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Abstract: For the calculation of gravity disturbance in the
Earth’s external gravity �eld, the Stokes-Pizzetti integral is
a commonly usedmethod. However, when the target point
approaches theEarth’s surface, suchproblemsas singular-
ity and discontinuity arise due to the Stokes kernel struc-
ture itself. To settle the problems, �rstly the reason for sin-
gularity anddiscontinuitywasdiscussed, and thenmodi�-
cation wasmade to the integral formula, by which the sin-
gularity at the surface point is eliminated. Finally the non-
singular integral formulas for the calculation of disturbing
gravity were derived. In numerical experiments, an area in
China was selected to test the modi�ed formula. Numeri-
cal results show that the modi�ed formula performsmuch
better than classical Stokes-Pizzetti integral formulawhen
dealing with the calculation of the radial component of
gravity disturbance near the Earth’s surface.

Keywords: discontinuity; radial component of gravity dis-
turbance; Stokes integral kernel; singularity

1 Introduction
On the basis of the classical Stokes theory and Moloden-
sky theory, a lot of wide and deep research has beenmade
on the calculation methods of the elements of the Earth’s
external gravity �eld. The methods could be divided into
two kinds: model approximation and algorithm approxi-
mation. The former includes the Stokes integral method,
upward continuation method, etc., and those proposed
in modern physical geodesy, like Molodensky solution,
Brovar solution and analytical continuation solution. The

*Corresponding Author: D. Zhao: Surveying and Mapping Engineer-
ing Department, Geospatial Information College, Information Engi-
neering University, Zhengzhou Science Avenue 1, Henan Province,
China, 450001, E-Mail: zhaodongming0510@126.com
S. Li, Q. Wang, Z. Gong: Surveying and Mapping Engineering De-
partment, Geospatial Information College, Information Engineering
University, Zhengzhou Science Avenue 1, Henan Province, China,
450001

algorithm approximation methods include the Bjerham-
mar solution, single layer density solution, point mass so-
lution, least square collocation solution and spherical har-
monics solution.

The Stokes integral method provides the external dis-
turbing potential solution based on the boundary value
problem of spherical gravity anomaly. (Heiskanen WA,
1967) described the principle for the calculation of grav-
ity disturbance using the Stokes integral, along with the
derivation of the formulas of the components of gravity
disturbance. (Featherstone WE, 2003) proposed �ve mod-
i�cation methods of the Stokes integral kernel, and he
made comparisons and analyses on truncation error and
accuracy of the modi�ed integration kernel using Aus-
tralian gravity observations. (Naja�-Alamdari, 2006) de-
rived two types of ellipsoidal correction formulae of the
Stokes integrationkernel. TheStokes integral is further ap-
plied along with the remove-and-restore technique (Yildiz
et al, 2012).

The upward continuation method belongs to the �rst
kind boundary value problem. In the method the Poisson
integral is applied in the derivation of the external dis-
turbing gravity potential using the gravity potential on the
Earth’s surface.

The Molodensky solution is based on the boundary
value problem on the telluroid, from which the anoma-
lous potential is represented as a single layer potential
on the telluroid, and the gravity disturbance is calculated
by converting the boundary conditions into integral equa-
tions. Based on the Molodensky theory, the Brovar solu-
tion also provides the gravity disturbance by solving the
integral equation, and when the telluroid coincides with
the sphere, the integral term in the integral equation be-
comes zero and thus the computation is simpli�ed. As for
the analytical solution, the surface gravity anomaly is con-
tinuedonto the level surface of the computationpoint, and
then the gravity disturbance is calculated using the Stokes
integral. (MoritzH, 1979) presented in detail the basics and
formulas for the above solutions. (Tziavos, 2013) analyzed
the role the terrain correction term plays in the analyti-
cal continuation solution to Molodensky problem. (Sanso,
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2017) proved the equivalence between the analytical solu-
tion and Bjerhammar solution and pointed out the di�er-
ence in connotation between the two solutions.

(Hsu H, 1984) proposed the single layer density
method from Bjerhammar theory for the computation of
the external disturbing potential using virtual single layer
density, which simpli�es the integral kernel’s structure.
(Bjerhammar, 1987) presented the solution to the Bjerham-
mar’s virtual sphere boundary value problem with the
single layer density being parameter. (Sideris, 1986) dis-
cussed the use of FFT and therefore improves the calcula-
tion speed dramatically. As the discretization form of sin-
gle layer density method, point mass method was more
widely used in computations. (Rüdiger L, 1993) proposed
the free-positioned pointmassmethod,which ismore �ex-
ible, and (Miao L, 2014) described the four important pa-
rameters and their computations of the free-positioned
point mass method. The point mass method has been
discussed in literature on regional gravity �eld modeling
(Denker, 2013) due to its kernel’s structure.

