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Abstract: The paper presents a new approach to the air-
borne vector gravimetry problem. The idea of the approach
is to take into account spatial correlation of the gravity
�eld to improve observability of horizontal components
of the gravity disturbance vector (GDV). We consider the
GDV determination problem given airborne data at a set of
parallel survey lines assuming that lines are �own in the
same direction at a constant height above the reference el-
lipsoid. We use a 2-D random �eld model for the gravity
�eld at the �ight height. The random �eld is governed by
two autoregressive equations (one in the direction along
the lines, the other across the lines). Then we pose the es-
timation problem simultaneously for the GDV horizontal
components and systematic errors of an inertial naviga-
tion system at all the lines simultaneously. The developed
estimation algorithm is based on 2D Kalman �ltering and
smoothing techniques. Numerical results obtained from
simulated data processing showed improved accuracy of
the gravity horizontal component determination.

Keywords: airborne vector gravimetry, gravity disturbance
vector, random �elds, Kalman �lter

1 Introduction
Airborne gravimetry is a method of measuring the Earth’s
gravity �eld. The gravity information is of high importance
for geodesy, geophysics, navigation, geodynamics, and
others. While other gravity measurement methods have
limitations either in spatial resolution of recovered gravity
or due to the type of terrain, airborne gravimetry technique
is capable to provide gravity data of high accuracy and res-
olution at any area of interest. Currently, gravity data pro-
vided by airborne gravimetry have spatial resolution of 2 –
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5 km and accuracy of 0.5 – 1 mGal (Kennedy et al. 2002;
Olson 2010).

Airborne gravimetry is well-established for measur-
ing the vertical component of the gravity disturbance
vector (GDV), i.e. gravity disturbance (scalar gravimetry)
(Childers et al. 1999; Bolotin and Golovan 2013). In the last
two decades, the airborne vector gravimetry, which mea-
sures the total GDV, is actively developed by a number of
authors (Kwon and Jekeli 2001; Schwarz et al. 2002; Cai et
al. 2013; Becker et al. 2016). Unlike scalar gravimetry, this
method requires signi�cantly more accurate inertial navi-
gation system (INS). Horizontal orientation errors of 30 arc
seconds, which are acceptable in airborne scalar gravime-
try, will yield an error of 150 mGal in the GDV horizontal
components (or, equivalently, 30 arc seconds in the de�ec-
tions of the vertical).

In addition to the instrument accuracy, there are spe-
ci�c requirements to processing algorithms. The main dif-
�culty of the airborne vector gravimetry problem lies in
low observability of the gravity horizontal components.
These are observable only in combinationwith the INS sys-
tematic errors suchas the accelerometer biases and theori-
entation errors produced by the gyroscope errors. To sep-
arate the gravity horizontal components from the INS sys-
tematic errors, an additional information on gravity or the
INS systematic errors ( i.e. regularization) is required.

The traditionalwayof introducing additional informa-
tion on gravity in the airborne vector gravimetry is based
on using stochastic processes in the time domain to repre-
sent each GDV component (Jekeli 1994; Becker et al. 2016).
Di�erent gravity stochastic models were proposed such as
Gauss–Markov processes or more complex models that,
e.g. take into account consistency of the GDV components
(Jordan 1972; Forsberg 1987). However, this approach does
not provide full separation of the GDV horizontal compo-
nent estimates and the INS systematic errors. A number of
alternative approaches were proposed.

An interesting approach free from any gravity model
was presented in Kwon and Jekeli (2001). It is based on
processing of several repeated lines �own over the same
ground track assuming that the INS systematic errors re-
lated to di�erent lines are uncorrelated and that gravity
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signal is common at these lines. Decorrelation of the grav-
ity measurements is performed in the frequency domain,
and the residual INS errors are �ltered out of the GDV es-
timates. The approach showedmuch better accuracy com-
pared with the traditional one (Kwon and Jekeli 2001).

An approach presented in Cai et al. (2013) is based
on using data of the global gravity �eld model EGM2008
(Pavlis et al. 2012) to separate the residual INS systematic
errors and along-line estimates of the GDVhorizontal com-
ponents. A simple linear-trendmodel was used for the INS
errors. Numerical results of thismethod are promising (Cai
et al. 2013).

As an additional information, extra observations can
be used to reduce the orientation errors [e.g. star trackers
(Dai et al. 2014; Mangold 1997)].

