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Abstract: The topographic potential bias at geoid level is
the error of the analytically continued geopotential from
or above the Earth’s surface to the geoid. We show that the
topographic potential can be expressed as the sum of two
Bouguer shell components, where the density distribution
of one is spherical symmetric and the other is harmonic at
any point along the normal to a sphere through the com-
putation point. As a harmonic potential does not a�ect the
bias, the resulting topographic bias is that of the �rst com-
ponent, i.e. the spherical symmetric Bouguer shell. This
implies that the so-called terrain potential is not likely to
contribute signi�cantly to the bias. We present three ex-
amples of the geoid bias for di�erent topographic density
distributions.

Keywords: density distribution, geoid, geopotential, ter-
rain, topographic bias

1 Introduction
As the determination of the Earth’s potential by Stokes’
formula requires no masses outside the sphere of inte-
gration, the e�ect of the topographic masses need special
treatment. In the remove-compute-restore technique (e.g.,
Sjöberg and Bagherbandi, 2017, Sect. 6.2.1) it means that
the e�ect is �rst removed from the gravity observations
(the direct topographic e�ect) prior to Stokes integration
and then added back as a potential correction (the indi-
rect topographic e�ect) to the preliminary computed geoid
height.

In contrast, the KTH method (e.g. Sjöberg 2003,
Sjöberg and Bagherbandi 2017, Sect. 6.2.2) �rst determines
a preliminary geoid height by Stokes’ formula using sur-
face gravity anomalies, which result is corrected for the
error caused by its harmonic/analytical continuation (AC)
through the topography to the geoid. The resulting geoid
height is biased whenever the geoid is located inside the
topography, and the bias, which is caused only by the fact
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that the topographic potential is not harmonic along the
vertical between the computation point and its foot point
at the geoid, we call the topographic bias (of the geoid
height). This bias can be treated as the sum of that for
a Bouguer shell through the computation point and that
for the remaining topography (the terrain e�ect). Sjöberg
(2007, 2008 and 2009a, b) claimed that (from a practical
view) the total bias is that of the Bouguer shell, although
the �nal proof that there is no contribution from the terrain
in the near zone is still debated. See also Wang (1990).

Here we will reconsider the bias using a slightly dif-
ferent approach. However, we will not discuss the bias in
theACwhenusing an external type spherical harmonic ex-
pansion of the geopotential; see Sjöberg and Bagherbandi
(2017, Sect. 5.2.6.)

2 The topographic potential and its
bias in analytical continuation

The topographic potential at an arbitrary point P can be
determined by the Newton integral

VTP =
∫∫
σ

rs∫
R

µ r
2

lp
drdσ, where lP =

√
r2P + r2 − 2rpr cosψ.

(1)

For rP = R one arrives at the topographic potential at
sea/geoid level:

VT0 =
∫∫
σ

rs∫
R

µ r
2

l0
drdσ, where l0 =

√
R2 + r2 − 2R cosψ.

(2)

Here σ is the unit sphere, µ is gravitational constant
times density of mass, ψ is the geocentric angle between
computation and integration points, R, rP, r and rs are
the radii at sea level (or geoid level, approximated by a
sphere), computation and integration points and topo-
graphic surface above or below the computation point, re-
spectively.

TheAC either upward or downward of the topographic
potential, denoted

(
VTP
)*

, can be performed by the Taylor
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series of VTP at P along the vertical (Wang 1990; Hofmann-
Wellenhof and Moritz 2005, Sect.8.6; Sjöberg 2009a):(

VTP
)*

=
∞∑
k=0

(−hP)k
k!

∂kVTP
∂rkP

, (3)

where hP = rP − R. If the AC is carried out in free space,
downward or upward, implying that the potential is har-
monic and all its radial derivatives exist between P and
the foot point of the geoid, then

(
VTP
)*

= VT0 , otherwise
it is biased. Hence, the bias of the (topographic) potential
is de�ned by

bias(VTP ) =
(
VTP
)*
− VT0 . (4)

The bias is frequently divided into those of the po-
tentials of a Bouguer shell (VBP ) and the remaining topo-
graphic potential, the terrain potential

(
V terrP

)
, de�ned as

follows:

bias
(
VTP
)
= bias

(
VBP
)
+ bias

(
V terrP

)
, (5a)

where

VBP =
∫∫
σ

rQ∫
R

µ r
2

lp
drdσ (5b)

and

V terrP =
∫∫
σ

rs∫
rQ

µ r
2

lp
drdσ. (5c)

Here rQ is the surface radius along the vertical through P.
(Note that P is arbitrarily located on or outside the topog-
raphy.)

