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Abstract:Weanalyzed globally averaged satellite altimetry

mean sea level time series during 1993 – 2018 and their fu-

turemanifestations for the following 25 years using a kine-

matic model, which consists of a trend, a contingent uni-

formacceleration, and a randomerrormodel. The analysis

of variance results shows that the model explains 71.7%

of the total variation in global mean sea level for which

70.6% is by the secular trend, and 1.07% is due to a con-

tingent uniform acceleration. The remaining 28.3% unex-

plained variation is due to the random errors, which are

dominated by a �rst order autoregressive process driven

mostly by oceanic and atmospheric variations over time.

These numbers indicate more bumps and jumps for the

future manifestations of the global mean sea level anoma-

lies as illustrated using a one-step ahead predictor in this

study. Our �ndings suggest preponderant random errors

are poised to further confound and negatively impact the

certitude of published estimates of the uniform global sea

level acceleration as well as its prediction under an in-

creasingly warmer Earth.

Keywords: Satellite altimetry; Global mean sea level trend

and acceleration; Global mean sea level prediction; Cli-

mate change

Averages play two tricks: �rst, they put life’s lumps and
bumps through the blender . . .

M. Blastland & A. Dilnot, The Numbers Game, 2009.

1 Introduction
Evidence for global mean sea level (GMSL) rising faster

during the 20th and 21

st
centuries resulting from an in-

creasingly warming Earth is an important indicator in
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assessing anthropogenic contributions to the complex

climate change feed-back system. Recently, Nerem, et

al. (2018) reported 0.084±0.025 mm/yr

2

(68% con�dence

level, CL) GMSL acceleration since 1993, which is inferred

from the globally averaged satellite altimetry (SA) time se-

ries. Subsequently, Ablain et al. (2019) furnished another

estimate of GMSL acceleration, 0.12±0.07 mm/yr

2

(90%

CL). However, the reported estimates for uniform acceler-

ations at globally distributed tide gauge, TG, stations with

century long records are preponderantly smaller than the

acceleration estimated from globally averaged SA data (Iz

and Shum 2019). Kleinherenbrink et al (2019) assessed

plausible errors due to altimetry instrument (internal path

delays due to thermal variations), and geophysical correc-

tion (wind/wave dependent sea state bias), and concluded

that their estimated global mean acceleration using al-

timetry sea-level data have primarily a range of 0.015–

0.019±0.026 mm/yr

2

and therefore statistically not signi�-

cant at the 95% con�dence level. Moreover, a recent study

by Iz and Shum (2020) challenged the SA based GMSL uni-

form acceleration on the basis of unmodelled systematic

confounders. They demonstrated that the non-linear glob-

ally averaged sea level anomalies canbe explained equally

well by a number of previously established periodicities in

sea levels (Iz 2014 and 2015), which were not taken into

consideration by the recently reported SA based uniform

GMSL acceleration estimates.

This studywill also operate on amodel that includes a

uniform (constant) acceleration representation. As brie�y

discussed above, the presence and uniformity of the GMSL

acceleration are not established with certitude. Conse-

quently, the GMSL acceleration will be called a contingent
uniformGMSLacceleration as a reminder of this important

distinction throughout the narrative.

In this study, we expose another pitfall in detecting

global uniform sea level acceleration during SA era, and

its predictions by demonstrating the manifestations of the

unmodeled global sea level anomalies caused by the ran-

dome�ects intensi�edby a�rst-order autoregressiveAR(1)

process. The AR(1) correlation coe�cient of the GMSL SA

time series is estimated to be ρ̂ = 0.935, which reduces

the e�ective sample size of the monthly GMSL time series

https://doi.org/10.1515/jogs-2020-0115
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from 25 years down to 10 months! Such a drastic impact of

the unexplained random disturbances on solution statis-

tics necessitates an in-depth analysis of their e�ects on the

magnitudes of the current and futuremanifestations of the

GMSL anomalies.