In this paper, we propose a new approach to the GDV
determination based on 2- D stochastic modeling of the
gravity �eld in the survey area. Main idea of our approach
is to take into account spatial correlations of the grav-
ity �eld to improve observability of the gravity horizontal
components. We consider the INS error propagation equa-
tions and pose the GDV determination problem given air-
borne measurements along a set of parallel lines at con-
stant height above the reference ellipsoid. It is assumed
that the lines are �own in the same direction at constant
aircraft speed and that airborne measurements along any
two lines are time-synchronized.

We introduce a homogeneous 2-D random �eld to rep-
resent the gravity �eld at the �ight height. The random
�eld is governed by two autoregressive equations of order
two, one of which is directed along the lines, the other
across the lines. In the two-dimensional frequency do-
main, the random �eld is characterized by a 2-D power
spectral density (PSD) that can be represented as a prod-
uct of two one-dimensional ones. Coe�cients of the au-
toregressive equations can be determined given an a priori
value of the gravity correlation radius.

Under the assumptions made, we reduce the consid-
ered problem to optimal estimation of only the gravity dis-
turbance horizontal components. Several adjacent survey
lines are selected for simultaneous processing. The prob-
lem is solved viaKalman�ltering and smoothing. The state
vector for the �lter includes variables of the INS error prop-
agation equations and the disturbing potential values at
the same time instant of each adjacent line. The estima-
tion algorithm includes the following steps:

1) estimation of the GDV horizontal components
and the INS systematic errors along adjacent lines via
Kalman �ltering;

2) smoothing of the obtained estimates;

3) repetition of the steps 1-2 for the following set of
adjacent lines.

The number of adjacent lines can be chosen from 3 to
the total number of the survey lines. In the last case, the
estimation algorithm is optimal under theminimummean
squared error criterion in the class of linear algorithms.
Note that the algorithm does not require repeated survey
lines.

An accuracy analysis of the developed approach was
presented in Bolotin and Vyazmin (2018). In this paper, a
detailed theoretical development of the estimation algo-
rithm is presented. Numerical results obtained from semi-
simulated data processing are discussed.

2 Airborne vector gravimetry
equations

Let M be the center of the accelerometer triad of a strap-
down airborne gravimeter. We will refer to the point M as
the gravimeter proof mass. Denote by Mz the body (air-
craft) coordinate frame with its center in M and its axes
coinciding with the sensitivity axes of the accelerometers.
As navigation frame, we use the geodetic local level frame
Mx. The axis Mx1 points east, Mx2 points north, and Mx3
points in the direction of the normal to the reference ellip-
soid.

We assume throughout this paper that geodetic coor-
dinates (latitude, longitude, altitude) ofM are known from
post-processing di�erential phasemeasurements of global
navigation satellite system (GNSS) receivers. We neglect
the positioning solution errors, which are assumed to be at
the level of several cm at 20 Hz (Lu et al. 2017). Such accu-
racy is su�cient to calculate the normal gravity, centrifu-
gal and Coriolis terms in the INSmechanization equations
(Eq. (3) below) up to the accuracy of 0.1 mGal.

A. Basic equations of airborne vector
gravimetry

The basic model of airborne gravimetry is the equations
of motion of the proof massM derived from Newton’s sec-
ond law of motion. The equations of motion expressed in
the navigation frame Mx and the kinematic equation for
the body-frame orientation matrix Lzx are written as Far-
rell (2008):

v̇x = (ω̂x
xξ + ω̂x

ηξ )vx + Lxzf z + γx+δgx , (1)
L̇zx = ω̂z

zξLzx − Lzxω̂
x
xξ .
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Here vx is the aircraft velocity relative to the Earth ex-
pressed in the Mx frame, δgx = (δgx1 , δgx2 , δgx3 )T is the
GDV, δgx1 , δgx2 , δgx3 are the east, north and up compo-
nents, respectively, γx is the normal gravity vector, fz is
the speci�c force in the body frame Mz, Lxz = LTzx is the
transformation matrix from Mz to Mx, ωx

xξ is the (abso-
lute) angular velocity of the x-frame with respect to the
Earth-centered inertial ξ -frame, expressed inMx frame co-
ordinates, ωz

zξ is the absolute angular velocity of Mz, ex-
pressed inMz frame coordinates, ωx

ηξ is the Earth angular
velocity vector (the absolute angular velocity of the Earth-
centered Earth-�xed η-frame), expressed in Mx frame co-
ordinates, ω̂x

