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Abstract: Knowledge of vertical crustal movement is fun-
damental to quantify absolute sea level changes at tide
gauge locations as well as for satellite altimetry calibration
validations. While GPS measurements at collocated tide
gauge stations fulfill this need, currently only few hundred
tide gauge stations are equipped with GPS, and their mea-
surements do not span a long period of time. In the past,
several studies addressed this problem by calculating rel-
ative and geocentric trends from the tide gauge and satel-
lite altimetry measurements respectively, and then differ-
ence the two trends to calculate the rate of changes at
the tide gauge stations. However, this approach is sub-
optimal. This study offers an optimal statistical protocol
based on the method of condition equations with unknown
parameters. An example solution demonstrates the pro-
posed mathematical and statistical models’ optimality in
estimating vertical crustal movement and its standard er-
ror by comparing them with the results of current meth-
ods. The proposed model accounts for the effect of auto-
correlations in observed tide gauge and satellite altimetry
sea level time series, adjusts observed corrections such as
inverted barometer effects, and constraints tide gauge and
satellite altimeter measurement to close. The new model
can accommodate estimating other systematic effects such
as pole tides that are not eliminated by differencing.
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1 Introduction

Knowledge of vertical motion is fundamental to quan-
tify absolute sea level changes at tide gauge (TG) loca-
tions, and for satellite altimetry (SA) calibration valida-
tions. While global positioning system (GPS) measure-
ments at collocated TG stations also fulfill this need, cur-
rently only few hundred TG stations are equipped with GPS
and span a sufficiently long period of time. Several studies,
such as Cazenave et al. (1999), Nerem and Mitchum (2002),
Kuo et al. (2004), Garcr’a et al. (2007), Ray et al., (2010),
and others addressed this problem by differencing the es-
timated rate of change in sea level time series observed by
both SA (geocentric rates) and TG (relative rates) to the ex-
tent the sea level signals are sufficiently similar over the
same area. The difference of the estimated linear trend is a
measure of vertical crustal movement (VCM) experienced
at a TG station.

Nonetheless, the recovery of the VCM is by the current
studies is sub-optimal! due to the omission of autocorre-
lations in TG and SA time series, which leads to Type I er-
rors in testing null-hypotheses about the estimated param-
eters. Although studies by Bouin and W6ppelmann (2010),
Ray et al. (2010) recognized the existence of the autocorre-
lations in TG and SA time series and accounted for in er-
ror bars of the estimated VCM, their approach is also sub-
optimal as compared to the proposed protocol deployed in
this study. All these studies are also sub-optimal because
they apply corrections rather than adjust corrections that
are also observed quantities, such as Inverted Barometer
(IB) effects, or corrections for tidal variations and others.

1 An optimal, as opposed to a sub-optimal estimation gives the lower
bounds of the quadratic risk, such as mean-square error, scalar mean
square error, for heterogeneous and homogeneous linear set-ups. See
Chapter 2.4 of Toutenburg (1982) for further details.
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More importantly none of these studies has imposed
conditions in the estimation of the VCM to ensure that the
misclosures of the TG - SA differences referring to the same
time tags are adjusted. This condition is necessary to cal-
culate external variability of the model variables holisti-
cally.

The proposed mathematical and statistical models in
this study address all these deficiencies while adjusting
all the pertinent observed time series simultaneously. Con-
sequently, proposed approach gives the optimal estimates
for the VCM at a TG station and its standard error and all
the other solution statistics. The mathematical and statis-
tical models are demonstrated using an example solution
at the Key West, USA TG station in the following sections.
The estimated VCM at the Key West TG station is then com-
pared to the results obtained using existing models in re-
cent literature.

2 Key West Tide Gauge and
Satellite Altimetry Data

The Key West TG station was selected for the numerical
demonstration of the proposed statistical model. TG time
series were downloaded from the Permanent Mean Sea
Level (PSMSL) repository (PSMSL, 2018, Holgate et al.,
2013) and truncated to include only overlapping time pe-
riod 1993 — 2017 with the available SA time series during
the same time span (Fig. 1). TG time series are referenced to
the Revised Local Reference (RLR). Because no corrections
for the post glacial rebound (PGR) or local vertical move-
ments were applied to the data, they represent relative sea
level changes with respect to the Earth’s crust.

