden Triangle of Ghana,
between latitudes 4°30’ N and 7°30’ N and longitude 3° W
and 1° E (Figure 2), with a total area of 238,540 km? and a
maximum elevation of 880 m (Higazi 2005). The national
ellipsoid applied in Ghana for all geospatial purposes is
the Accra datum based on the War Office 1926 spheroid,
with European Petroleum Survey Group (EPSG) code of
2136, which has the following linear parameters: semi-major
axis a = 6378300.00 m, semi-minor axis b = 6356751.689 m,
and inverse flattening 1/f = 296.0 (Ayer and Fosu 2008). The
conformal projection adopted in Ghana for mapping the
geographic position of features is a transverse Mercator
projection that covers an area by a single grid zone
extending longitudinally 6°, from north to south, with a
central meridian of A, = 1° W, the origin of latitude ¢, = is
4° 40’ N with scale factor K = 0.99975. False easting E, =
274320.00 m and false northing N, = 0.00 km are intro-
duced in the mapping system to keep the positive value
of coordinates (Thomas et al. 2000). The performance of
the developed tool is verified using a dataset acquired from
a previous study to build a numerical model across several
control points (Ziggah et al. 2019) to change coordinates
from the geocentric datum into the Ghana local reference
frame.

2.2 Research methodology

The use of information processing technology to conduct
critical functions in the mapping industry has been growing
in recent years. The increasing diversity of computerized
geographical data sources creates new challenges from
the technical point of view that must be overcome to enable
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Figure 2: Spatial distribution of GNSS control points in the study area.

efficient integration. Indeed, if building a complete software
package is required, available free spatial tools cannot be
directly integrated since they are either built on old trans-
formation techniques or lack the integrity of commercial
software with a suitable user interface. Accordingly, this
investigation endeavors to build a low-cost tool for harmo-
nizing heterogeneous geospatial data sources within a coor-
dinate reference system by providing the knowledge and
framework required to develop a tool that can run on its
own for coordinate transformation, while preserving that
adaptability to be implemented in a complete software
package. First, various 3D transformation models will be
reviewed to highlight their characteristics and mathematical
equations to be implemented in the developed tool. Also,
the performance of the software tool will be evaluated to
verify that it meets all specified requirements and positional
quality. It aims to prove that all performance-degrading
faults have been eradicated before the system is used.
Finally, conclusions can be drawn based on the study
results. Accordingly, Figure 3 presents a methodology flow-
chart used in this research.

2.3 Similarity transformation model

A similarity transformation is a coordinate change that
contains just a scale, rotation, and translation. The Bursa—
Wolf model is a simplified form of 3D Helmert’s approach

utilized to determine the datum transformation parameters
between any two 3D reference systems. It defines a geome-
trical relationship between the source (Xs, Ys, Zs) and target
(X7, Yy, Z7) datums using common pairs of points whose
coordinates are delivered in both the systems. A seven-para-
meter function includes three transition components (6, Oy,
6z) along the X, Y, and Z-axes, respectively, three axes rota-
tions (Rx, Ry, Rz), and a scale factor (K), as shown in Figure 4.
The rotation angles are positive counterclockwise when con-
sidered from the axis’s positive end towards the center of the
coordinate. The conversion expression of Bursa—Wolf is given
in matrix form by equation (1) (Blewitt et al. 1992, Giines and
Demir 2021, Kalu et al. 2022).

Xr Xs 1 Ry -Ry|| X%
YT = YS + (1 + K) _RZ 1 RX Ys
ZT Zs Ry -Ry 1 Zs
M
Ox
+ 5y
0z

The Bursa—Wolf transformation parameters are identi-
fied from a redundant set of n points by applying parametric
least-squares adjustment to fit data to a mathematical sur-
face. This approach is formulated as a Gauss—Markov model
to produce a minimum difference between the observed and
computed coordinates of control points (Chang 2015). Equa-
tion (2) shows the matrix form of parametric least-squares
adjustment of the Bursa—Wolf method with its solution
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Figure 3: Graphical depiction of the research methodology.

