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Abstract: For the modelling and determination of the
Earth’s external gravity potential as well as its second-
order radial derivatives in the space near sea surface, the
surface layer integral method was discussed in the paper.
The reasons for the applicability of the method over sea
surfacewere discussed. From the original integral formula
of disturbing potential based on the surface layer method,
the expression of the radial component of the gravity gra-
dient tensor was derived. Furthermore, an identity rela-
tion was introduced to modify the formula in order to re-
duce the singularity problem. Numerical experiments car-
ried out over themarine area of China show that, themodi-
�ed surface layer integral method e�ectively improves the
accuracy and reliability of the calculation of the second-
order radial gradient component of the disturbing poten-
tial near sea surface.

Keywords: disturbing potential; second order radial
derivative; singularity; surface layer integral

1 Introduction

In geodesy and space research, the calculationof the exter-
nal disturbing gravity �eld is of great importance (Moritz,
1966; Heiskanen and Moritz, 1967; Wenzel, 2005; Bettad-
pur, 2015). Currently there are three kinds ofmathematical
models for the computation of external disturbing gravity
�eld. The �rst is the spherical harmonics series expression
which is usually used as the basic model of remove and
restore method. The second kind includes the direct inte-
gral model based on classical Stokes theory, the surface
layer integral method and the upward continuationmodel
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based on Poisson integral, which are characterized by us-
ing gravity observations on the Earth’s surface directly and
singularity problem when the computation point is close
to the surface. The third kind are developed from Bjer-
hammar theory, which includes methods like point mass
method, etc.

Due to the simple kernel and convenient input data
source, say, gravity observations and height anomalies,
the surface layer integral method is more suitable for the
calculation of external disturbing gravity �eld over sea
surface (Heck, 2003). The only defect of the surface layer
method (or common to similar integralmethods) is the sin-
gularity problemwhen the calculation point is close to the
sea surface. In literatures there are e�ective solutions to
the singularity problem (HeiskanenandMoritz, 1967; Bian,
1997; Hwang et al., 1998; Guo & Xu, 2011) in the computa-
tion of external gravity elements.

Due to the fact that the vertical gradient of disturbing
gravity plays an important role in physical geodesy as well
as geophysics, here in the paper the calculation of the sec-
ond order radial derivative of disturbing potential using
surface layer integral method is proposed. The singularity
problem in its computation is discussed and improvement
was made to the integral formula to reduce the singularity
e�ect. Numerical experiments were also made to test the
modi�ed method.

2 The Surface Layer Integral
Method for the Second-order
Radial Derivative of Disturbing
Potential

From Heiskanen and Moritz (1967), the surface layer inte-
gral method can be used to compute the external disturb-
ing potential as well as its �rst and second order radial
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derivatives, which are expressed in Eq. (1) ~ (3).
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where
µ = ∆g + 3T

2R = ∆g + 3γ
2R ζ (4)

l =
√
r2 + R2 − 2rR cosψ (5)

cosψ = sinφ sinφ′ + cosφ cosφ′cos(λ′ − λ) (6)

r = R + h (7)

It should be pointed out that Eqs. (2)~(3) hold for the
computation point of the integration in the exterior of the
sphere of radius R, i.e. h>0.

In the above formulas, TP is the disturbing potential
of the computation point P; (r, ϕ, λ) and (R, ϕ′, λ′) repre-
sents the geocentric radius, geocentric latitude and longi-
tude of the computationpoint and�owpoint on the sphere
respectively; ψ is the spherical angle between the compu-
tation point and the moving point; l is the distance be-
tween the computation point and the moving point; ∆g is
the free-air gravity anomaly on surface; T is the disturb-
ing potential at the surface point; ζ is the height anomaly
at the surface point (which equals T/γ in the context of
Molodensky’s theory); γ is the normal gravity at the sur-
face point; µ is called the surface density; R is the mean
radius of the Earth; h is geodetic height; dσ is the area el-
ement of unit sphere integral.

3 Non-singular Surface Layer
Integral Method for the
Second-order Radial Derivative of
Disturbing Potential

From Eq. (1) ~ (7), when the height of the computation
point h → 0 and the spherical angle ψ → 0, singularity
problems arise for the numerical integration of Eq. (2) and
Eq. (3). To overcome the singularity problem in handling
Eq. (3), here an identity relation according to the theory of
the radial derivative of harmonic function fromHeiskanen
andMoritz (1967) is introduced and convert the original in-
tegral model into continuousmodel with stable numerical

solutions. The identity dealswith the integral of thederiva-
tive of the reciprocal of the distance between the compu-
tation point and the moving point with respect to radial
distance.

Firstly, the following identity can be derived by double
integration

R2

2π µP0 = R2µP0

π∫
0

(
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)
sinψdψ

= 4R2
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Where µP0 is the surface density at the surface computa-
tion point. From the subtraction of Eq. (3) and Eq. (8) the
following relation is derived

δgrr = R2
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)
+ 4R2

r3 µP0

(9)
In Eq. (9) the singularity is reduced and numerical

continuity is achieved on the boundary surface. It should
be pointed out that in practice, due to the limitations of
data coverage, the global integration is always split into
near-zone and far-zone parts. At the same time, a global
gravity potential model that is truncated to some degree
and order is introduced and in the meantime the remove-
and-restore technique is applied. Therefore, in the near
zone the residual gravity from that of gravity potential
model is used in computation, and in the far zone, the
gravity potential model is directly used.