The sea level around the Key West TG station was
also surveyed by various satellite altimetry for geocen-
tric mean sea level (MSL) change. We used sea level
anomaly data produced by the NASA’s MEaSURe’s pro-
gram, which were downloaded on January 2019 for the
region 24°N, 82°W -25°N, 81°W for the period Dec 1992
- Jun 2017 (Fig. 1). The time series includes data from
TOPEX/Poseidon (T/P), Jason-1, Ocean Surface Topogra-
phy Mission/Jason-2 (OSTM) and Jason-3 primary mission
series (TPJAOS) (Zlotnicki et al., 2016).

2.1 Inverted Barometer Effect at Key West
Tide Gauge Station

Although the SA measurements are already corrected for
the effect of atmospheric pressure TG measurements are
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Fig. 1. Overlapping TG (in blue) and SA monthly sea level measure-
ments in mm. Each time series refers to its own datum.

not. In this study, ERA-Interim monthly averaged surface
pressure product was used for computing inverted barom-
eter (IB) correction (Dee et al., 2011). The ERA-Interim
dataset for the Key West TG station was downloaded from
European Centre for Medium-Range Weather Forecasts
archive (ECMWF, 2019, Berrisford et al., 2011). The data re-
flect the monthly averaged surface pressure on a regular
0.75° x 0.75° longitude/latitude grid for the period from Jan
1979 to Oct 2018 (Fig. 2). Before computing IB correction,
surface pressure data in land area is removed in whole
dataset.

The relation between surface pressure and IB correc-
tion is given by the following equation (Wunsch, 1997),

t -1 /¢ £t ¢ it
IByn = 5g (P (o)~ P (w«)) =9.948 (P wn P «o,A))

m
where
-90° 360°
> |cos(@)x > P,
s =90° A=0°
P(‘P,A) = 2900 ©)
Y. [cos(p) xny]
=90°

In these expressions, IBE% 2 is IB correction at time
epoch ¢, (¢, A) are the latitude and longitude of the TG
station, p is ocean density, g is gravity acceleration, Pf(p’ N
is the monthly averaged surface pressure, Pf(p, P which is
spatially averaged pressure over the global surface via Eq.
(2), ny is the number of non-zero Pf o0 at each latitude. In
Eq. (1), 1/pg (mm/mb) is a scale factor based on empirical
value at mid-latitude. The IB corrections for the Key West
TG station are displayed on Fig. 2. The data span 19932017
overlaps with the TG and SA data.
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Fig. 2. IB correction at Key West TG station.

2.2 Vertical movement estimation using
trend differencing with ordinary least
squares

The following model is used to estimate the linear rate of
change in sea level rise / for both TG and SA time series,

h¢ =hg, + h(t - to) + a cos ( 2 > (t-to)
PAnnual

+ysin( 2 )(t—t0)+ut 3)
PAnnual

It is assumed that the disturbances, u;, has the follow-
ing distributional properties,

E(uf) =0 E(uf) = 07 E(uu; 1) =0
(t+# t/) > Zu=diagonal(aﬁt) (4)

In this representation, monthly TG or SA observations
at an epoch t is denoted by h;. The time index t = 1...n,
where nis the number of months and includes all the avail-
able data. The intercept hy, is the datum offset of either TG
or SA series referenced to the epoch ty chosen to be in the
middle of the series. Trend, i.e., the linear rate of change in
sea level, experienced by the series is denoted by h, which
is identified as relative sea level trend, which is affected
by the VCM at the TG station and the geocentric sea level
trend of SA, which independent of the VCM. The cyclic an-
nual variations are modeled with two unknown parame-
ters, ay,, y, for the sine and cosine components from which
the amplitudes a; and the phase angles of the periodic
terms are determined. In total, the model includes four un-
known parameters, which are solved using the ordinary
least squares (OLS). The difference of the estimated rates
of SA eAmd TG time series gives the linear rate of change in
VCM, hV™ 4t the TG station,

hVCM _ h.tSA _ h{GC (5)
In this expression, the estimated SA sea level trend de-

noted by {4 andh! ¢, where circumflex denotes an esti-
mated parameter, refers to the estimated relative sea level
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trend using TG measurements corrected a priori for the IB
effect.
The estimated trends for the Key West SA and
TG series for this model using OLS are 4.27+0.39 and
4.53+0.55 mm/yr respectively. Given the use of the two dif-
ferent technologies, the errors of SA and TG measurements
are assumed to be statistically independent. Hence, the er-
ror of the estimated VCM is obtained using variance prop-
agation,
<2