ηξ is a skew-symmetric matrix formed by the
components of the vector ωx

ηξ in such a way that ω̂x
ηξ vx =

−ωx
ηξ × vx where the symbol × means the cross product.
The INS mechanization equations are obtained from

Eq. (1) by replacing true values of the body-frame angular
velocity ωz

zξ and speci�c force f z with measurements of
gyroscopes and accelerometers

ωz′
zξ = ωz

zξ + ∆ωz
zξ , f

′
z = f z + ∆f z . (2)

We denoted by ∆ the measurement errors. Hence, we have

v̇′x = (ω̂x
xξ + ω̂x

ηξ )v′x + L′xzf ′z + γx , (3)

L̇′zx = ω̂z′
zξL′zx − L′zxω̂

x
xξ

given initial values for v′x , L′zx. The matrix L′zx is the trans-
formationmatrix fromMx to the computed body frame de-
noted byMz′.

Note that there are no equations for the positioning so-
lution in Eq. (3) aswe assume that proofmass positions are
perfectly known from the GNSS positioning solution. Val-
ues ofωx

xξ ,ω
x
ηξ , γx are calculated from theGNSS position-

ing and velocity solutions via known formulae neglect-
ing inaccuracies due to GNSS errors (Bolotin and Golovan
2013; Farrell 2008).

Note that the gyroscope error ∆ωz
zξ in Eq. (2) can also

be de�nedwith negative sign [as, e.g., in Bolotin andGolo-
van (2013); Bolotin Yu. and Vyazmin (2018)]. The minus
sign is selected to make the attitude error equations for
platform and strapdown systems identical in form (Hud-
dle 1983).

B. INS error model and observation model

Let orientation errors of the computed body frame Mz′ be
small and representable by a vector of in�nitesimal rota-
tion αz (a navigation-grade INS is assumed) (Farrell 2008).
Denote by αx the result of a projection αx = L′zxαz, i. e. an
orientation error of a frame, which is close to the geodetic

local level frame. Denote by δvx the velocity error de�ned
as the sumof the error in the computed velocity v′x−vx and
the term v̂xαx (the cross product of the orientation error αx
and velocity vector vx), i.e.

δvx = v′x − vx + v̂xαx . (4)

Then the INS error propagation equations for the velocity
error δvx and orientation error αx can be written as

δv̇x = (ω̂x
xξ + ω̂x

ηξ )δvx + γ̂xαx − δgx + ∆f x − v̂
′
x∆ωx

zξ , (5)

α̇x = ω̂x
xξαx − ∆ωx

zξ (6)

where γ̂x , v̂
′
x are the skew-symmetric matrices formed

by the components of γx , v′x, respectively, ∆f x , ∆ωx
zξ are

the sensor errors expressed in the frame Mx: ∆f x =
L′xz∆f z , ∆ωx

zξ = L′xz∆ωz
zξ . Note the negative sign in front

of δgx. This is due to the same sign of the velocity vector
vx in Eq. (4). Note also the presence of the gyroscope error
in Eq. (5), which is due to the presence of the term v̂xαx
in Eq. (4). Furthermore, note that the gravity gradient ma-
trix does not show up in Eq. (5) since position errors are
assumed to be zero assuming GNSS positioning solution
of high accuracy. Note also that from the de�nition of the
velocity error Eq. (4) it follows that the accelerometermea-
surements do not show up in Eq. (5).

Denote by vGNSSx the GNSS velocity of the aircraft rel-
ative to the Earth and by qvx = vGNSSx − vx the GNSS ve-
locity error. Let yx be the velocity observation obtained as
yx = v′x − vGNSSx . Then the observation model is written as

yx = δvx − v̂′xαx − ∆qvx . (7)

Note that vGNSSx instead of v′x can also be used in the prod-
uct v̂′xαx in Eq. (7) in the case of high accuracy of the GNSS
velocity solution.

Thus, the problem is to determine the GDV from
Eqs. (5), (6) given positions of the gravimeter proof
mass (from GNSS observations), the velocity observations
Eq. (7), a model of the normal gravity γx, and measure-
ments of thebody-frameabsolute angular velocityωz′

zξ and
the speci�c force f ′z.