Figure 4: Bursa—Wolf algorithm of the datum transformation.

given in equation (3) (Mikhail and Gracie (1981), Ogun-
dare (2018)).

V+ B -A=f,

3nx1  3nxm mx1 3nf><1 ©)
N = B'. B,

mxm  mx3n 3nxm

t = Bt. f,

mx1l  mx3n 3px1
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’
3nx1  3nxm  mx1

QAA = Nila
o [2 2 2
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where B is the numerical coefficient matrix of parameters,
V is the vector of observational residuals, A is the vector
of unknown parameters m, N is the square symmetric
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matrix, fis the vector of numerical constants, Qn, is the
cofactor matrix which describes the accuracy of the esti-
mated parameters, v is the residual vector of each common
point position, and o, is the posterior reference standard
deviation.
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The Molodensky—Badekas model, as a similarity trans-
formation, includes a centroid to release the strong correla-
tion between the adjusted parameters when utilized across
a limited Earth surface area (El-Mowafy et al. 2009).
The average of coordinates of control points is employed
to obtain the centroid coordinates (X., Y., Z.) for the
Molodensky—-Badekas algorithm, as shown in equation
(7) (Kutoglu et al. 2002). Hence, the source system coor-
dinates are shifted to the centroid according to equation
(8). The general mathematical relationship of the model
is described in equation (9). Figure 5 demonstrates the
centroidal system whose origin is at a centroid, and its
axes are parallel to the source one. The matrixial form of
equation (9) can be written as mentioned previously in
Bursa—-Wolf for applying the least-square solution with
a difference in the B matrix of numerical coefficients
indicated in equation (10).

n n n t
X Yoz = | Zifs ZidS Zf=125f], @)
n n n
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Figure 5: Graphical representation of Molodensky—-Badekas
method.
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2.4 Polynomial algorithm

A fitting model is established to clarify the relationship
between the dependent variable and several independent
ones. The mathematical algorithm of the second-degree
polynomial regression is expressed in equation (11) to
align spatial data obtained from local reference datum
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to their corresponding values in the WGS84 (Habib and
Rabah 2006).

Xr Xs X,
r|i =% +|% |, (11)
Zr |, Zs |; Z |;
Xo = do + @@ + @A + ash + a,p? + asA? + agh?
+ a;pA + aghh + ayph,
Yo = by + by + boA + bsh + byp? + bsA? + bgh? 1)

+ b7 + bgAh + byph,
Zo=Co+ Q@ + GA + Gh + c4? + cA? + cgh? + gpA

+ cghh + coph,

where (X,, Y,, Z,) are the datum shifts at the common
point i.

The Cauchy—-Riemann condition is imposed on each
couple of coordinates in equation (12) to achieve a con-
formal property of the 3D transformation model as fol-
lows (Lo et al. 2016, Habib et al. 2019):

X _ Y _ 32
dp oA on’
(13)
o, _ 3, K, _ 3 A _
o dp’ oh dp  oh o’
Xo=Ao +A@ + BA-Ch+ E(p> -A>-h?) +0
+ 2FpA + 2Gph,
Y, = B, — Bp + AA + Dh — F(p? — A% + h?) + 2EpA 14)
+ 0 + 2GAh,
Zy=Co + Cp — DA + Ah — G(@? + A> — h?) + 2FAh
+ 2Eph + 0.

Initially, the approximate values of the polynomial
parameters are identified, where the elements ¢;, ¢}, €
are computed from equation (11) to estimate the polyno-
mial coefficients using least-squares adjustment.
= (X — X5)i — {Ao + Ap, + BA; - Ch + E(p? - A}

- hd) + 2FpA; + 2Gphil,
€§ = (YT - Ys),‘ - {Bo - B(Pi + A/(i + Dh - F((pl2 - Aiz

+ hd) + 2EQA; + 2GAhy},

E;I =(Zr - Zs)i - {Co - C(pi + DA; + Ah - G((PI2 + )liz
- hiz) + ZFhiAi + ZE(l)ihi},

(15)
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Figure 6: Data transformation and mapping process in the developed tool.
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Figure 7: Schematic diagram of developed tool life cycle.