3 The bias of the Bouguer shell
In case of a Bouguer plate potential of thickness H and
constant density µ0 Wang (1990) showed that the bias be-
comes 2πµ0H2, and similarly for a spherical Bouguer shell
potential Sjöberg (2007) came to the bias of 2πµ0H2(1 +
2H
3R ), whereH is the thickness and R the inner radius of the
shell.

In Sect. 3.1 wewill consider the topographic density as
spherically symmetric,while in Sect. 3.2 it is generalized to
an arbitrary distribution.

3.1 The bias for a spherical symmetric
density distribution

Here we consider the bias of a spherical Bouguer shell be-
tween the spheres of radiiR and rQ > R, having a spherical

symmetric layered density distribution µ (r). The potential
of the shell becomes

VBP = 2π
rQ∫
R

µ (r) r2
−1∫
1

dt
lP
dr

= 2π
rQ∫
R

µ (r) r2 rP + r − |rP − r|rPr
dr, (6a)

where the surface element of Eq. (1) was written

dσ = − sinψdψdα = dtdα, t = cosψ (6b)

and α is azimuth.
Equation (6a) can be decomposed into an external po-

tential

VB,eP = 4π
rQ∫
R

µ (r) r
2

rP
dr, if rP ≥ rQ (7a)

and an internal potential (at the geoid or below):

VB,iP = 4π
rQ∫
R

µ (r) rdr, if rP ≤ R, (7b)

and, �nally, if R < rP < rQ :

VB,e+iP = 4π
rP∫
R

µ (r) r
2

rP
dr + 4π

rQ∫
rP

µ (r) rdr. (7c)

By taking the di�erence of the potentials in Eqs. (7a) and
(7c) at any point inside the shell, one �nds the bias for the
external Bouguer shell potential:

bias(VBP )* = 4π
rQ∫
rP

µ (r)
(
r2
rP
− r
)
dr; R ≤ rP ≤ rQ , (8a)

which vanishes at the surface with rP = rQ and becomes

bias(VBP )* =
(
VBP
)*
− VB0 = 4π

rQ∫
R

µ (r) ( r
2

R − r)dr (8b)

at the geoid (with radius R).
In particular, for µ = µ (r) = constant and rQ = R +HP,

the bias at geoid level becomes

bias(VBP ) = 4πµ
(
r3
3R −

r2
2

)r=R+HP
r=R

= 2πµ
(
H2
P +

2H3
P

3R

)
.

(9)

See also Sjöberg (2007).
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3.2 The bias for an arbitrary density
distribution

Let us now decompose the arbitrary density µ (which may
vary in 3D) into a radial symmetric distribution µA(r) and
the residual component νA = µ − µA (r). Here the sub
index A means a selected point on the sphere such that
µA(r) = µ(r, ΩA), where Ω = (φ, λ) = (latitude, longi-
tude), implying that νA(r) = 0 at any point along the verti-
cal through A. Then the potential of the Bouguer shell be-
tween spheres of radii R and rQ > R can be written (cf.
Eq. 1):

VBP =
∫∫
σ

rQ∫
R

(µA(r) + νA)
r2
lP
drdσ

=
∫∫
σ

rQ∫
R

µA(r)
r2
lP
drdσ +

∫∫
σ

rQ∫
R

νA
r2
lP
drdσ

= VB,1P + VB,2P . (10a)

It follows directly from Sect. 3.1 that the bias of VB,1P is
the same as that in Eq. (9) with µ = µA .