As the gravity horizontal components δgx1 , δgx2 are of
special interest, we further consider only the equations for
the horizontal components in Eqs. (5), (7). Hence, rewrite
Eqs. (5), (6) as follows:

δv̇x1 = −γ0αx2 − δgx1 + ∆fx1 + v′x2∆ω
x3
xξ ,

δv̇x2 = γ0αx1 − δgx2 + ∆fx2 − v′x1∆ω
x3
xξ ,

α̇x1 = ωx3
xξαx2 − ωx2

xξαx3 − ∆ωx1
xξ ,

α̇x2 = ωx1
xξαx3 − ωx3

xξαx1 − ∆ωx2
xξ ,

α̇x3 = ωx2
xξαx1 − ωx1

xξαx2 − ∆ωx3
xξ ,

(8)
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where the small terms (ω̂x
xξ + ω̂x

ηξ )δvx , v′x3∆ω
x1
xξ , v

′
x3∆ω

x2
xξ

are neglected (as highly accurate INS is assumed). Here γ0
denotes themagnitudeof thenormal gravity vectorγx. The
corresponding observation equations are written as

yx1 = δvx1 + v′x2αx3 − qvx1 ,
yx2 = δvx2 − v′x1αx3 − qvx2

(9)

where the small terms v′x3αx1 and v′x3αx2 are also ne-
glected. The GNSS velocity errors qvx1 ,qvx2 are assumed
to be zero-mean white-noise processes with known vari-
ances.

We consider simpli�ed models for the gyroscope and
accelerometer errors (for more detailed models see, e.g.
Kwon and Jekeli (2001); Farrell (2008)):

∆ωz
zξ = bg + qg , ∆f z = ba + qa (10)

where bg , ba are 3 ×1-vectors of gyroscope and accelerom-
eter biases, respectively, qg , qa are random errors. The bi-
ases are modeled as follows:

ḃ
g = qb , ḃa = 0. (11)

The vectors qb , qg , qa are assumed to be zero-mean
white-noise processeswith knownvariances.Note that dif-
ferent models are used for the gyroscope and accelerom-
eter biases in Eq. (11). We assume that the accelerometer
bias changes insigni�cantly over time (due to thermal con-
trol), e.g. about 0.2 mGal/day as for the GT-1A gravimeter
(Berzhitsky et al. 2002).

3 The anomalous gravity �eld
model as a random �eld

To determine the GDV horizontal components from
Eqs. (8)-(11), an additional information (or a hypothesis)
on gravity should be introduced. Our approach is based on
taking into account the spatial behavior of the anomalous
gravity �eld. For this purpose, we use 2-D stochastic mod-
eling of gravity. Preliminary theoretical analysis showed
that gravity spatial correlations taken into account could
signi�cantly strengthen observability of the GDV horizon-
tal components (Bolotin and Vyazmin 2018).

To simplify presentation, we make some assumptions
regarding survey lines. Consider a set of lines of a typical
airborne survey. Assume that the lines are equally spaced
and �own at a constant height h above the reference el-
lipsoid. Assume also that the lines are �own in the same
direction (for example, from south to north) and the air-
craft speed is constant at the lines. Consider a subset of K

neighbouring lines Γ1,...,ΓK of equal lengths (we will call
this subset a block).

Let x1, x2 be orthogonal coordinates on the plane,
which is �tted to the set of lines. Let the x1-axis be di-
rected across the lines (from west to east) and the x2-axis
be directed along the lines (from south to north). Denote
by ∆x1 the line spacing and by k the line number. Air-
borne measurements along the lines are assumed to be
time-synchronized. Let ∆x2 be the spatial resolution of air-
borne measurements along a line, i be the number of a
measurement point on a line, i = 1,...,I, where I is the to-
tal number of measurement points on a line. Thus there
is a rectangular grid of the measurement points (k,i) ∼
(k∆x1,i∆x2) at the �ight height (see Fig. 1).

Denote by T(k,i) values of the disturbing potential
T(k∆x1,i∆x2,h) in the knots (k,i) of the grid. We use
a stochastic model of the disturbing potential assum-
ing that T(k∆x1,i∆x2,h) is a homogeneous discrete two-
dimensional random �eld with the 2-D PSD expressed as
the product of two 1-D PSD in the following form:

ST(u1, u2, h) = σ2

4π2

∣∣∣H1(eju1∆x1 )
∣∣∣2∣∣∣H2(eju2∆x2 )

∣∣∣2
, (12)

H1(z1) = 1
1 − a1z−1

1 − a2z−2
1
,H2(z2) = 1

1 − c1z−1
2 − c2z−2

2

where a1, a2, c1, c2 are the coe�cients of the model, σ2

is the variance of the random �eld, u1, u2 are spatial fre-
quencies corresponding to x1, x2, respectively. Here z1, z2
are complex numbers, j =√-1.