In the near-zone computations, as far as e�ciency
is concerned, the data coverage around the computation
point is often divided into several ring-zone from near to
far zones, and in the near ring-zone that is near the compu-
tation point the data resolution is higher than those in the
ring-zones that is far from the computation point. For ex-
ample, a combination of ring-zone with di�erent data res-
olution that is applied is like 1′×1′, 5′×5′, 20′×20′ and 1◦×1◦

from near to far zones.
On the other hand, in the data coverage of the high-

est data resolution that contains the computation point,
which is also a spherical cap, say, the 2◦×2◦ data cover-
age in which the data resolution is 1′×1′, special attention
should be paid in handling. Assuming the integral radius
for this spherical cap is ψ0, the following integration is de-
rived
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where α is the azimuth reckoned from north and

lψ0 =
√
r2 + R2 − 2rR cosψ0

cos α = cosφ sinφ′ − sinφ cosφ′ cos(λ′ − λ)
sinψ (11)

sin α = cosφ′ sin(λ′ − λ)
sinψ (12)

Handled in a similar way to the derivation of Eq.(9),
the following formula is derived
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In Eq. (13) the singularity problem and data discon-
tinuity problem were reduced. And therefore, in practical
applications, the data coverage should just be divided into
internal zone (corresponding to 1′×1′ data resolution) and
external zones (including coverage of 5′×5′, 20′×20′, 1◦×1◦

data resolutions), and their coverage (Fig. 1) could be de-
termined using the method discussed in (Heiskanen and
Moritz, 1967), and then Eq. (13) is applied for the computa-
tion within internal zone, and Eq.(3) is applied for outside
zones. The above-mentioned process is formulated as fol-
lows

δgrr(total) =δgrr(1′) + δgrr(5′) + δgrr(20′) + δgrr(1◦)
+ δgrr(Mod_trunc) (14)

In Eq. (14), δgrr(1′) is computed using Eq. (13), and
δgrr(5′), δgrr(20′) and δgrr(1◦) should be computed us-
ing Eq. (3). δgrr(Mod_trunc) stands for the contribution
of global gravity potential model truncated to some max
degree and order, which is formulated as

δgrr(Mod_trunc) = GM
r3

N∑
n=2

(n + 1) (n + 2)
(
R
r

)n
n∑

m=0

(
C̄*nm cosmλ + S̄nm sinmλ

)
P̄nm (sinφ) (15)

where GM is the universal gravitation constant multiplied
by the Earth’s total mass; (C̄*nm , S̄nm) is the fully normal-
izeddisturbing gravity potential coe�cients; P̄nm (sinφ) is
the fully normalized Legendre polynomial;N is thehighest
degree of the spherical harmonic series expression.

Fig. 1. Limits of the regions according to data resolutions

4 Numerical Experiments

An area that covers 30◦N~35◦N and 120◦E~125◦E was se-
lected as the experiment area. In the area the gravity
anomalies and height anomalies are of 1′×1′ resolution and
were generated using the gravity potential model EIGEN-
6C4 of which the max degree and order is 2190. Within the
coverage 31◦N~34◦Nand 121◦E~124◦E the reference values
of the second-order radial gravity gradient of 1′×1′ resolu-
tion were also generated using the gravity potential model
EIGEN-6C4 at di�erent height levels and each level con-
tains 32400 points. Furthermore, the longwavelength part
of the gravity �eld is represented using EIGEN-6C4 that is
truncated to 360 degree and order.

The work�ow of the numerical experiment is as fol-
lows. Within the experiment area, the second-order radial
derivatives of disturbing potential are calculated in two
ways. For the �rst way, the second-order radial derivative
of disturbing potential is computed using the original in-
tegral Eq. (3) with input data being the model generated
gravity anomalies, and for the second way, the second-
order radial derivative of disturbing potential is computed
using Eq. (9) and Eq. (14). In either way, the computed
second-order radial derivative of disturbing potential were
comparedwith the reference values and statistics were ob-
tained. In the experiment, grid intensi�cation or resolu-
tion enhancement were also made so as to approach the-
oretical result. In the following discussions height means
the height above the sea geoid.
(1) Height h approaches 0

Assuming that the height h approaches 0 and here it is
set h=0.2 m. Due to the singularity of the kernel, the result
of the original integral method using Eq. (3) is really bad
enough, as is shown in Table 1. However, if the grid reso-
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Table 1. Result of Original Method /Unit: E (Eötvös=10−9s−2)

Intensi�cation
Point Count

MIN MAX MEAN STD

60×60 -1.210E+11 1.777E+11 -1.393E+08 7.670E+09
120×120 -3.025E+10 4.444E+10 -3.483E+07 1.917E+09
240×240 -7.562E+09 1.111E+10 -8.707E+06 4.794E+08
480×480 -1.890E+09 2.777E+09 -2.177E+06 1.198E+08
960×960 -4.724E+08 6.940E+08 -5.441E+05 2.992E+07

Table 2. Results of Improved Method /Unit: E

Intensi�cation
Point Count

MIN MAX MEAN STD

60×60 -14.2995 16.9906 0.0043 2.7738
120×120 -14.2760 16.9843 0.0043 2.7735

lution is increased, the mean di�erence and standard dif-
ference becomes smaller, which is caused by the increase
of grid resolution.