In the following sections, we �rst gave a brief descrip-

tion of the globally averaged SA monthly time series to be

used in this study. We then used a kinematic model with

a secular trend and a contingent uniform acceleration to

represent GMSL variations as observed by SA. A detailed

Generalized Least Squares, GLS, solution was reported to-

gether with the results of an analysis of variance, ANOVA,

study.We then summarized the two approaches in predict-

ing future GMSL anomalies due to a contingent uniform

global sea level acceleration and illustrated sampledman-

ifestations of future GMSL anomalies for a visual aswell as

quantitative assessment of the predicted variations for the

recent the contingent GMSL acceleration.

2 Global Mean Sea Level Data
This study utilizes monthly averaged GMSL data, shown

in Figure 1, which were generated using the Integrated

Multi-Mission Ocean Altimeter Data for Climate Research

(GSFC, 2017). It combines Sea Surface Heights from

TOPEX/Poseidon, Jason-1 and OSTM/Jason-2 with all sys-

tematic errors corrected and placed onto a georeferenced

orbit (Beckley, et al., 2016). Unfortunately, no uncertain-

ties for the month by month averaged anomalies were

available.

A critical issue for the SA data sets, as mentioned be-

fore, was raised by Kleinherenbrink et al. (2019). Their as-

sessment of the globally averaged SA data uncertainties

rendered the GMSL acceleration claimed by Nerem at al.,

2018, and Ablain et al., 2019) statistically not signi�cant at
a 95% con�dence level. Nonetheless, our inquiries to ob-

tain the revised data used in their study to replicate their

result were unanswered. Hence, we will assume that the

above data set is still viable for this investigation because

this serieswas also nearly replicated by the other data cen-

ters (vox populi).

Fig. 1. Globally averaged mean mean sea level anomaly as observed
by SA during 1993 – 2018 (GSFC, 2017).

3 A kinematic model with a trend
and a contingent uniform GMSL
acceleration

The following kinematic model will be under considera-

tion to represent the GMSL anomalies with a secular trend

v and a contingent uniform acceleration a,

ht = ht
0

+ v (t − t
0
) +

1

2

a (t − t
0
)

2

+ et (1)

In this model the time index is denoted by t = 1 . . . T,
whereT is thenumber ofmonths and includes all the avail-

able globally averaged SA data denoted by ht. The inter-

cept ht
0

is the reference height of the GMSL time series de-

�ned at the reference epoch t
0
chosen to be in the middle

of the series. The intercept ht
0

is to be estimated together

with the parameters for the global velocity v and the con-

tingent acceleration a.
The statistical properties of the model are as follows.

The disturbances, , are �rst-order autocorrelated, i.e.

et = ρ et−1 + ut 0 ≤ |ρ| < 1 (2)

where ρis the correlation coe�cient of the AR(1). The ran-

domnoise is ut ∼ (0, σ2u), and σ2u is the variance of the ran-
dom error (shocks/innovations). Disturbances et and ran-

dom noise ut are related to each other as follows (Touten-

burg, 1982, pg. 24),

E(et) = 0, var(et) = σ2 = σ2u(1 − ρ2)−1 (3)

In this formulation,wemodel the T×T variance covariance

(V/C) matrix of the �rst-order autocorrelated disturbances

Σ as,

Σ = σ2 ·


1 ρ ρ2 · · · ρT−1

ρ 1 · · · · · · ρT−2
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

ρT−1 ρT−2 ρT−3 · · · 1

 (4)
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The autocorrelation decreases for increasing time lag be-

cause |ρ| < 1. The correlation between two random vari-

ables et and et−τ is σ2ρτ, where τ is the time lag. The

above patterned V/C matrix has an analytical inverse and

is given by,

Σ−1 = σ−2
1 − ρ2W

=



1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ · · · 0 0

0 −ρ 1 + ρ2 · · · 0 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1


(5)

where W is a T × T symmetric positive de�nite matrix

(ibid). The unknown autocorrelation coe�cient that ap-

pears in the above expression canbe estimatedby carrying

out GLS solutions for various autocorrelation coe�cients

within the interval 0 ≤ |ρ| < 1. The solution that mini-

mizes the standard error of the solution σ and/or Durbin-

Watson statistic, DW, that is closer to the its expected value

2 gives the optimal correlation between adjacent distur-

bance terms (Neter et al., 1996).