3 Proposed software

Geospatial data represent real-world features in a sui-
table coordinate system. Hence, the coordinates must
be converted to harmonize heterogeneous georeferenced
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data from different sources. This study built a low-cost
spatial tool called “TopoGC” in the Microsoft Visual
Studio environment to compare source and destination
geodetic coordinates based on the process indicated in
Figure 6. The three-parameter, five-parameter, Bursa—
Wolf, Molodensky-Badekas, and second-degree polyno-
mial transformation algorithms were addressed to be
automated. By defining projection parameters, the con-
verted coordinates can be mapped to a flat surface using
an appropriate grid reference system. Figure 7 depicts the
life cycle steps of the implemented software. The devel-
opment process has six phases which start with require-
ment identification according to software system applica-
tion and finish with evaluation and maintenance against
the design principles. The logic plan’s detail is expressed
in the design stage by conducting the flowchart and pseu-
docode algorithm and then coded using Visual C++ pro-
gramming language. However, the TopoGC tool enables
users to modify point coordinates inserted manually or
from MS-Excel. The outputs can be represented, printed,
and exported to MS-Excel. Indeed, the ActiveX control is
constructed to share information between this applica-
tion and MS-Excel using Visual Basic language.

Transformation from system | to Il...

System |
Sovermorate: 7 | D [ Latitude (gr) |  Longtiude (gr) | Ellipsoid Height (m) |
Golden Triangle RINE P1 6.0667700000 N 0.4706200000 W 78.2740
2 P3 6.0612100000 N 1.6678900000 W 275.1440
3 P4 5.8697200000 N 0.8160100000 W 83.4520
4 P5 6.5989300000 N 0.1355500000 W 524.5490
5 P7 6.7264400000 N 1.4291200000 W 437.6990
. 6 P9 7.3064400000 N 0.8506400000 W 782.2080
Area: 7 P13 8.0398500000 N 1.8116300000 W 536.0060
Ghana EHE: P14 7.6805300000 N 2.2408400000 W 560.8290
9 P18 7.1906200000 N 1.8831500000 W 472.1430
10 P19 6.4995800000 N 2.1846100000 W 399.3480
Convert to:
Add. l Adjust... | Delete l Impnr(...l Up | Down | Used ellipsoid: ,a)bal 84 LI
Bursa and wolf j
System Il
# | ID | Latitude (gr) | Longtiude (gr) ] Geoidal Height (m) I
1 P1 6.0636700000 N 0.4709400000 W 82.0660
2 P3 6.0580800000 N 1.6681700000 W 279.5250
Parameters... | 3 P4 5.8666200000 N 0.8163100000 W 88.3690
4 P5 6.5958300000 N 0.1358800000 W 525.5950
Final... l 5 P7 6.7233400000 N 1.4294000000 W 438.7550
6 P9 7.3033700000 N 0.8509400000 W 780.2020
7 P13 8.0368100000 N 1.8119100000 W 530.9260
Open... | 8 P14 7.6774800000 N 2.2411200000 W 557.6480
9 P18 7.1875500000 N 1.8834300000 W 471.1630
Save... | 10 P19 6.4964700000 N 2.1848900000 W 401.8270
Save As... |
Close | Add... | Adjust... | Delete | Import... | Up | oo | Used ellipsoid: [War Office 1926 -

Figure 8: Dialog for calculating transformation parameters.
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3.1 Estimating transformation parameters

The TopoGC tool is a Windows-based application with a
user-friendly interface for datum transformation and map-
ping operations. TopoGC toolset automatically changes
three-dimensional geodetic coordinates from one geo-
graphic datum to another using the transformation defini-
tion dialog box, as shown in Figure 8. The mathematical
model parameters are assigned after inserting the coor-
dinates of control points in both reference frameworks.
The spatial data coordinates can also be imported
from an MS-Excel file reordered within the list view
or saved in a text file. The report of calculation results
appears in a new window, which includes the fol-
lowing elements:

¢ Type of transformation algorithm utilized in computation.
¢ Reference points coordinates.