N )
O-thCM = 0?th + (Lh[TGC (6)

The estimated rate of trend of VCM and its uncertainty
at the Key West TG station using OLS is then -0.26+0.67 mm
/yr. (Table 1.).

Note that the estimated SA and TG sea level rates are
both biased because of the omission of the low frequency
variations in sea level, which are not estimable in short SA
series. Nonetheless, differencing eliminates these effects
because SA and TG measurements both sense the same sea
level variations, hence the estimated trend biases are the
same. Meanwhile, the plots of the residuals for both series
in Fig. 3reveal non-linearities that are not explained by the
models.
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Fig. 3. Residuals of the SA (Blue) and TG solutions.

Figure 4 exhibits the correlograms of the residuals of
both series and reveals statistically significant first order
autocorrelations, AR(1). The magnitudes of the AR(1) cor-
relation coefficients are approximately the same, p ~ 0.5.
The autocorrelations, if not modeled, will not impact the
trend estimates but will cause a Type I error (i.e. failing
to reject the null-hypothesis) in testing the statistical sig-
nificance of the estimated VCM because of the overly op-
timistic biased standard errors of the estimates (Neter et
al., 1997). The remedy for this problem is the topic for the
following section.
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Table 1. All velocities are in mm/yr at Key West TG station. GIA velocities were calculated using the ensemble average of 13 GIA models (Iz et

al., 2017g) at the location: (24.560, -81.810). NA: Not Applicable.

GPS Statfon Distance s i RSA _pT6 BSA _5,T6 T SA-TG T SA-TG
(Obs. Period) (km)
w/o AR(1) AR(1) w/o AR(1) AR(1)
(zooliv!szT 004) 5 -1.07+0.38  -0.73:0.08  -0.26:0.67  -0.33:1.20  -0.2620.34 -0.26:0.24
a 99?1"’21007) 16 0.26:0.43  -0.7320.08  -0.26x0.67  -0.33:1.20  -0.26:0.34  -0.26:0.24
20 0';?’: 016) 15 1.76:0.43  -0.73:0.08  -0.26£0.67  -0.33x1.20  -0.26:0.34  -0.26:0.24
W;i:;ed NA 1.03:0.24  -0.73:0.08  -0.26:0.67  -0.33:1.20  -0.26:0.34  -0.2620.24
Even unmodeled periodic sea level variations induce auto-
10 correlations. In sea level studies, positive first order auto-

_ g:z correlation coefficients of the time series are of varying de-

3 04 gree as a function of location of the measurements and the

5 o2 L\—H—H’f . time interval between averaged measurements. The auto-

% 00 Ll —'_| EEEE N correlations are not confined to TG observations but also

g: :gj present in SA time series for the sea level anomalies.

2 .06 If these correlations are not accounted for in the es-
-038 timation process, the resulting variances of the estimated
-1.0 parameters are overestimated. Hence, autocorrelations in-

2 4 6 8 1?391:“ o:h) ¥ 18 20 22 24 duce Type I errors, which lead to falsely claiming an es-
timated model parameter is statistically significant. This
problem will lead to catastrophic conclusions, like the

;‘g presence of a sea level acceleration when there is none in

. o:s the presence of unmodeled positive first order autocorrela-

E 04 tions. To ameliorate this problem a first order autoregres-

.§ 02 ] sive, also known as linear Markov process, is incorporated

é 00 ! | [ ]! into the estimation as part of the proposed statistical pro-

g :gj tocol. (Tautenburg, 1982, iz and Chen, 1999).