It follows from Eq. (12) that the disturbing potential
can be represented by two 2nd-order autoregressive equa-
tions, one of which is de�ned on the x1-axis and the other
on the x2-axis :

T(k, i) = c1T(k, i − 1) + c2T(k, i − 2) + w(k, i), (13)

w(k, i) = a1w(k − 1, i) + a2w(k − 2, i) + qw(k, i). (14)

Here qw(k, i) is is the discrete-time white noise with zero
mean and the variance σ2. The coe�cients a1, a2, c1, c2
can be computed given the a priori correlation radius of
the anomalous gravity �eld. The along-line PSD and au-
tocorrelation function of the gravity model are shown in
Fig. 2. Figure 3 shows contours of the 2-D PSD of the grav-
ity model (the model is nearly isotropic).

The gravity horizontal components can be expressed
as

δgx1 (k, i) ≈ 1
∆x1

(T(k, i) − T(k − 1, i)),
δgx2 (k, i) ≈ 1

∆x2
(T(k, i) − T(k, i − 1)).

(15)
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Fig. 1. Grid of knots and fragments of survey lines, m×m.

Fig. 2. The normalized along-line PSD (left) and autocorrelation
function (right) for the correlation length 10 km (solid line) and
20 km (dashed line).

Fig. 3. Contours of the 2-D PSD of the stochastic model of the
anomalous gravity �eld.

4 Algorithm of the gravity
horizontal component estimation

Let us select a block of lines, i.e., a subset of K neighbour-
ing lines Γ1,...,ΓK of equal length. Consider the set of K
problems, each of which is described by Eqs. (8)-(9) and
posed for one of K neighbouring lines Γk. Introduce the
K×1- vector of values of a variable at the same measure-
ment point x2 = i∆x2 of each neighbouring line as follows
(for example, for δv1):

δv1(i) = (δv1(∆x1, i∆x2), ..., δv1(K∆x1, i∆x2))T

where δv1(k∆x1, i∆x2) denotes the value of the velocity
error at the measurement point x2 = i∆x2 at the line Γk.

For simplicity of notation, we omit the subscript x here-
inafter. Then we combine K systems of the INS error equa-
tions Eq. (8) and K systems of the observation equations
Eq. (9) into one system that can be written brie�y in the
discrete-time form as

x(i + 1) = A(i)x(i) + B(i)q(i),
y(i) = C(i)x(i) + r(i),

(16)

where the state vector x(i) includes the following 13 vari-
ables (each one is a K × 1-vector) at the i-th time instant
(the total dimension is 13K × 1):

δv1(i), δv2(i), α1(i), α2(i), α3(i), T(i), T(i − 1),
ba1(i), ba2(i), ba3(i), bg1(i), bg2(i), bg3(i).

(17)

The matrices A(i), B(i), C(i) in Eq. (16) are formed by
the coe�cients of the INS error equations and the obser-
vation equations, q(i) is a random vector formed by the in-
ertial sensor noises qa, qg, qb and the noise qw from the
gravity model Eq. (14), r(i) is the random vector formed by
the GNSS velocity error qv. We assume that q(i), r(i) are
white noise processes with zero mean and known covari-
ance matrices.

We now can pose the standard optimal estimation
problem (under the minimum mean squared error crite-
rion) for the system’s state vector Eq. (17) given the state
space model Eq. (16) and the covariance matrices for the
random vectors q(i), r(i).

The estimation algorithm is based on Kalman �lter-
ing and includes the following steps. At the �rst step, the
posed estimation problem for the block of lines (i.e., the
set of K neighbouring lines of equal length) is solved via
Kalman �ltering. At the second step, the Rauch–Tung–
Striebel (RTS) smoother (Kailath et al. 2000) is applied to
the Kalman �lter estimates. The GDV horizontal compo-
nent estimates are obtained from the disturbing potential
estimate. At the next step, the following block of lines (i.e.,
the set of lines Γ2,...,ΓK+1) is selected and the steps 1 and 2
are repeated.