Finding thebias ofVB,2P ismore complicated. If oneap-
plies the Laplace operator to each component of Eq. (10a),
one obtains, term by term from Laplace’s and Poisson’s
equations:

0 = 0 + 0, (10b)

if P is located on or outside the shell, and

−4πµ = −4πµA − 4πνA , (10c)

if P is located inside the shell.
In the special case that P is located inside the shell

along the vertical through A, Eq. (10c) becomes

−4πµ = −4πµA , (10d)

implying that νA = 0 and ∆νA = 0 at any point along
this vertical. Hence, it is tempting to suggest that VB,2P
is harmonic along the vertical so that this potential does
not contribute to the topographic bias in AC. However, as
stated by Kellog (1953, p. 211), a potential is harmonic at
a point P only “if its second derivatives exist and are con-
tinuous and satisfy Laplace’s equation throughout some
neighborhood of that point”. That is, satisfying the Lapla-
cian at the point is not a su�cient condition for being har-
monic, but in the present case a thin (but �nite) hole along
the vertical from the geoid to the surface would be suf-
�cient. Hence, one may only state that VB,2P is approxi-
mately unbiased, or

bias
(
VB,2P

)
≈ 0. (11)

F. Sansó (private communication) presented a sim-
ple counter example of the potential of a spherical shell
with a laterally variable density. Although the example
shows that the downward continued potential is biased
even along the normal where the density vanishes, we
found that this error is only about 11 µm at the peak of Mt.
Everest (see Appendix).

Hence, from the discussion in Sect. 3.1 and above,
Eq. (10a) leads to the following practical bias of the AC of
the external Bouguer shell potential at the geoid:

bias
(
VBP
)*

=
(
VBP
)*
− VB0 = 4π

rQ∫
R

µA(r)(
r2
R − r)dr, (12)

i.e. the bias is practically the same as that for the spherical
symmetric layered shell.

4 The bias of the terrain potential
The mass of the terrain is the topographic mass not in-
cluded in the Bouguer shell. A general formula for the ter-
rain potential was given in Eq. (5c). Wang (1990) found the
following estimate of its bias for a constant topographic
density of the terrain:

V terrbias ≈
3µ
8 h4P

∫∫
A

h − hs
x2 + +y2 + h2 dxdy, (13)

where A is the horizontal- or (x,y)-plane. However, this
estimate is the result of a series expansion truncated at
power 2, and the truncation error is not included. Sjöberg
(2009a) found that the terrain correction/bias vanishes or
is limited to the integration over a small portion of the ter-
rain around the computation point. Here we will be more
precise in estimating this potential component.

4.1 New results for the terrain bias

The terrain potential of Eq. (5c) can be decomposed into

V terrP = V terr+P + V terr−P , (14)

where

V terr+P =
∫∫
σ

rs+∫
rQ

µ r
2

lp
drdσ ≥ 0, (15a)

and

V terr−P =
∫∫
σ

rs−∫
rQ

µ r
2

lp
drdσ ≤ 0, (15b)
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where rs+ and rs− are the surface radii for terrain masses
above and below the sphere of radius rQ.

It is obvious that V terr−P could have been included as
part of the Bouguer shell potential VB,2P , which is har-
monic and therefore without bias. Also V terr+P is harmonic
for rP < rQ , suggesting that it does not contribute to the
bias in the AC to the geoid. Next we present a proof.

If rP is located in the interval R ≤ rP ≤ rQ, then V terr+P
can be expressed as a convergent inner type Laplace series

V terr+P =
∞∑
n=0

rnP
rnQ
V+
n , (16a)

where

V+
n =

2n + 1
4π

∫∫
σ

rnQ∫
rQ

µ r2
rn−1 drPn (cosψ) dσ. (16b)

Here Pn (cosψ) is the n-th Legendre’s polynomial.
In particular, for rP = R

V terr+0 =
∞∑
n=0

Rn

rn+1Q
V+
n , (17)

which is the terrain potential at the geoid.
It remains to show that AC of the surface terrain poten-

tial, given by Eq. (16a), equals Eq. (17). Hence, by inserting
Eq. (16a) into Eq. (3) one obtains(
V terr+P

)*
=

∞∑
k=0

(−hP)k
k!

∞∑
n=0

n(n − 1)...(n − k + 1)rn−kP
rn+1Q

V+
n

(18)
or (

V terr+P

)*
=

∞∑
n=0

V+
n

rn+1Q
In(rP , hP), (19a)

where

In(rP , hP) =
n∑
k=0

n(n − 1)...(n − k + 1)
k! rn−kP (−hP)k , (19b)

which is the binomial series of (rP − hP)n, i.e.

In(rP , hP) =
n∑
k=0

(
n
k

)
rn−kP (−hP)k = (rP − hP)

n = Rn .