2 06 The following derivation is given by Tautenburg
-08 (1982). The vector of disturbances for a time series is
-10 assumed to be autocorrelated. A first order autoregres-

2 4 6 8 10 12 14 16 18 20 2 24 sive process AR(1) for each element of disturbances is ex-

Lag (month)

Fig. 4. Correlelograms of the SA and TG residual series. Confidence
intervals (95%) are in red.

2.3 Statistical trend models with
autoregressive disturbances

As demonstrated in the previous section, and repeatedly
reported by Iz et al. (2012m - 2018a) sea level measure-
ments, irrespective of their origins, exhibit first order pos-
itive autocorrelation AR(1) for various reasons. Autocorre-
lation (serial correlation) in measurements arise from ob-
servation errors in the included variables, from the estima-
tion of missing data by either averaging or extrapolating.

pressed as,
er=peiq+us  t=..,-2,-1,0,1, 2,... 7)

where -1 < p < 1is the unknown autocorrelation coeffi-
cient. The stochastic process, {u;}, has the following as-
sumed distributional properties,

E(ut) =0 E(uf) =0, E(uue 1) =0
(t+# tl) > 2u=diagonal(0§[) (8)
An equivalent expression for Eq. (7) is therefore,
-\ s
er = Zs:OP Ups )

Considering Eq. (8) and the properties of the geometric
series, it can be shown that,

E(e)) =0, var(e) =E(ef) =(1-p*)'oy, =0> (10)
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For a sample size n, the V/C matrix of the disturbances
for any one of the autocorrelated time series, after some
manipulations, can be written as,

1 p pz cee pn_l
. 02 p 1 . ces pn_z ~ 02 Pfl
pn—l pn—z pn—3 1
11

Implicit in this result is the assumption that mea-
surements are equally spaced in time. The correlation de-
creases for increasing time lag because |p| < 1. The above
patterned V/C matrix has an analytical inverse, and is
given by,

-1_ O
EeTE
1 p 0 - 0 0]
-p 1+p> -p -~ 0O 0
0 -—p 1+p?> -+ 0 0
=1 . . . . . . (12)
0 0 0 1+p2 —p
Lo o0 0 - o 1]

From Eq. (11), the correlation between two autocorre-
lated random variables e; and e;_; is osz, where 7 is the
time lag.

With this a priori understanding regarding the auto-
correlated error properties of the SA and TG time series,
the trend model given by Eq. (3) can now be expressed as,

he =hy, + h(t - to) + a cos ( 2 > (t-to)
PAnnual
+ysin( 2 ) (t - to) + e (13)
PAnnual

where the disturbances, e;, are autocorrelated.

This model was used to calculate the trends for the
SA and TG time series using least squares with AR(1)
errors. The estimated trends are 4.33+0.70 mm/yr and
4.66+0.98 mm/yr for the Sa and TG time series respec-
tively (Table 1). The new estimates are not markedly dif-
ferent than those obtained using OLS, which are 4.27+0.39
and 4.53+0.55 mm/yr. for the SA and TG series respectively.
Nonetheless, their standard errors are doubled in size be-
cause of the effect of the autocorrelations. The difference
of the two estimates that gives the estimate for the rate of
VCM at the TG station is -0.33+1.20 mm/yr. This estimate is
similar to the estimated VCM rate of -0.26 + 0.67 mm/yr.
obtained using OLS, but its standard error is twice as large
as it should be.

Modelling the inclusion of the AR(1) ameliorated the
problem of underestimated standard errors of the VCM rate
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by ignoring it. Yet, this is still not the best approach to esti-
mate the rate of VCM because of the way the IB effect is cor-
rected. So far, the IB correction assumed that atmospher-
ics pressure measurements are errorless. This assumption
is incorrect. Moreover, the correlogram for the IB series
(Fig. 5) reveals that the IB series are also autocorrelated
with a statistically significant AR(1) correlation coefficient
pig = 0.6 at 95% confidence level. Adjusting for the effect
of autocorrelations in IB series in estimating VCM to get re-
alistic estimates for the rates and their standard errors of
VCM at TG stations is therefore necessary. This is topic of
the next section.