In the case when K is equal to the total number of sur-
vey lines, the estimation algorithm is optimal in the mean
squared error sense in the class of linear algorithms. The
number of the adjacent lines should be greater or equal to
3. Data �ow diagram of the developed algorithm is shown
in Fig. 4.
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5 Data processing results and
analysis

A. Data simulation

The developed algorithm was applied to simulated air-
borne gravimetry data. The inertial navigation simulator
(Bogdanov and Golovan 2017) was used that provided a
�ight path and readings of a virtual inertial measurement
unit (IMU). Flight path parameters (coordinates, velocity,
attitude angles) and error-free IMU measurements were
simulated along8parallel survey lines at a constant height
of 570 m above the reference ellipsoid. The lines are di-
rected from south to north and spaced at 800m. Initial lat-
itude and longitude for the line 1 are 43◦ and 32◦, respec-
tively. Length of each line equals 90 km. An aircraft �ying
speed along a linewas 100m/s. The yaw, roll and pitch an-
gles were constant along each line (the roll and pitch were
set to 0).

Fig. 4. Data flow diagram for the GDV estimation along adjacent
lines.

The anomalous gravity �eld at the �ight height was
simulated as a random �eld generated by two autoregres-
sive equations of order 3 (in amanner similar to generating
the model of order 2 given by Eqs. (13)-(14)). Then the gen-
erated random �eld was smoothed by the 2-D Hann win-
dow to reduce anisotropic e�ects. Note that the autoregres-
sive equations of a di�erent order were used at the data
simulation stage than those (Eqs. (13)-(14)) used in the es-
timation algorithm. A di�erent order of the autoregressive

equations was used as otherwise accuracy of the �nal es-
timates of the GDV could be unreasonably optimistic.

The gravity correlation radius is about 5 km. Figure 5
shows the along-line GDV components derived from the
simulated anomalous gravity �eld. Figure 6 shows maps
of the simulated gravity components in the survey area.

To simulate gyroscopemeasurement errors (noise and
biasdrift),weused readings of a calibratedgyroscope triad
(�ber optic gyroscopes (FOG) by Optolink, LLC), which
were recorded during a standstill test. The Allan vari-
ances calculated from the gyroscope readings are shown
in Fig. 7. Bias instability was around 0.002-0.004◦/h. Stan-
dard deviation of noise (angular random walk) equaled
0.1◦/h/√Hz. The error-free gyro readings provided by the
simulator were perturbed by an additive zero-mean noise
process derived from the FOG readings and by a constant
bias of 0.005◦/h.

Fig. 5. Gravity disturbance components (simulated data) along 8
survey lines: east (top), north (middle), up (bottom), [mGal].

To simulate accelerometer errors, an additive zero-
mean white-noise process with standard deviation of
1.5 mGal/√Hz was simulated. Then the constant bias of 10
mGal was added to accelerometer measurements. No bias
drift was simulated assuming the presence of a highly sta-
ble thermal control as, e.g., in Berzhitsky et al. (2002).

The GNSS velocity solution was assumed to have only
an additive random-noise error, which was simulated as
the �rst-order di�erence of a zero-mean white-noise pro-
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Fig. 6. True gravity components (simulated data) and the estimates
provided by the algorithm based on 2-D autoregressive gravity
model: a) true (east), b) the estimate (east), c) true (north), d) the
estimate (north), [mGal].

Fig. 7. Square root of the Allan variances calculated from the read-
ings of the gyroscope triad (FOG by Optolink), [◦/h].

cess at 20 Hz. The standard deviation of the simulated
GNSS velocity error equaled 3 mm/s/√Hz [the value can
be found, e.g., in Freda et al. (2015)].

B. Data processing

The inertial sensor measurements and GNSS data simu-
lated along 8 survey lines were processed by the proposed
algorithm. First, the INS mechanization equations Eq. (3)
were solved for all points along the survey lines given

known initial values for v′x and Lzx for each line (precise
initial alignment was assumed).

After that, the disturbing potential and INS errors
were estimated along all 8 lines simultaneously via the
Kalman �lter (open-loop estimation). The coe�cients of
the autoregressive equations Eqs. (13)-(14) were prelimi-
narily computed for the a priori value of the gravity cor-
relation radius equaled to 5 km. The state vector Eq. (17)
of the combined system Eq. (16) included the velocity er-
rors, the attitude errors, the inertial sensor biases, and the
disturbing potential values at the i-th measurement point
of each line. The total number of the variables of the state
vector equaled 104.