(19c)

Therefore, by inserting Eq. (19c) into Eq. (19a) one ar-
rives at Eq. (17), which shows that there is no contribution
to the topographic bias from the terrain potential, V terr+P .
This result is a consequence of that the terrain potential is
harmonic along the radius vector at the computation point
P, implying that it is correctly continued to the geoid in the
AC process.

5 A re�ned approach
In the following we will avoid the approximation of sea
level to a sphere. Introducing the radii R0 and rB of the en-
veloping/Brillouin and Bjerhammar spheres, respectively,
with R0 > (rs)max and rB ≤ (rg)min, where rg is the radius
of the geoid, the topographic potential can be expressed:

VTP =
∫∫
σ

R0∫
rB

µ r
2

lp
drdσ, (20)

which is identical to Eq. (1) as µ = 0 for rB ≤ r < rg and
rs < r ≤ R0. Inserting the substitution
µ = µA (r) + νA into Eq. (20), where µA (r) and νA were de-
�ned in Sect. 3.2, one obtains

VTP =
∫∫
σ

R0∫
rB

µA(r)
r2
lp
drdσ +

∫∫
σ

R0∫
rB

νA
r2
lp
drdσ

= VT,1P + VT,2P . (21)

VT,2P is harmonic for r > rP and for r ≤ rP the bias is not
signi�cant, yielding

(
VTP
)*

=
(
VT,1P

)*
= 4π

R0∫
rB

µA (r)
r2
r g
dr = 4π

rQ∫
rg

µA (r)
r2
rg
dr,

(22)
and the bias becomes

bias
(
VTP
)*

= 4π
rQ∫
rg

µA (r) (
r2
rg
− r)dr. (23)

In case that the geoid is located above the Earth’s sur-
face, it holds that µA (r) = 0 in Eq. (23), and the bias cor-
rectly vanishes.

6 Examples
Example 1: If the topographic density (denoted µ0) is con-
stant, Eq. (23) yields

bias
(
VTP
)*

= 2πµ0
(
H2 + 2H3

3rg

)
, (24)

where H is the orthometric height at P.
Example 2: Assume that the density is distributed into two
layers, such that it is constantly µ0 from the surface down
to radius r1 and then constantly µ1 down to the geoid at
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radius rg. Then Eq. (23) yields the bias

bias
(
VTP
)*

= 4πµ1
r1∫
rg

(
r2
rg
− r
)
dr + 4πµ0

rQ∫
r1

(
r2
rg
− r
)
dr.

(25)

Comparing with the bias for a constant topographic den-
sity in Eq. (24), there is here and additional bias of

∆bias
(
VTP
)*

= 2π∆µ
(
H2
1 +

2H3
1

3rg

)
, (26)

where ∆µ = µ1 − µ0 and H1 = r1 − rg .
Example 3: Let the density be µ0 at the topographic surface
and linearly changing to µ1 at the geoid. Then the density
at radius r, rg ≤ r ≤ rQ , can be expressed:

µ (r) = µ0 + (µ1 − µ0)
rQ − r
H = µ0

r − rg
H + µ1

rQ − r
H , (27)

so that in this case there is an additional bias at the geoid
of

∆bias
(
VTP
)*

= 2π∆µ
(
H2

3 + H3

6rg

)
. (28)

Comparing with the bias of Example 1 (denoted
bias0), one can see that the relative additional bias be-
comes

∆bias
bias0

= ∆µµ0
1 + H/2rg
3 + 2H/rg

≈ ∆µ
3µ0

. (29)

Hence, if the densities at the surface and geoid are 2.7 and
3.3 g/cm3, the approximate relative additional bias is 7.4
%, independent of topographic height.

7 Concluding remarks
We have shown that the potential of an arbitrary topo-
graphic density distribution can be decomposed into two
Bouguer shell potentials, where one component has a
spherical symmetric density distribution, and the other is
practically harmonic at any point along the normal to the
Brillouin sphere through the computation point. As the to-
pographic bias is not a�ected by a harmonic potential, it is
practically determined only by the �rst component. Com-
pared to earlier investigations, this study re�nes the bias
bynot usinga spherical approximationof the geoid radius,
and it generalizes the result to an arbitrary density distri-
bution.