In the paper the main topic is focused on the sin-
gularity and discontinuity problem of the Stokes integral
method in the calculation of gravity disturbance compo-
nents when the computation point approaches or even co-
incides with the mobile point on the boundary surface.
The paper aims at the improvement of the integral kernel
in order to reduce the singularity and discontinuity prob-
lem in the computation of gravity disturbance when the
computation point approaches the boundary surface from
outside.

2 The integral method of the
determination of external
disturbing gravity potential
based on Molodensky Problem

In the classical Stokes theory, the solution to the external
disturbing potential T is founded on the sphere approx-
imation of the Earth’s surface, however the Molodensky
theory deals with the following boundary value problem

∆T(P) = 0, P outside Σ[
− ∂T∂ρ −

2T
ρ

]
Σ

= ∆g(Σ)
T → 0, when ρ → ∞

 (1)

The variables and symbols are illustrated in Fig. 1 and
Fig. 2, where Σ is the natural surface of the Earth, and
on the surface we have ground gravity anomalies ∆g(Σ).
(λ,φ,ρ) is the spherical coordinates of the computation

point P, in which λ is longitude, φ is geocentric latitude
and ρ is geocentric distance.Whenviewing the Earth’s sur-
face as a sphere with radius R, the external disturbing po-
tential T can be formulated by Eq. (2) using the Stokes-
Pizzetti integral

Fig. 1. Boundary surface of Molodensky Problem

Fig. 2. Variables in the Stokes kernel

T(λ, φ, ρ) = 1
4π

∫∫
Σ

∆g(Σ)S(ρ, ψ)dΣ (2)

S(ρ,ψ) is the kernel function. dΣ is the spherical unit ele-
ment,dΣ=R2cosφ′dφ′dλ′.ψ is the spherical angle between
the two radius of the computation point and the mobile
point on the sphere.

As the spherical approximation of the Earth’s surface
will result in deviations for terrain such as mountain area,
in that case the ground gravity anomaly ∆g can be analyt-
ically continued to some level surface σ(Moritz, 1980). De-
note the gravity anomaly on the level surface as ∆g′, and
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then the external disturbing potential T can be formulated
as follows

T(λ, φ, ρ) = 1
4π

∫∫
σ

∆g′S(ρ, ψ)dσ (3)

3 The discontinuity and singularity
problem of the integral method
near the Earth’s surface

(HeiskanenWA, 1967) presents the generalized Stokes for-
mula that takes into the 0-th term

T(λ, φ, ρ) = 1
4π

∫∫
Σ

∆g
(
S(ρ, ψ) − 1

ρ

)
dΣ (4)

Take the notation

S(ρ, ψ)=S(ρ, ψ) − 1
ρ (5)

and the three components of gravity disturbance can be
formulated as follows

δρ = 1
4π

∫∫
Σ

∆g(Σ)∂S̄(ρ, ψ)
∂ρ dΣ

δλ = − 1
4πρ

∫∫
Σ

∆g(Σ)∂S̄(ρ, ψ)
∂ρ sin αdΣ

δφ = − 1
4πρ

∫∫
Σ

∆g(Σ)∂S̄(ρ, ψ)
∂ρ cos αdΣ

(6)

∂S̄(ρ, ψ)
∂ρ = − 2(ρ − R cosψ)

r3 − 3
ρr + 6r

ρ3 + 13R
ρ3 cosψ

+ 6R
ρ3 cosψ ln ρ − R cosψ + r

2ρ (7)

∂S̄(ρ, ψ)
∂ψ = − 2ρR sinψ

r3 − 3R sinψ
ρr + 5R sinψ

ρ2

+ 3R sinψ
ρ2 ln r + ρ − R cosψ

2ρ

− 3R2(ρ + r) sinψ cosψ
ρ2r(r + ρ − R cosψ) (8)

From Figure 2, r is the distance from the computation
point to the mobile point on the boundary surface, and
therefore when r is equal to 0 or near 0, then singularity
problem will arise for Eq. (6)~(8).