¢ Transformation parameters with their accuracy.

¢ Residual of observations.

e Standard error of unit weight.

3.1.1 Conversion into a new reference system

The coordinates transformation to another surface is per-
formed from the Final Coordinate box according to the
calculated parameters. The coordinates should be input,
and the conversion into a new system will be achieved,
and the output data are displayed in the list view that
may be printed, exported to MS-Excel, or projected using
an appropriate mapping system. On the other hand, the
moving from

3.1.2 Geodetic vs geocentric coordinates

As is well-known, the coordinates in a geodetic system
are characterized as either geodetic or geocentric. The
conversion between these two systems is one of the fun-
damental tasks in computational geodesy. Equation (18)
directly converts the spheroidal coordinates of point B in
Figure 1 into Cartesian coordinates, while the inverse
solution is provided in equation (19) (Borkowski 1989,
Ligas 2013). The developed tool has automated the rela-
tionship between Cartesian and geodetic coordinates on a
biaxial ellipsoid.

X = (v+ h)cos ¢ cos A,
Y=(v+ h)cos ¢ sinA,
Z=w{l-e?+h) sinep,

(18)
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A = cos™! (E),
Py

/2 . p . sin3
¢ = tan! Z+e? b -sinfw ’ (19)
Pr-e?-a - cos’w
P
h=—2__y,
cos ¢

where € is the first eccentricity squared and v is the
radius of curvature in the prime vertical.

2
Z'“), Pr= X+ 12, e2=1—(9).
Pf‘b a

w = tan™! (

4 Software verification

Changing the coordinates between different reference
systems is vital for fusing various spatial data sources.
In this regard, the performance of the TopoGC application
will be verified using data illustrated in Figure 2. How-
ever, the results of mathematical equations given in the
Sections 2 and 3 were generated utilizing a developed tool
and compared with others from a commercial software
package (Geographic Calculator) and manually in an MS-
Excel spreadsheet. Generally, the comparison results showed
identical values to the manual approach and minor varia-
tions (in millimeters) with the commercial one. In practice,
the research underlines the importance of combining the
quantitative and qualitative approaches in implementing



DE GRUYTER Automated tool for integrating maps with GNSS satellite positioning data =— 149

Table 1: 7-parameters transformation

Parameter Bursa-Wolf Molodensky—Badekas Units
Estimated value oy Estimated value oy

Ox 149.0982 +15.7469 196.623 +0.2404 m

Oy -31.5840 +24.7694 -33.333 +0.2404 m

0z -327.6362 +24.8691 -322.370 +0.2404 m

Rx -1.1715 +1.5791 -1.1715 +1.5791 cc

Ry 0.0445 +2.4880 0.0445 +2.4880 cc

R —-0.0505 +2.4620 —-0.0505 +2.4620 cc

K 7.5015 +2.4531 7.5015 +2.4531 ppm

Xo — 6340219.599 m

Yo - -134333.647 m

Z, - 675857.018 m

[ +0.760 +0.760 m

an accurate analysis of datum transformation algorithm
choice. Figure 9 shows the flowchart adopted for 3D trans-
formation coordinates. The parameters of the Bursa—Wolf
and Molodensky-Badekas models with their accuracies
were estimated and recorded in Table 1. The residuals
of control points were also calculated, which are identical
for both the systems. The obtained standard deviation
values of unit weight show the accuracy of the conversion
harmonization process for every dataset. Another valida-
tion of interpolated surface can be achieved by deter-
mining the coordinate differences at checkpoints between
the observed and computed data from the derived para-
meters. Indeed, the Molodensky—-Badekas transformation
requires more information (the centroid coordinates) than
the Bursa—Wolf method, which is why the Bursa-Wolf is
more common. Table 2 indicates the obtained polynomial
algorithm parameters and standard deviations, repre-
senting the model’s accuracy in fitting the control points.
Generally, the finding’s reliability relies on the accuracy of
the observations in both the systems and the proper dis-
tribution and coverage of data in the investigated area.
Table 2 indicates the obtained polynomial algorithm para-
meters and standard deviations, representing the model’s
accuracy in fitting the control points. Generally, the find-
ing’s reliability relies on the accuracy of the observations
in both the systems and the proper distribution and cov-
erage of data in the investigated area.