1.0
08
0.6
04
02
00 I | I

Autocorrelation

-04
-0.6
-0.8
-1.0
2 4 6 8 10 12 14
Lag (Months)

16 18 20 22 24

Fig. 5. Correllogram for the IB series. AR(1) correlation coefficient is
0.6. Confidence intervals (95%) are in red.

3 Proposed mathematical and
statistical models

A typical TG measurement requires corrections for the ef-
fect of atmospheric pressure, VCM experienced by the sta-
tion, high and low frequency tides, etc. In the following
model, we will consider only the inverted barometer effect,
IB, for corrections and the effect of the VCM. This practice
is not because all the other effects are negligible, but as
discussed before, differencing eliminates errors common
to SA and TG time series?. The emphasis here is to account
for the effect of the autocorrelations in IB series as mea-

2 There were also residual yearly sea level variations that are not can-
celed by differencing of the TG and SA time series. The amplitude of
this residual effect was statistically significant but did not impact es-
timated VCM rates significantly, hence not included in this example
for simplicity in the presentation.
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surements subject to errors in estimating rate of VCM at a
TG station.

An IB and VCM corrected TG measurement at a given
epoch t subject to an unknown VCM is given by,

BTG = KT 1 1B 4 pYOM (15)

In this expression h! ¢, hT%, hiE and h/M refer to the cor-
rected TG measurement, observed TG record, IB effect, and
the unknown VCM correction at the TG station at an epoch
t respectively. If we denote th as a nearby sea level height
as observed by SA at the same epoch ¢ of TG measurement,
then each of the IB corrected TG measurement and SA mea-
surement is expected to close, i.e. to fulfil the following
condition,

hl% —ni* =0 (16)
Inserting Eq. (15) in Eq. (16), we obtain,
hiC+n + h{™M - =0 (17)

If VCM at an epoch t at a TG station has a linear
trend,hVM | then,

hyCM _ 5VCM + hVCM(t _ tO) (18)

where 6™ is the reference geocentric height of the TG sta-

tion at an epoch t.

In the above equations, all the observed time series are
subject to random measurement errors, which can be mod-
eled as,

h[TG - 676 4 thGOBS + etTGOBs (19)
h{B _ 5IB + h{Boas + e{BOBS (20)
th _ 5SA ¥ thOBS + eonBs 21

where 67¢, 6’8 and 654 are the unknown offsets of TG mea-
surements from a datum, a constant offset of the IB correc-
tions, and a reference offset of SA measurements.

Substituting Eqn. (18) through Eqn. (21) in Eqn. (17),
we obtain the following condition equation with unknown
parameters,

elGos  glBoss _ g3Aons 1§+ RVM(¢ —t)+w=0 (22)

where,
§ .= §TGoss | gIBoss _ §SAoss (23)
is the lumped offsets?. The misclosure, w, is given by,
W= hYCM T hZGOBS 4 h{BOBS _ thOBS (24)

3 “:=” reads as “defined as”
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where §and vV™ are the unknown parameters to be es-

timated. In calculating the misclosure equation it is as-
sumed the unknown VCM velocity is zero. If prior infor-
mation is available about its size, it can also be included
in the misclosure with the provision that the unknown pa-
rameter for the VCM velocity would be a correction to the
prior information about it. In this case, the condition equa-
tions with unknown parameters will reduce to the method
of condition equations only. Such a formulation is itself an
ideal way for the conflation of GPS derived VCMs with TG-
SA derived VCMs.

In this formulation, the V/C matrices and their in-
verses for the error terms of TG, SA and IB time series
can be modeled using the derivations in the previous sec-
tion. The first order autoregressive correlation coefficients
P1Gs Psas pig are already estimated from the residuals of
their series after their trends and their systematic vari-
ations are removed. Also, TG, IB and SA measurements
are not correlated because they were carried out indepen-
dently. Therefore, the combined V/C matrix for all the time
series is given by,

-2
GeTG PTG 0 0
nxn nxn nxn
- -2
Z 1 = O aem PIB 0 (25)
3nx3n nn nxn ;xn
0 0 Oesy Psa

nxn nxn nxn

Note that the elements of the above V/C matrix should
be rearranged to conform with eq. (26), which are not
shown here. The formulation for the solution for the condi-
tion equations with unknown parameters given by Eq. (19),
Eg. (20), and Eq. (21) together with AR(1) disturbances in-
cluding those from the IB series is the topic of the following
section.