4 Solution
Weestimated themodel parameters described in the previ-

ous section using aGLS solution. The trend and the contin-

gent uniform acceleration estimates are 3.27±0.10 mm/yr.,

and 0.081±0.030 mm/yr

2

, respectively. The variance in�a-

tion factor, VIF¹, between the two parameters is close to 1,

which permits us to focus only on the accelerationwithout

interfering the trend estimate in the following sections.

The classical ANOVA computations carried out to-

gether with the GLS solution reveal that the model ex-

plains 71.7% of the total variation in the GMSL for which

70.6% belongs to the trend, 1.07% is due to the contingent

uniform acceleration and the remainder 28.3% are the are

the autocorrelated random e�ects driven by episodic ran-

dom shocks/innovations as they will be elucidated later.

Among the other statistics, the estimated AR(1) correla-

tion coe�cient is ρ̂ = 0.935. This estimate is unexpect-

edly large as compared to the AR(1) experienced at glob-

1 VIF is a measure of the linear dependence among the columns (co-

e�cients of the parameters) of the coe�cient matrix interpreted in

the context of its impact in in�ating the variances of the estimates. A

VIF factor close to 1 is an indicator of the independence of a variable

from the linear combination of the other variables.

ally distributed TG stations, which remain mostly within

the interval [0.1 – 0.4] (Iz, 2014). As we stated before, the

AR(1) process is important in assessing the reliability of the

recent GMSL trend and acceleration and in predicting the

future GMSL anomalies especially when such correlations

are large.

Inserting the estimated model parameters for the

trend and the contingent acceleration into eqn. (1) enables

us to compute the residuals êt. The estimated correlation

coe�cient for AR(1) in eqn. (2) allows us also estimating

the underlying random noise. Both times series are dis-

played in Figure 2.

Fig. 2. Residual anomalies and the underlying random noise.

Theestimated standard error of thedisturbances σ̂ cal-
culated using the following relationship is about 2.89 mm

for the T × 1 vector of autoregressive residual vector, ê,

σ̂ =
√

êTW−1ê
T − 3 = 2.89mm (6)

from which σ̂u was calculated using,

σ̂2 = σ̂2u(1 − ρ̂2)−1 → σ̂u = 1.06mm (7)

Eqn. (2) was also used to calculate the random noise from

which their standard deviation was determined to be 1.05

mm.

Although the basis of the noise is random, its impact

on the unmodeledGMSL variability, i.e. residuals is almost

three times larger because of theAR(1) process. The autore-

gression causes bumps and jumps in the residuals during

their time evolution as shown in Figure 2.

Plotting residuals against the adjusted GMSL anoma-

lies² is intended to explore systematic unmodelled e�ects

visually. Figure 3 shows that residuals are not systematic

2 Adjusted GMSL anomalies are obtained by adding the residuals to

the observed GMSL anomalies.
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but exhibit transient abrupt changes induced by the ran-

dom noise, termed as shocks or innovations in macroeco-

nomics (Qin and Gilbert, 2001). These residual anomalies

are important to understand the recent claims about the

uniform global sea level acceleration (Nerem et al., 2018

and Ablain et al., 2019). Both studies deployed an ordi-

nary least squares, OLS, solution in their estimation of

trend and uniform acceleration ignoring the AR(1) process

then corrected the uncertainties of the estimates for the

AR(1) e�ects, or for the other source of error in the study by

Ablain et al. (2019). The use of OLS may seem to be viable

theoretically because the expected values of the OLS esti-

mates are the same as contrasted to the one obtainedusing

GLS solution, yet it may potentially be misleading under

certain conditions, which we will examine in the subse-

quent sections.

Fig. 3. AR(1) residuals are plotted against the adjusted anoma-
lies. They reveal unpredictable bursts, caused by random
schocks/innovations, over time.

The lagged autocorrelations of the residual and the

random noise shown in the correlogram (Figure 2) con-

�rm the random nature of the noise and AR(1) properties

of the residuals. The AR(1) is maximum for monthly inter-

vals. The magnitudes of the subsequent autocorrelations

diminish rapidly until the 8 month lags, beyond which

there are no statistically signi�cant lagged e�ect at 95%

CL.