At the next step, the estimates provided by the Kalman
�lter were smoothed by applying the RTS-smoother. Then
the along-line estimates of the GDV horizontal compo-
nents were obtained using the formula Eq. (15).

C. Results

Results of the gravity horizontal component estimation are
shown in Fig. 6. Errors of the GDV estimation obtained as
the di�erence of the along-line estimates and the true data
are shown in Fig. 8. The accuracy of the gravity horizontal
component estimation (1σ) ranges from 0.9 to 2.1 mGal for
the east component and from 0.7 to 1.2 mGal for the north
component. Standard deviation of the estimate error over
all 8 lines equals 1.43 mGal for the east component and
0.97 mGal for the north component.

Loss of accuracy of the gravity estimates can be ob-
served at the edges of the processed area (Fig. 8). This ef-
fect was expected as it followed from the properties of the
gravity autoregressive model used by the algorithm. The
estimate error is less than 4 mGal inside the area and less
than 8 mGal for the whole area (for both components).

The constant biases in outputs of the horizontal gy-
roscopes were estimated with good accuracy: mean value
of the along-line estimates ranges from 0.003 to 0.006◦/h
(the true value is 0.005◦/h). The estimates of the constant
biases of the vertical gyroscope and the accelerometers are
inaccurate as these are almost unobservable. The horizon-
tal orientation errors αx1 ,αx2 are less than 6′′ for each sur-
vey line. These errors were estimated with the accuracy of
about 0.4′′ (1σ) and 0.4′′ – 2.2′′ (mean value).

Table 1 summarizes statistics of the along-line grav-
ity estimate errors. Mean value of the estimate error for
the north component is small and reaches only 0.04mGal.
However, mean value of the east component estimate er-
ror is larger and reaches 0.2 – 0.4 mGal for most lines. The
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Table 1. Numerical results with the proposed algorithm based on the 2-D autoregressive gravity model: mean value and standard deviation
of the gravity estimate errors, mGal.

Gravity component Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 All lines
East (SD) 1.54 1.38 0.86 1.68 0.89 1.65 1.39 2.06 1.43
North (SD) 1.11 1.15 1.11 1.02 0.97 0.90 0.79 0.69 0.97
East (mean) -0.05 -0.37 -0.03 0.27 -0.24 0.21 -0.28 -0.01 -0.06
North (mean) 0.01 0.10 0.09 0.03 0.02 -0.03 -0.03 -0.04 0.02

reason is likely that some unobservable long-wavelength
parts remained in the estimate of the east component.

Fig. 8. Di�erences of the estimated GDV components and true data:
east component (left) and north component (right), [mGal].

6 1-D autoregressive gravity model
For the purposes of comparison, the GDV horizontal com-
ponents were also estimated using the traditional ap-
proach based on time-domain stochastic modeling of the
GDV components. We used a third-order Gauss-Markov
model for the gravity components, which is written in the
time domain as

δg(3)
m + 3βgδg̈m + 3β2

gδġm + β3
gδgm = qg

m , (18)

wherem = 1,2, qg
m is a zero-meanwhite noisewith variance

σ2
q = 16

3 β
5
gσ2

g . The following values for the gravity model
parameterswere adopted: 50 s for the correlation time 1/βg
(equivalent to 5 km) and 5 mGal for σg.

Fig. 9. East and north components of the gravity disturbance along
the line 5: true (black), the estimate provided by the proposed al-
gorithm based on the 2- D autoregressive gravity model (red), the
estimate provided by the standard algorithm based on the 1-D au-
toregressive gravity model (blue), [mGal].

Hence, the gravity horizontal components and INS
systematic errors can be estimated along a line given the
state space model written in the continuous-time form
Eqs. (8)-(11) and (18). The system’s state vector includes 17
variables, which are the INS errors:

δv1, δv2, α1, α2, α3, ba1 , ba2 , ba3 , bg1, b
g
2, b

g
3,

and the gravity model parameters:

δg1, δġ1, δg̈1, δg2, δġ2, δg̈2. (19)

The along-line gravity estimates were obtained via
Kalman �ltering (the open-loop estimation) and then
smoothed using the RTS-smoother.