On the other hand, take the notation S̄(ρ, ψ)= 2
r +

Q(ρ, ψ), and then Eq. (4) can be expressed as

T(P) = 1
4π

∫∫
Σ

[
2
r + Q(ρ, ψ)

]
∆gdΣ (9)

where

Q(ρ, ψ) = −3r
ρ2 −

5R cosψ
ρ2 − 3R

ρ2 cosψ ln r + ρ − R cosψ
2ρ

(10)
Denote the two integrals on the right of Eq.(9) as T1 and
T2,

T1 = 1
4π

∫∫
σ

2
r ∆gdΣ

T2 = 1
4π

∫∫
σ

∆gQ(ρ, ψ)dΣ

According to (Heiskanen and Moritz, 1967), when the cal-
culation point P approaches the surface layer, the deriva-
tive of T1 with respect to radius is similar to that of a single
layer potential(

∂T1
∂ρ

)
P→P0

= −∆g + 1
4π

∫∫
Σ

∆g ∂∂ρ

(
2
r

)
dΣ (11)

From Eq.(9) the radial component of the gravity distur-
bance outside the boundary surface has the following ex-
pression

δρ(P) = 1
4π

∫∫
Σ

∆g(Σ) ∂∂ρ

(
2
r

)
dΣ

+ 1
4π

∫∫
Σ

∆g(Σ)∂Q(ρ, ψ)
∂ρ dΣ (12)

And when the computation point passes the surface
of boundary, the limit of the radial component of gravity
disturbance is

δρ(P)P→P0 = − ∆g + 1
4π

∫∫
Σ

∆g(Σ) ∂∂ρ

(
2
r

)
dΣ

+ 1
4π

∫∫
Σ

∆g(Σ)∂Q(ρ, ψ)
∂ρ dΣ (13)

Comparing Eq. (12) and Eq. (13), the radial component
of gravity disturbance is not continuous when the com-
putation point passes the boundary surface from outside,
which results in the discontinuity problem.

4 Improvement of the
Stokes-Pizzetti Integral formula
for the calculation of gravity
disturbance

Using the orthogonal characteristic of spherical harmon-
ics we have = 0, and denote the gravity anomaly at the
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spherical point P0 as ∆gP0 , and we have

1
4π

∫∫
Σ

S̄(ρ, ψ)∆gP0dΣ = −R
2

ρ ∆gP0 (14)

Substitute Eq. (14) into Eq. (4)

T(P) = 1
4π

∫∫
Σ

S̄(ρ, ψ)
[
∆g(Σ) − ∆gP0

]
dΣ + R2

ρ ∆gP0 (15)

Considering Eq. (9)

T(P) = 1
4π

∫∫
σ

[
2
r + Q(ρ, ψ)

]
[∆g(Σ) − ∆gP0 ]dΣ + R2

ρ ∆gP0

= 1
4π

∫∫
σ

[∆g(Σ) − ∆gP0 ] 2
r dΣ

+ 1
4π

∫∫
σ

[∆g(Σ) − ∆gP0 ]Q(ρ, ψ)dΣ + R2

ρ ∆gP0 (16)

The �rst term of the right part of Eq.(16) is the poten-
tial generated by a single layer, and it could be proved that
its radial derivative is continuous when the computation
point passes the sphere

1
4π

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂
∂ρ

(
2
r

)
dΣ
∣∣P→P0

=
[
∆g(Σ) − ∆gP0

]
P→P0

+ 1
4π

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂
∂ρ

(
2
r

)
dΣ

(17)

Because
[
∆g(Σ) − ∆gP0

]
P=P0

= 0, from Eq. (17) we have

1
4π

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂
∂ρ

(
2
r

)
dΣ
∣∣P→P0

= 1
4π

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂
∂ρ

(
2
r

)
dΣ

Therefore we have

δρ(P) = 1
4π

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂S̄(ρ, ψ)
∂ρ dΣ − R

2

ρ2 ∆gP0

(18)
Eq. (18) is continuous from theboundary surface to the

exterior space due to the fact that (∆g−∆gP0 ) is zero on the
surface.