The outcome of the GLS solution can be summarized

visually in Figure 5 and Figure 6. Figure 5 displays the

prepondorance of the trend in observed GMSL anomalies,

their adjusted values inclusive of acceleration, and the

smooth predicted³ variability. In this presentation, nonlin-

earity of the uniform acceleration is barely perceptible in

3 Prediction does not always refer to a future behavior but also to the

present by referring to the adjusted observations calculated using es-

timated model parameters.

Fig. 4. Correlogram for AR(1) residuals and noise.

comparison to the observed random variability. Figure 6

provides visual clarity to assess how important the �rst or-

der autocorrelation is in relation to the acceleration signal

and the underlying randomnoise as we emphasized in the

introduction section. This unmodeled variability is critical

since it will be carried over the futuremanifestations of the

global sea level variations and must be accounted for in

predictions.

Fig. 5. The visual synopsis of the GLS solution inclusive of the trend
and the contingent acceleration during 1993 - 2018.

5 The origin of the autoregressive
disturbances

Although we have demonstrated the AR(1) properties of

the disturbances, the random nature of the underlying

noise cannot be well established. The noise exhibits ran-

domness (Figure 2 and Figure 6), free from systematic vari-

ations visually, but they do not pass the runs test for ran-
domness at 95% signi�cance level. Yet, as discussed in Iz

and Shum (2020) and Nerem et al. (2018), some of the un-

explainedGMSL anomalies during the SAperiod can be at-
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Fig. 6. The visual synopsis of the GMLS anomalies, centered at the
middle epoch of the series, due by the estimated contingent and
uniform acceleration only.

tributed Multivariate ENSO Index , MEI, which combines

both oceanic and atmospheric variables, and facilitates

assessing the e�ect of ENSO in a single index. The index

gives real-time indications of ENSO intensity through his-

torical analysis of various data (NOAA, 2019). The residu-

als and MEI time series displayed in Figure 7 have a max-

imum cross-correlation 0.5, which occurs with a time lag

of 4 months. This �nding suggests that SA measurement

and its data processing errors are not solely responsible

for the autoregressive behavior of the residuals. More im-

portantly, the cross correlation between the residuals and

MEI evokes the necessity of using residuals in GMSL pre-

dictions because they are integral the part of a series of

naturally occurring phenomena. This is the topic of the fol-

lowing sections.

Fig. 7.MEI and the GLS residuals (mm) during the SA period.

6 Prediction of GMSL anomalies
Recent publication by Nerem et al (2018) projected their

uniform GMSL acceleration �ndings till 2100. Such pro-

jections are safe but of limited use, especially at local

scales. In particular, the ways sea level projections were

conducted in lieu of predictions are too simplistic for such

an important topic (see Bray D., and H. von Storch, 2009

for an in-depth comparison between projections and pre-

dictions). Because SA is capable of observing as well as

predicting GMSL variations with precision, it is the pil-

lar of the climate change science by establishing baselines

against which all climate related projections can be tested

and veri�ed. Here, we introduce two di�erent approaches

to initiate a discussion as well as to gain insight about the

manifestations of GMSL anomalies not only for the future

but also for shedding light into the present.

Classical predictions based mean square error, MSE,

criterion provide information about the expected values

of future events. They are pure and smooth in theory, but

lose precision in the real world, as if they are two dif-

ferent realities. Predictions built on expected values of

the model parameters, neatly de�ned around the edges,

become an exercise in suppressing realities providing a

false clarity. Predictions based onMSE criterion serve well

for now for assessing the GMSL budget when precision

is not a mandate, yet the lesser known predictions based

on the MSE of Prediction, MSEP, are rough on the edges

and more informative as demonstrated by Iz, et al. (2012),

and Iz (2018), because they account for the e�ect of ran-

dom variations that dissipates in classical predictions and

indispensable for coastal studies. In the following sec-

tion, we provide summaries of the operational formula-

ries based on the publications by Goldberger (1962), Taut-

enburg (1977), and Toutenburg (1982). The MSEP criterion

was �rst introduced to the Geodetic literature by Scha�rin

(1983), and Iz (1987) examined its applications for the anal-

yses of crustal deformations.

