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Abstract: Recently a number of geoid campaigns were per-
formed to verify different types of geoid and quasigeoid mod-
eling techniques. Typically, GNSS-leveling was employed as
an independent method, but in some cases zenith camera
astronomic deflection data were also used in astrogeodetic
determinations of the geoid and/or quasigeoid. However, due
to the uncertainty in the topographic density distribution
data (and thereby in orthometric heights), we conclude
that neither GNSS-leveling nor astrogeodetic techniques
can reliably verify differences between gravimetric geoid
models at several centimeter levels in rough mountainous
regions. This is because much the same topographic data
are used both in the gravimetric geoid models and in their
verifications by geometric and/or astrogeodetic geoid
models. On the contrary, this is not a problem in verifying
gravimetric quasigeoid models, as they are independent of
the topographic density distribution, and so is the related
normal height used in GNSS-leveling.
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1 Introduction

During the last two decades several geoid campaigns
have been performed, resulting in more accurate geoid
and quasigeoid models than ever before. Frequently the
effect of topographic mass density variations is signifi-
cant but smaller than other geoid modeling uncertainties
that one typically encounters in geoid validations. However,
results from the geoid test networks in Auvergne, France
(e.g., Yildiz et al. 2012), and more recently along a polygon
in the Colorado Rocky Mountains with a rough topography
reaching 4,000 m of elevation (e.g., Willberg et al. 2020,
Wang et al. 2021), suggest that geoid or quasigeoid accura-
cies of the order of a few centimeters are possible. However,

it is well known that the quality of a geoid model depends
on the available knowledge of the topographic density dis-
tribution, while this is not needed for determining quasi-
geoid models. There are various methods used in studying
the quality of gravimetric geoid models, such as deter-
mining standard errors in least squares modeling and com-
parison with more or less independent techniques. Here we
study the effect of the erroneous data of topographic density
distribution in the validation of geoid models and scrutinize
some of the strategies.

2 Propagation of erroneous
topographic data

Let us neglect the topographic error caused by erroneous
topographic height and consider only the effect of uncer-
tainty in the mean density po of the Bouguer shell of
thickness H. If p, is correct, the topographic potential
of the Bouguer shell at a point P at radius rp = R + Hp
would be given by

R,
2q

VE = o ” Jrl—rdo, 1)
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where po = Gpo = gravitational constant x density, R and
Rs = R + H are the inner and exterior radii of the shell, respec-
tively, o is the unit sphere and Ip = \/ 3 + 12 — 2rpr cos P
with 1 representing the geocentric angle between computa-
tional and integration points. The total topographic correction
of order F, e.g., in applying the remove-compute-restore or
KTH techniques, becomes (cf. Sjoberg 2007)

21,
corr(N) = — Ko

H, 2
Yo
where y, is normal gravity at the reference ellipsoid. If
Po = 2,670 kg/m3, this correction reaches the magnitudes
of 11, 44 and 280 cm for H = 1, 2 and 5 km, respectively.
Considering an error du in the mean density, it
propagates to the remaining geoid model error
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By assuming an error of 10% (which may well be
exceeded) the remaining geoid biases will be of the
orders of 11, 44 and 280 mm, respectively. Hence, there
is no doubt that such errors are most significant when
verifying and comparing various precise geoid solutions
in rough topography.

3 Use of least squares modeling

In the KTH method (Sjoberg and Bagherbandi 2017, Sect.
6.2.2), frequently named least squares modification of
Stokes’ formula, different types of data (such as a global
gravitational model and terrestrial gravity data) are com-
bined in a least squares procedure that also provides
standard errors of the estimated geoid heights. For com-
parison, standard errors can also be computed from the-
oretical error estimates obtained from a priori error and
signal degree variances that are used in the adjustment
(without actual gravity data). Comparing a priori and
posteriori solution standard errors yields an indication
of the fitness of the used theory, degree variances and
data, but the error sources of the erroneous topographic
height and density models will not be controlled in
this way.

One recent version of the UNB technique for geoid
determination (Foroughi et al. 2019) employs a discrete
least squares method for solving an overdetermined ver-
sion of Poisson’s equation in downward continuation of
gravity anomalies from Earth’s surface to the Bjerhammar
sphere (cf. Sjoberg 1975, Bjerhammar 1975, Sjéberg and
Bagherbandi 2017, Sect. 7.1.2). Here the resulting error
estimates of gravity anomalies on the internal sphere
must be regarded as internal errors, which are not affected
by an error in the topographic density, and the same con-
clusion may be drawn for the propagated errors in geoid
heights after Stokes integration.

4 Verification by GNSS-leveling

A most common technique to verify a gravimetric geoid
model Ng,,y is to compare it with the so-called geometri-
cally determined geoid height:

Ngeo =h- H, (4)
where h is the geodetic height of the topographic surface

and H is the orthometric height. However, as H cannot be
determined without topographic gravimetric data, the
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errors in the two geoid heights (Ngyay and Nge,) are highly
correlated. More precisely, if we write equation (4) in
the form

h=N+H, (5)

and note that h is a pure geometric quantity, it is obvious
that any error in the density model causes an error dH in
orthometric height, which implies an error dN = —dH in
the geoid height. Sjoberg (2018) emphasized that the
error in H caused by an erroneous density distribution
of the topography yields the same error with opposite
sign in the gravimetric geoid height. Hence, this error
cannot be verified with GNSS-leveling.