In Table 2, the results show that the improved method
using Eq. (9)~(14) successfully reduced the singularity of
the kernel. And the standard di�erence does not improve
prominentlywith the increase of the intensi�cationpoints.
Themain cause is that in the improvedmethod µ−µP0 were
used and their values approach 0.
(2) Height h=200m

Set h = 200 m and on such occasion, the kernel is not
singular. The results of the original method are shown in
Table 3. With the increase of intensi�cation point count,
the mean di�erence and standard di�erence becomes
smaller. The results of the improved method is shown in
Table 4, which is better than those of the original method.
(3) h=500m, h=1000m and h=5000m

The variation of kernel becomes relatively smooth.
However, it is found that the accuracy of the improved
method becomes lower than that of the original method.
And with the increasing of intensi�cation point count, the
accuracy decreases to some extent. Calculations were also
made for h = 1000 m, h = 5000 m, and the result is similar
to those of h=500m. Such variation of accuracy can be at-
tributed to not increasing the integral radius with height
increasing.

5 Summary

In order to apply the surface layer integral method to cal-
culate the second-order radial derivative of the disturbing
potential, we developed a di�erent way to deal with the
integral due to the fact that there exist singularity and dis-
continuity problem in the original integral when the com-

putationpoint approaches themovingpoint on thebound-
ary. An identity is introduced to improve the original sur-
face layer integral formula for calculation of the second or-
der radial derivative of the disturbing potential. The iden-
tity starts from the theory of the radial derivative of a har-
monic function from (Heiskanen & Moritz, 1967), which
deals with the integral of the derivative of the reciprocal of
the distance between the computation point and the mov-
ingpointwith respect to radial distance. Thenewlyderived
integral thus reduces the singularity and the discontinuity
problem of the original method. Numerical experiment re-
vealed that the improved integral method can reduce the
singularity e�ectively with height below 200 m and raise
the accuracy of calculation prominently especially when
the height approaches 0, which means that the computa-
tion point nearly coincides with the moving point on the
boundary. Results also revealed that with the increase of
the height of computation point, when the height is above
200m, the accuracy of the improved integral method de-
creased a little compared to the original method. Never-
theless, the newly derived method is useful in the calcula-
tion of the second order radial derivative of disturbing po-
tential especially when the computation point approaches
the boundary. Futureworkwill be focused on the details of
the improved integral on data coverage and omission error
analysis of using a truncated gravity potential model.
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Table 3. Result of Original Method /Unit: E

Intensi�cation
Point Count

MIN MAX MEAN STD

60×60 -5.0596 8.0337 -0.0009 1.4470
120×120 -3.5594 5.1326 -0.0006 0.9129
240×240 -2.8282 3.6913 -0.0004 0.6600
480×480 -2.4770 3.1598 -0.0003 0.5424
960×960 -2.3017 2.9101 -0.0003 0.4875

Table 4. Results of Improved Method /Unit: E

Intensi�cation
Point Count

MIN MAX MEAN STD

60×60 -2.4940 1.7727 0.0002 0.5089
120×120 -2.4991 1.7783 0.0002 0.5083

Table 5. Statistics of Results of the Original Method (h=5000m) Unit:/E

Intensi�cation
Point Count

MIN MAX MEAN STD

60×60 -0.2721 0.1711 -0.0009 0.0461
120×120 -0.2419 0.1652 -0.0009 0.0399
240×240 -0.2271 0.1670 -0.0009 0.0371
480×480 -0.2198 0.1679 -0.0009 0.0358
960×960 -0.2162 0.1684 -0.0009 0.0352

Table 6. Statistics of Results of the Improved Method (h=5000m) Unit:/E

Intensi�cation
Point Count

MIN MAX MEAN STD

3×3 -3.8603 2.5877 -0.0004 0.7353
30×30 -3.8712 2.5926 -0.0004 0.7368
60×60 -3.8721 2.5930 -0.0004 0.7370

120×120 -3.8726 2.5932 -0.0004 0.7370

Table 7. Statistics of Results (h=500m) Unit:/E

Intensi�cation
Point Count

MIN MAX MEAN STD

Original Method 60×60
-

1.1265 1.6147 -0.0010 0.3160

Improved Method 60×60
-

3.8151 2.5229 -0.0004 0.7144

Table 8. Statistics of Results (h=1000m) Unit:/E

Intensi�cation
Point Count

MIN MAX MEAN STD

Original Method 60×60 -1.9872 1.2746 -0.0009 0.3480
Improved Method 60×60 -4.4502 2.8314 -0.0006 0.8079
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