7 Least Squares Prediction Based
on MSE

Consider the following linear model,

y = Xb + e, e ∼ (0,σ2W) (8)

where,

y the T x 1 vector of the dependent variable, is random

and observable

X the T x K matrix of explanatory variables, is known and

�xed

b the K x 1 vector of regression coe�cients, is �xed and

unobservable

e the T x 1 vector of disturbances, is random and unob-
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servable

Σ = σ2W the T x T dispersion matrix is unobservable.

σ2 the variance of the disturbances.

The prediction equation that follows is,

y
*
=X

*
b+e

*
e
*
∼ (0,σ2W

*
) (9)

Where y
*
is the T

*
× 1 vector of prediction horizon from

which all the other dimensions of the prediction equa-

tion and the corresponding statistics can be inferred. In

this prediction model, the V/C matrix of the future dis-

turbances e
*
, and their dependence to the recent distur-

bances e are given by,

E(e
*
eT
*
) = σ2W

*
, E(e eT

*
) = σ2W

0
(10)

The solution to this classical prediction formulation is

based on the following MSE matrix of the predicted ŷ
*
,

which is given by,

MSE(ŷ
*
) := Σŷ

*

= E(ŷ
*
− E(y

*
))(ŷ

*
− E(y

*
))

T
(11)

which predicts,

ŷ
*
=X

*
b̂ (12)

where b̂ is the estimated vector of model parameters. The

V/C matrix Σŷ
*

of predicted observation vector ŷ
*
is,

MSE(ŷ
*
) = Σŷ

*

= σ2X
*
(XTW−1X)−1X

*

T
(13)

The resulting predictor is unbiased. In this approach, the

interdependence between the random disturbances and

future disturbances disappears thanks to MSE target func-

tion that is based on the expected values for the future

observations. The predicted values are theoretically aver-

aged realizations of their future expected values and con-

sequently, blind to the underlying present and future ran-

dom variations. A realistic representation of the predicted

values is given in the following section.

8 Least squares prediction based
on MSEP

Considering the same linear model given by eqn.(8), an al-

ternative predictor is obtained by minimizing the follow-

ing target function MSEP,

MSEP(ŷ
*
) := E(ŷ

*
− y

*
)(ŷ

*
− y

*
)

T
. (14)

The resulting predictor is an alternative to the classical

least squares predictor. The formulation is based on min-

imizing the expected value of quadratic distance between

the predicted and the true values instead of their expected
values of predictions. The predictor ŷ

*
⁴ based on MSEP is

also an unbiased predictor of y
*
and is given by,

ŷ
*
=X

*
b̂ +W

T
0W−1ê

*
(15)

In this expression, the �rst element of the above relation-

ship is the expectation of they
*
, which is the classical least

squares predictor given by eqn. (12). The second element

is a predictor of the future disturbance vector e
*
, which is

missing in the classical case. The corresponding MSEP is

given by,

MSEP(ŷ
*
)=σ2X

*
(XTW−1X)−1XT

*

+ σ2W
*
−

−σ2X
*
(XTW−1X)−1XTW−1W

0
−

−σ2WT−1
0

W−1

(XTW−1X)−1XT
*

(16)

The V/C matrix, E(e
*
eT
*

) = σ2W
*
, of the future distur-

bancese
*
and the interdependence between the future dis-

turbances with the recent disturbances e, i.e., E(e eT
*

) =

σ2W
0
, appears in this predictor and in its MSEP. IfW

0
= 0

then,

MSEP(ŷ
*
) = σ2X

*
(XTW−1X)−1XT

*
+ σ2W

*
(17)

Hence,MSEP(ŷ
*
)−MSE(ŷ

*
) > 0, i.e. positive semi de�nite,

which means that CIs to be established by the MSEP are

larger than those given by those from the MSE criterion.

If these a priori information between the past and the

future are not readily available, the following tweak (Iz,

2008) still enables predictions as demonstrated in the fol-

lowing section.