4 Condition equations with
unknown parameters

The method of condition equation with unknown param-
eters was formulated by Friedrich Robert Helmert (1843-
1917), a geodesist. In this section, we do not include its
derivation for brevity but followed the outcome of the
derivations and notations used in Uotila (1988) with minor
modifications and simplifications.

Now, we are ready to express the linear mathematical
model stated in the earlier section that contains observa-
tions as well as unknown parameters in matrix notation
for n observations in each series with r conditions equa-
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tions and m unknown parameters as follows*,

BV+A X +W=0 (26)

rxnnx1l r<m mx1 rx1 rx1

The weight matrix associated with the observations is
denoted by P . The principle of the minimum variance so-
nxn

lution requires minimizing theVTPV and fulfilling the con-
ditions imposed on the observations can be obtained using
the method of Lagrange multipliers for the following target
function:

VTPV - 2AT(BV + AX + W) = stationary 27)

Where A is an r x 1 vector of Lagrange multipliers. The so-
lution includes the following compendium of equations
(ibid).

The unknown parameters are calculated using the fol-
lowing expression:

X=-ATM1A) ATM W (28)

with the corresponding variance-covariance, V/C matrix,

Te=65(A"™™MA)! (29)

where M := BP'BT. The a posteriori variance of unit
weight 83 is given by,
VIpV

r-m (30)

6 =

The number of unknown VCM parameters is this ex-
ample is 2; the unknown lumped datum offsets, and the
VCM velocity. The proposed model can now be quantified
using all three the time series to estimate VCM at the Key
West TG station.

5 Adjustment of TG and SA
misclosures at the Key West TG
station and estimation of the
VCM

The proposed mathematical and statistical model was
used to estimate vertical crustal movements at the Key
West TG station using TG, IB and SA time series. Monthly
misclosures calculated using Eq. (24) are shown in Fig. 6.

4 Note that this is a generic derivation. Dimensions of the matrices
should be quantified following the mathematical model discussed in
the previous section. Notation for the disturbances are replaced by
their estimates, i.e. “residuals” and the weight matrix P is introduced
in relation to the inverse V/C matrix of disturbances with a unit weight
of one to preserve the original notation used in the derivation given
by Uotila (1997).
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Fig. 6. RMSE=68.8 mm.

The estimated rate of VCM experienced by the TG sta-
tion using this approach is -0.26+0.24 mm/yr., which indi-
cates that the station may not have experienced a statis-
tically significant VCM during this period. The magnitude
of the VCM is similar to those estimated using trend differ-
ences, with and without autoregressive disturbances but
the standard error of the VCM rate is the smallest among
the alternatives (Table 1). The adjusted residuals for the
TG, IB and SA time series are displayed on Fig. 7, Fig. 8, and
Fig. 9. All the residuals do not pass Anderson-Darling nor-
mality test because of the high variation but do not show
any unmodeled systematic variation.

Another run without modelling the AR(1) reveal that
the results are not markedly different, -0.26+0.24 vs. -
0.26+0.34 mm/yr. The robustness of the estimated param-
eters can be attributed to differencing the monthly time
series instead of their trends, which are demonstrably af-
fected by the autocorrelated disturbances. Differencing of
the monthly observations disturbs the systematic effect of
autocorrelations and enables similar results for solutions
with or without autocorrelated disturbances.

50
E 25 . : L . .l:.
E . ., _.’. > _". PP ‘" .,_""
2 k) BTN A T
5 0 i shet ""'g L A X
2 S o el LA T A
4 % Seares i “ R
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E } e -
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Fig. 7. TG residuals are in mm. RMSE of the residuals is 19.2 mm.
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Fig. 8. IB residuals in mm. RMSE of the residuals is 23.5 mm.
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Fig. 9. SA residuals are in mm. RMS of the residuals is 23.1 mm.