The findings of the above tables can be summarized
in the following expression to facilitate a comparative
analysis of the investigated models. These values reflect
statistically significant results on a well-fit surface for the
training dataset in the study area. Determining a suitable
transformation method relates to the distortion at data
points and spatial pattern distribution. However, com-
paring descriptive statistics between tested approaches

indicates that the seven- and five-parameter models can
predict coordinates with an accuracy better than others,
while the standard errors in the polynomial model showed
the highest trend. Additionally, another investigation was
applied based on the visual inspection of residual values
in Cartesian coordinates between known and extracted
data from estimated surfaces.

Ox [ +0.071 | +0.068 +0.070
oy | |+0.412 +0.409 +0.671
o, | |+0.631 +0.666 +0.602
O, | +0.760 |, py, [ £0.737 )5 po [ £0.839 |5 5y
[ +0.093 ]
+0.699 .
+0.697
[ £0.881 |y,

Figure 10 confirms that the polynomial model resulted
in the highest AX error among various addressed transfor-
mation approaches, whereas the three-parameter method
had a comparable value of 67% of the points, while the

Table 2: Coefficients of the polynomial model

Estimated value Oa Units

A, 196.547 +0.874 m
B, -31.813 +2.354 m
GCo -321.441 +0.870 m
A -7.169 x 1073 +4.566 x 107% —
B 7.169 +25.153 -
C 2.423 x 107% +5.281 x 1073 -
D -5.132 x 1073 +4.822 x 107> —
E -1.11x 1077 +6.361 x 107° m™t
F -6.398 x 107° +5.632 x 107 m~?
G 9.508 x 10°° +5.593 x 107° m~?
Oo +0.881
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Figure 12: Z-coordinate differences between measured and reproduced values at checkpoints.
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Figure 13: Interface to transform between geodetic and Cartesian coordinates.

five- and seven-parameter methods were 33%. The AY
values in Figure 11 show that the five- and seven-para-
meter methods are superior to the others. At the same
time, they had more significant distortions than the X-
direction. On the other hand, the worst performance occurred
in the polynomial. Similarly, the Z-coordinate differences in
Figure 12 clarify that the five and seven parameter techniques
also generated the best interpolator than the others. Besides,
the capability of investigated methods was evaluated by com-
puting the vector values of each testing dataset and repre-
senting them, as shown in Figure 13. The assessment results
quality give insight into the ability of the five- and seven-
parameter models compared to the considered ones, while
polynomial ranks the last.

Besides the numerical comparison of the three models
provided in this study, other literature sources have inves-
tigated the suitability of these models, and their conclu-
sions match those of this study (Featherstone 1997, Ziggah
and Youjian 2013, Ziggah et al. 2019).

5 Conclusion

In the past, the national geodetic control networks have
been constructed by accurate astronomical and geodetic
observations on the non-geocentric datum. In recent
years, the dynamic development of modern satellite posi-
tioning devices has brought new techniques to capture
data based on a geocentric reference system. However,
integrating multi-source geospatial data increases opera-
tional efficiency and improves the mapping industry. The
diversity of reference systems was addressed by transforming

positional information into an alternative datum using math-
ematical models in which the parameters set are defined
from control points. This study considered this issue by dis-
cussing the theoretical aspect of the geodetic harmonization
process of spatial datasets and developing a tool in the
Microsoft Visual Studio environment using the least-
squares approach to estimate the correct values of trans-
formation parameters. The results indicated that the
developed automated tool provides high precision in com-
puting transformation models. Nevertheless, the concept
of an ideal transformation algorithm faces a real challenge
of being influenced by the distortion of terrestrial network
positions with those acquired from GNSS receivers. The
quantitative analysis of transformation algorithms showed
that five- and seven-parameter models are the best fit
surface for the common points, followed by the three-
parameter and polynomial algorithms.
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