9 One-step-ahead prediction and
the future manifestations of the
GMSL anomalies due to a
contingent acceleration

A special case of the above predictor is the one-step-ahead

predictor and given by,

ŷ
*
= ŷ

*t*+1 = x̂T
*t*+1 b̂ + e*t*+1 e

*t*+1 ∼ (0, σ2
*
) (18)

Considering eqns. (1) and (2), the above expression re-

duces to the following quanti�able form for predicting fu-

ture anomalies due to a contingent GMSL acceleration one

4 We did not use a di�erent notation for the predicted values based

on MSEP criterion for simplicity. The common notation does not cre-

ate ambiguity since they are used separately in their own context.
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step at a time,

ŷ
*t
*

+1

=

1

2

â(t
*

− t
*0

)

2

+ρ̂ê
*t
*

(19)

where â, ρ̂ and σ̂2u are the parameters that were previ-

ously estimated using the recent GMSL time series. The ex-

pected value of the predictor in the above expression the

one-step-ahead predictor based on MSE criterion given by

eqn. (12).

We can now generate residuals one-step at a time us-

ing a random error based on a normal distribution with

mean zero and variance , i.e., ût
*

(0, σ̂2u) together with for

a prediction period of equivalent to the current SA time

span of t = 1 . . . T
*
. Having already estimated parameters

for a contingent uniform acceleration , future residuals en-

able us predicting future GMSL anomalies using eqn. (18).

A sample of future manifestations are displayed in Figure

8.

The �rst column of the Figure 8 contrasts the residu-

als with AR(1) properties and the random errors, namely

shocks/innovations that generate them. The second col-

umnplots compare them to the predicted anomalies based

solely on the contingent acceleration calculated using the

classical predictor for a predicted time series centered at

themiddle epoch (the smooth curve). The plots in the third

column contrasts predictions are based onMSE andMSEP

together with the root cause of the future variability due to

the random shocks/innovations. Because the recent ran-

dom variations are demonstrably caused by the oceanic

andatmospheric variables interactions over time, the sam-

pled future manifestations of the GMSL anomalies in this

�gure are realistic. They are far from being smooth as their

counterparts, i.e. averaged predicted values, which decep-

tively conceals.

The randomly laden but smoothed averaged anoma-

liesmaynot be a problem in detecting aGMSL acceleration

in the future once the low frequency confounders are iden-

ti�ed with increasing time span of the series and the ef-

fect of the autocorrelation is properly modeled as demon-

strated in this study. But for the present, they may be mis-

leading in detecting and estimating a uniform accelera-

tion, if it exists, during the recent SA period. This is the

topic of the next section.

10 Predicting the present
As we stated in the footnote earlier, the term prediction
also applies to recent events. A GMSL anomaly calculated

using the kinematic model with its estimated parameters

in place at an epoch during the same period from which

they were generated, can also be termed a prediction. In

line with this view, we can also treat the future manifesta-

tions of GMSL anomalies, as if theymay have been alterna-

tive realizations of the recent GMSL anomalies during the

same period. To investigate the tale-telling of these alter-

native series for the present, we simulated GMSL anoma-

lies during the SA altimetry period using the estimated sea

level acceleration, 0.081±0.030mm/yr

2

, the AR(1) process

with and a normal distribution generator with u ∼ (0, σ̂2u),
where σ̂u = 1.06mm. We then used these series to esti-