6 Verification: Vertical crustal
velocities by GPS, GIA, and TG-SA
measurements

In this section, the estimated linear rates of VCM from
different model solutions are contrasted with the linear
VCM rates calculated using GPS measurements and GIA
induced trend for the surrounding region. The estimated
VCM rates derived from GPS measurements were down-
loaded from SONEL ULR6a GPS solution, which is a ver-
sion of the reanalysis of 19 years of GPS data from 1995 to
2014 (Santamaria-Gomez et al., 2017). The GIA velocity is
calculated using the ensemble average of 13 GIA models
(Iz et al., 2017g) at the location (24.56°, -81.81°).

First entries in Table 1 are the VCM rates using GPS
measurements carried out at nearby locations to the Key
West TG station. The GPS stations are nearly located with
the Key West TG station, yet there are no links, such as pre-
cise levelling that tie the GPS stations to the TG station to
evaluate the contribution of local subsidence/uplifts at the
GPS stations and the TG station. Although the weighted
mean of the VCM rates of GPS origin is statistically signifi-
cant at 5% significant level, the individual GPS based VCM
rates at nearby stations are inconsistent. These results are
indicative of similar limitations that will be experienced
at other TG stations. The marked variability of the esti-
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mated GPS velocities at three clustered around the nearby
TG stations affirms our initial assertion that the short span
GPS time series are insufficient to resolve VCMs with confi-
dence. Yet GPS is still the best mean for quantifying VCMs
in the long run.

As an alternative verification, GIA velocities were cal-
culated using the ensemble average of 13 GIA models (Iz et
al., 2017g) at the location: (24.56°, -81.81°). Despite the
ensemble average is statistically significant and exhibit
subsidence like the VCM estimated at the TG station, the
average is only a rough approximation for the VCM rate be-
cause it does not account for the local VCM at the Key West
TG station.

Because the local contribution, such as site settlement
and hydrological loading to the VCM experienced at the
TG station is unknown, the estimated VCMs for verification
are biased. Therefore, the null hypothesis “Hy: TG station
does not experience any statistically significant VCM” can-
not be rejected due to the large standard error of various
estimates in conjunction with the small magnitude of the
VCM rate.

The IB corrections applied to the SA measurements
may also be another source of large standard errors of the
estimated VCM rates using different models. Downloaded
SA time series were already corrected using model based
IB corrections and SA series are observationally smoother
than the observed atmospheric pressure variations con-
verted into IB corrections. A better practice for future stud-
ies is therefore not to apply any IB corrections for both
TG and SA time series. Because both series experience the
same effect, differencing will eliminate the IB effects natu-
rally. These limitations however are common for all alter-
native model solutions in practice, hence have no impact
in assessing the optimality of the proposed approach.

The ensemble average of the VCM induced by GIA
for this area is precise because the GIA models use the
same data in model building hence their ensemble aver-
ages tend to agree with each other. Meanwhile, the esti-
mated VCM rate for this exercise is small, and again, the
absence of information about the local subsidence/uplift
is prohibitive for allowing a reliable comparison with the
GIA predicted VCM rate and other estimates. Yet, compari-
son of the estimated VCM rates with the ensemble average
predicted by the 13 GIA models is still informative. All es-
timated VCM rates using SA and TG series indicated VCM
as a subsidence as in the case of predicted GIA rate.
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7 Conclusion

This study offered an optimal statistical protocol for
estimating VCM at TG stations using TG, SA and IB time
series data using the method of condition equations with
unknown parameters. The solution accounts for the effect
of autocorrelations in observed TG and SA sea level time
series, adjusts the observed correction, the IB effect and
constraints TG and satellite altimeter measurement to
close, while estimating VCM at the TG station. The solution
is demonstrated to be efficient compared to the estimates
using alternative models using SA, TG and IB time series
related to the Key West TG as an example. Given the short
time span of the GPS measurements collocated or located
nearly to most TG stations around the globe, the use of TG
and SA measurements in conjunction, as demonstrated
in this study, is an effective alternative to estimate VCM at
globally distributed thousands of TG stations. The statis-
tical protocol is statistically optimal in the sense that it
yields estimates consistent with their alternatives, it does
so with significantly smaller standard errors with clear
improvements over both GPS and alternative sub-optimal
satellite altimetry/tide-gauge solutions.
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