For the horizontal components of disturbing gravity
we have

δφ(P) = − 1
4πρ

∫∫
Σ

∆g ∂S̄(ρ, ψ)
∂ψ cos αdΣ

= − 1
4πρ

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂S̄(ρ, ψ)
∂ψ cos αdΣ

(19)

δλ(P) = − 1
4πρ

∫∫
Σ

∆g ∂S̄(ρ, ψ)
∂ψ sin αdΣ

= − 1
4πρ

∫∫
Σ

[
∆g(Σ) − ∆gP0

] ∂S̄(ρ, ψ)
∂ψ sin αdΣ (20)

5 Numerical experiments
For the test of the proposed method, a close-loop numer-
ical experiment on the calculation of gravity disturbance
wasmade. An area of 2◦×2◦ coverage in Chinawas selected
and the computation points are located in the grids of dif-
ferent altitudes with 2′×2′ resolution above the selected
area, and therefore, the number of computation points are
the same for each height level.

Firstly, the three gravity disturbance components of
each computation point were calculated using the EIGEN-
6C4 gravity �eld model which is truncated to degree and
order 2160, which are taken as reference values or true val-
ues. The unit of the value of gravity disturbance is mgal
(1mgal = 10−5ms−2).

Secondly, to calculate the gravity disturbances of grid
points of di�erent altitudes using the classical Stokes inte-
gral and the proposed method of the paper, ground grav-
ity anomalies of 10◦×10◦ coverage were computed using
the EIGEN-6C4 of 2160 d/o and then gravity anomalies of
2′×2′ resolution were generated using interpolation pro-
cess, due to the fact that the EIGEN-6C4 model is equiv-
alent to 5′×5′ resolution. Based on the generated grav-
ity anomalies, the gravity disturbance of the computation
points were calculated using the classical Stokes integral
and modi�ed Stokes integral method respectively.

For the computation points within di�erent altitude
grids, there are two kinds of gravity disturbance di�er-
ence: true values vs classical Stokes integral results, and
true values vs modi�ed Stokes integral method. Statistics
were made based on the gravity disturbance di�erence for
each height level, which are shown in Figure 3 and Figure
4, where δgλ, δgϕ, δgr represents the longitudinal, latitu-
dinal and radial component of gravity disturbance respec-
tively. In the following �gures, std is the short for standard
deviation.

Comparing Fig. 3 and Fig. 4, Fig. 5 and Fig. 7, Fig. 6
and Fig. 8, we can �nd that the stds of δgr component dif-
ference between classical Stokes integral values and true
values vary dramatically from near the surface to the al-
titude 10 km above the surface, and the stds of δgr com-
ponent di�erence betweenmodi�ed Stokes integral values
and true values vary relatively smoother,which indicates a
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Fig. 3. stds of δg component di�erence between classical Stokes
integral values and true values

Fig. 4. stds of δg component di�erence between classical Stokes
integral values and true values

stable accuracy, from near the surface to the altitude 10km
above the surface.

6 Summary
In the calculation of external disturbing gravity, the clas-
sical Stokes-Pizzetti integral is widely applied. However,
it has such defects as singularity and discontinuity prob-
lem when the calculation point approaches the boundary
surface very closely. The singularity problem is caused by
the near 0 distance between the computation point and
themobile point on the surface andwhen the computation
point approaches the surface, the �rst-order derivative of
disturbing potential with respect to normal is not continu-
ous. In the paper, the reason for the singularity problem

Fig. 5. di�erence of δgr between classical Stokes integral values
and true values at altitude near 0 m

Fig. 6. di�erence of δgr between classical Stokes integral values
and true values at altitude 500 m

and discontinuity problem were theoretically illustrated
by formulation.

The modi�ed Stokes-Pizzetti integral formula was
furthermore proposed. The proposed modi�ed Stokes-
Pizzetti integral formula is not only continuous when ap-
proximating the surface, but also has no singularity prob-
lem. Numerical results show that the modi�ed formula
performs much better than classical Stokes-Pizzetti inte-
gral formula when dealing with the calculation of the ra-
dial component of gravity disturbancenear theEarth’s sur-
face. Numerical results also show that both the classical
Stokes-Pizzetti integral and the modi�ed Stokes integral
have almost the consistent accuracy when used to calcu-
late the horizontal components of gravity disturbance. It is
recommended that themodi�ed Stokes integral be used to
calculate the gravity disturbance near the Earth’s surface.
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Fig. 7. di�erence of δgr between modi�ed Stokes integral values
and true values at altitude near 0 m

Fig. 8. di�erence of δgr between modi�ed Stokes integral values
and true values at altitude 500 m
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