mate again the underlying known contingent acceleration

using the GLS as if they were realized during the same SA

period (1993 – 2018). We repeated these steps to generate

one hundred time series. We found that a large number of

the estimated contingent uniform accelerations are con-

centrated around the underlying acceleration 0.081±0.030

mm/yr

2

, as expected (Figure 9). Yet, the range of estimates

varied within the interval [0.036 - 0.126] mm/yr

2

suggest-

ing that the current acceleration estimatemight have been

one of them as well given the marked contribution of the

random noise. We also observed that the range of the ac-

celeration estimates diminishes in proportion to the mag-

nitude of the AR(1) correlation coe�cient ρ̂ used in gener-

ating the time series, eqn. (19). In other words, the contin-

gent acceleration estimate depends on the strength of the

AR(1) e�ect, underlying shocks/innovations. The timing of

these unmodeled random variations is also important be-

cause e�ects close to the beginning or to the end of the se-

ries, are known to have high leverages in estimatingmodel

parameters as demonstrated in Iz and Shum (2000). As a

result, a shock disseminated through the AR(1) process in

the actual GMSL times series may have unduly biased the

acceleration estimate. Therefore, given the 1.07%of the to-

tal variability of the contingent uniform acceleration com-

pared to the preponderant 28.3% unexplained variation

due to the random e�ects, the certitude of the accelera-

tion estimate, despite its statistical signi�cance, is ques-

tionable in addition to the other systematic confounders

discussed in Iz and Shum (2020).

In this study, we did not quantify the standard error

of the predicted anomalies, which can be obtained using

eqn. (13) and eqn. (16) simply because, in all likelihood,

they will not be a realistic representation of the prediction

errors because the globally averaged time series were al-

ready preprocessed by the several data centers in order to

remove yearly variations for which we have no idea about

their magnitudes and their statistical properties. In ad-

dition, monthly SA series may have already been overly

smoothed using a low pass �lter or moving averages, a

practice causing loss of information about current and up-
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Fig. 8. Future manifestations of the GMSL anomalies due to a contingent acceleration. Contribution due to the trend is not included.
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coming sea level variations realistically as demonstrated

in this study.

Another harmful e�ect of smoothing SA series is the

increase in autocorrelation in the globally averaged se-

ries. Our previous experience with SA time series at local

and regional scale revealed that AR(1) e�ects are not large

[0.1 – 0.4] and in step with those experienced at nearby

TG station records (Iz et al., 2020). Therefore, part of the

markedly large correlation coe�cient of the globally aver-

aged SAmeasurements could be an artifact caused by tem-

poral smoothing and spatial averaging.

Fig. 9. Distribution of the alternative estimates for the contingent
acceleration from the randomly manifested GMSL series for the
current period of SA measurements.

11 Conclusion
In the past, less than a handful of studies recognized

autocorrelations exhibited by sea level time series as

observed at TG stations. In the case of globally averaged

SA time series, this e�ect turned out to be strikingly large

(ρ̂ = 0.935) and that it impacts not only investigating

the presence of a potential GMSL acceleration but also

making predictions about the upcoming GMSL anomalies.

In this study, we expanded our earlier analysis of the

GMSL variations during 1993 – 2018 using a kinematic

model (Iz and Shum 2020) to include an ANOVA study.

The ANOVA results revealed that because only 1.07% of

the modeled contingent uniform acceleration explains

71.7% of the total variation, the AR(1) e�ect has a marked

propensity to bias solution statistics despite the post

estimation corrections. Therefore, AR(1) e�ect has the

potential to confound detecting a uniform GMSL accel-

eration as well as predicting future GMSL anomalies. We

also predicted probable future manifestations of GMSL

changes due to a contingent acceleration for the following

25 years using a one-step ahead predictor as an alternative

to the classical least squares predictor. The formulation

based on the alternative predictor accounts for the e�ect

of unmodeled random anomalies in GMSL time series

e�ectively for a realistic representation of the upcoming

GMSL anomalies, given the similitude of the residuals

and MEI. Our abundantly illustrated predictions manifest

more bumps and jumps in GMSL anomalies caused by

oceanic and atmospheric e�ects and their interactions

during the upcoming 25 years.
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Appendix: List of abbreviations

ANOVA Analysis of Variance MSE Mean Square Error
AR(1) Autocorrelation of First Order MSEP Mean Square Error of Prediction
CL Con�dence Level OLS Ordinary Least Squares
GLS Generalized Least Squares OSTM Ocean Surface Topography Mission
DW Durbin - Watson TG Tide Gauge
ENSO El Niño-Southern Oscillation TOPEX Topography Experiment
GMSL Global Mean Sea Level SA Satellite Altimetry
MEI Multivariate ENSO Index VIF Variance Inflation Factor
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