Only two lines (No. 4 and No. 5) were selected for pro-
cessing and comparingwith the newapproach. The reason
is that the new approach is expected to provide the most
accurate estimates for the lines in the centre of the block of
the lines. The other lines in the block are auxiliary for es-
timating gravity along the central lines. It should be noted
that the new approach is intended for processing datasets
with a large number of lines. The lines of a such dataset are
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assumed to be represented as a set of overlappingblocks of
lines, where each block consists ofK neighbouring lines of
equal length. At the �rst step, the �rst block is processed,
then the second one, and so forth (see Sect. 4). At each
step, the result for the line in the centre of a block is stored.
The number K of the lines in a block is selected by the user
and is assumed to be much smaller than the total number
of lines.

The gravity component estimates along line 5 ob-
tained using the two approaches are shown in Fig. 9. The
traditional approach showed less accurate estimates of the
horizontal components than the approach based on the
2-D autoregressive gravity model (see Fig. 9). Non-linear
trends caused by the orientation errors and the sensor bi-
ases can be observed in the estimates. The accuracy of
the estimates provided by the traditional approach is 30%
(line 4) and 50% (line 5) worse for the east component and
66% (line 4) and almost 300% (line 5) worse for the north
component (see Table 2).

Mean value of the east component estimate error for
line 5 is at the same level of 0.2mGal as in the case of using
the new approach. However, mean value of the east com-
ponent estimate error for line 4 (0.11 mGal) is 2.5 times bet-
ter than in the case of using the new approach (0.27mGal).
Mean value of the north component estimate error equals
0.64 mGal (line 4) and 1.36 mGal (line 5) when using the
traditional approach. Both values are signi�cantly worse
than those obtained using the new approach (0.03 mGal
for line 4 and 0.02 mGal for line 5).

Table 2 summarizes statistics for the errors of the grav-
ity estimates along line 4 and line 5 obtained using the tra-
ditional approach.

Table 2. Numerical results with the algorithm based on 1-D autore-
gressive gravity model (the third-order Gauss–Markov process):
mean value and standard deviation of the gravity estimate errors,
mGal.

Gravity component Line 4 Line 5
East (SD) 2.18 1.42
North (SD) 1.69 2.78
East (mean) 0.11 0.23
North (mean) 0.64 1.36

7 Conclusions
An approach to determination of the gravity disturbance
horizontal components from airborne measurements at a

set of parallel survey lines is proposed. The approach is
based on using a 2-D homogeneous random �eld for the
gravity �eld modeling. The random �eld is generated by a
combination of two autoregressive equations of order two,
one of which is de�ned along a survey line and the other
across the lines. The developed estimation algorithm is
based on Kalman �ltering and smoothing techniques. Sev-
eral adjacent parallel survey lines are selected for simulta-
neous processing. The developed estimation algorithm is
optimal under the minimummean squared error criterion
in the class of linear algorithms as the number of selected
adjacent lines tends to the total number of survey lines.

Simulated airborne data were processed by the devel-
oped algorithm. A navigation-grade IMU and the di�eren-
tial mode of GNSS were assumed.

The new approach showed signi�cant reduction of the
impact of the IMU sensor and orientation errors on the
gravity horizontal component estimation. Numerical re-
sults showed the estimation accuracy of 1.43mGal and0.97
mGal (1σ over all processed lines) for the east and north
components, respectively. However, the resultsmay be op-
timistic for airborne vector gravimetry as the simpli�ed
models were used for simulating observation errors.

The new approach was compared with the traditional
one based on representing each gravity component by a
stochastic process in the time domain. The accuracy of the
best estimate obtained using the new approach (along the
line in the centre of all lines) is 0.89 mGal for the east and
0.97 mGal for the north component (1σ). This is several
times better than the accuracy achieved using the tradi-
tional approach.

The bias in the north component estimates computed
using the new approach is small (less than 0.04 mGal) in
comparison with the bias in the east component ( at the
level of 0.2 – 0.4 mGal for most lines). An external infor-
mation (such as lines in cross-track direction or a global
gravity �eld model) is likely to be required when using the
new approach, and this is the subject for further investiga-
tion.

The proposed approach has general requirements for
survey lines (such as equal spacing, constant height above
the reference ellipsoid, and constant cruising speed) and
does not require repeated lines. There is also a less general
requirement such as the same�ight direction for each line.
However, this can be avoided by solving the INS mecha-
nization equations backward in time for the lines �own in
opposite direction.

In conclusion, it should be also noted that the sen-
sitivity of the proposed approach to the order of the
random �eld model, the a priori gravity correlation ra-
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dius and the variance of the generating noise is of interest.
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