5 Verification by astro-gravimetric
leveling

If two points A and B on the geoid are sufficiently close,
their geoid height difference can be approximated by

AN = N}, — N} = —%s, )
where €, and &g are the deflections of the vertical along
the tangent from A to B, and s is the distance between the
two points. This technique for geoid determination was
already reported by Helmert (1880), but traditional astro-
nomic determination of the deflections of the vertical is
not accurate enough to cope with today’s precise geoid
models. However, since a few decades, a new tool, the
zenith camera, allows determining deflections of the ver-
tical to an accuracy of the order of 0.”1 (Hirt and Flury
2008, Hirt et al. 2010), so that the geoid height difference
between two points separated by 1km could be deter-
mined to the order of 1 mm from equation (6). By accu-
mulating several such differences, the error grows to
about 4-8 mm for a 38 km polygon. This technique was
applied by Westrum et al. (2021) in an attempt to verify
the accuracies of gravimetric geoid and quasigeoid heights
determined in the Colorado Rocky Mountain test area.

Despite the encouraging agreement between gravi-
metric and astrogeodetic geoid heights, the result must
be put at doubt with respect to the uncertainties in topo-
graphic density and orthometric heights, which affect all
such geoid estimates. This is because the deflections of the
vertical are observed at the topographic surface, while equa-
tion (6) needs deflections at sea level. This problem was
solved by Bodemueller (1957), who formulated the curvature
reductions d¢ and dn to the observed surface deflections in
the north-south and east-west (x,y) directions:
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H o3 g —
de=-2% 5 "8 anp, (7a)
g ox 8
and
Hog g-
dn = 2% + g tan f3,, (7b)
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where H is the orthometric height, g and g are surface and
mean gravity along the vertical and 3, and j3, are the north-
south and east-west slopes of the terrain, respectively.

Alternatively, the orthometric reduction between points
A and B can be provided from spirit levelling by the formula
(Heiskanen and Moritz 1967, p. 168):

B _ _
0Cyp = Y2 Yogn o 81 "oy, _ S8 = Yop - (g
A Y Yo Yo
which should be subtracted from the primary result of
equation (6). Here 6n represents the levelled height dif-
ferences and H,, where x = A, B are the orthometric
heights at end points.

It is obvious that the corrections provided by equa-
tions (7a), (7b) and (8) utilize orthometric heights and
mean gravity along the vertical from the geoid to topo-
graphic surface, i.e., quantities that cannot be precisely
estimated without detailed information on the topographic
density distribution.

6 Quasigeoid determination

Verifying quasigeoid models is much easier than geoid
models. First, the quasigeoid can be determined without
any information on the topographic density distribution.
Second, the reduction in zenith camera data from the
topography to the geoid is now replaced by the reduction
in the telluroid. Hence, in this case, equation (8) is sub-
stituted by the normal correction (Heiskanen and Moritz
1975, p. 171):
B _ _
NCyp = zg‘ YO(Sn + Va — yOH;\V B yoHéV, 9)
IR Yo Yo

where the mean gravity along the vertical and orthometric
heights at the end points A and B are substituted by mean
normal gravity (y) and normal heights (H"), which can be
determined without topographic density data. Also, GNSS-
levelling, yielding the quasigeoid height by the equation

{=h-HV, (10)

is an excellent independent tool in verifying a quasigeoid
model.
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7 Discussion

Let us return to the equation

dN = —dH, 11)

and consider the following facts:

As the problem of determining the geoid (as well as
the orthometric height) is an inverse problem (due to the
partly unknown density distribution of the topographic
density), equation (11) is met not only for the true mod-
eling of the topography but for any such model. However,
if the topographic model differs for geoid and orthometric
height models, equation (11) fails.

There are national and regional geoid and ortho-
metric height models based on specifically defined topo-
graphic models, which may or may not agree. If they
disagree, any GNSS- or astro-gravimetric leveling valida-
tion will, in principle, fail. As an example, Kingdon et al.
(2005) rigorously determined the orthometric heights for
Canada, which should (only) match a national geoid
model based on the same advanced topographic model.

8 Concluding remarks

Today moderate or ultra-high degree global gravitational
models in combination with regional gravity data are fre-
quently compared for geoid determination and validated
by GNSS-leveling and/or astrogeodetic leveling at the few
centimeter-level. However, as shown in this article the
two techniques using GNSS- or astrogeodetic-leveling
cannot detect errors in the geoid models caused by erro-
neous topographic density distribution data. Already a
topographic density error of order 10% may propagate
to geoid errors exceeding several centimeters in mountai-
nous regions with elevations reaching 2 km or higher.

This validation problem does not refer to quasigeoid
determination, which does not depend on the topo-
graphic density distribution. More precisely, the height
anomaly (= quasigeoid height) can be determined by the
formula Tp/yq, where point P is located on the topo-
graphic surface and normal gravity yq is located at normal
height. Assuming that the Earth’s surface is accurately
known from geometric geodetic methods, yq replaced by
normal gravity at Earth’s surface yields the height anomaly
good to within 3 mm at any place on Earth, and the accu-
racy can be further improved by iteration.

The geoid problem is an inverse problem as well as a
free boundary value problem (BVP), while determining
the quasigeoid is a forward problem and fixed BVP. It is
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not only the lack of knowledge of the topographic density
distribution that complicates the geoid task, but (to some
extent) this problem is also due to the missing knowledge
of the zero-level of the topography, i.e., the unknown
geoid.
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