The result implies that gravimetric geoid models can
be carried out without the terrain correction, and the for-
mal terrain correction determined in an arbitrarily thin

(but �nite) channel between the geoid and the surface
along the vertical through the computation point, is likely
not signi�cant in real cases as shown by the example in
Appenix. This can be performed as a two-step procedure:
�rst the disturbing potential at the surface point is deter-
mined; second an AC procedure of this potential to the
geoid yields a biased potential that needs a correction
(which is actually the simple Bouguer plate correction; see
Sjöberg 2015).

Note that the series for the AC of Eq. (3) is in�nite. In
this view, a practical obstacle could be that the rougher the
terrain is around the computation point, the higher degree
of truncation of the series is needed to ful�l a certain re-
quirement of accuracy.

In Example 3 we showed that for a linearly increas-
ing topographic density with depth from 2.7 g/cm3 at the
surface to 3.3 g/cm3 at the geoid, there is an additional
analytical continuation bias of 7 % (independent of topo-
graphic height) vs. that for the constant topographic den-
sity 2.7 g/cm3.

The method discussed here for analytical continua-
tion of the topographic potential down to the geoid could
be extended for the inversion of the gravity potential to
any depth within the Earth, e.g. to the Moho.

Acknowledgement: I appreciate a constructive discus-
sion with F. Sansó.
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A Appendix
Example A1. (F. Sanso’s counterexample: The AC for a
spherical shell with a laterally variable density)

Let the density of a spherical shell be a function of the
co-latitude θ:

µ (θ) = µ0 [1 − Y10 (θ)] , (A.1)

where Y10 =
√
3 cos θ is the fully normalized �rst de-

gree zonal spherical harmonic, implying that the den-
sity changes with co-latitude between

(
1 −

√
3
)
µ0 and(

1 +
√
3
)
µ0, where µ0 is a constant.

Generally, the potential of the shell, bounded by the
spheres of radii R1 and R with R1 > R, can be written

V(P) =
∫∫
σ

µ
R1∫
R

µ r
2dr
lp

dσ. (A.2)

In the exterior case (with rP ≥ R1) this potential can be
expanded to

V (P) =
∫∫
σ

µ0[1 − Y10(Θ)]

R∫
R

1∑
n=0

rn+2dr
(2n + 1) rn+1P

n∑
m=−n

Ynm (θ, λ) dσYnm(P),

(A.3)

or, after lateral followed by radial integration:

V (P) = 4πµ0
R1∫
R

(
r2
rP
− r3

3r2P
Y10(P)

)
dr

= 4πµ0
3

[
R31 − R3
rP

− R
4
1 − R4

4r2P
Y10 (θP)

]
. (A.4)

Similarly, the potential for rP ≤ R after expanding 1/lP
as an internal type series, becomes

V (P) = µ0
R1∫
R

∞∑
n=0

rnP
(2n + 1) rn−1

YnmdrYnm(P), (A.5)

or

V(P) = 4πµ0
[
R21 − R2

2 − rP (R1 − R)3 Y10(θP)
]

(A.6)

We now limit the following discussion by focusing
on the analytical continuation and its true value for
θP =54.◦7356, where Y10 (θP) = 1. Then, upon setting
R1 = R+H, the AC of (A4) down to the radius rP = R yields,

V* = 4πµ0
[
2RH
3 + H

2

2 − H4

12R2

]
, (A.7)

and the true potential at radius rP = R (assumed to be at
the geoid) follows from Eq. (A6) as:

V true (P) = 4πµ0
(
2RH
3 + H

2

2

)
. (A.8)

Hence, using Bruns’ formula to get the topographic
bias of the geoid height due to the terrain of becomes

bias(N) = V
* − V true
γ0

= −πµ0H
4

3R2γ0
, (A.9)

where γ0 is normal gravity on the reference ellipsoid.
Hence, formally there is a contribution of the terrain to the
topographic bias. However, if the density of mass in µ0 is
set to 2670 kg/m3 and R is 6371 km, for the height of Mt.
Everest (8.848 km) the bias becomes only – 3 µm , which
is negligible.

If one studies the bias at an arbitrary point on the
spherical shell with the density µ = µ0(1 − Y10) , then the
bias can be expressed:

bias(N) = Post + Dev, (A.10a)

where

Post = 2πµ0
γ0

(
H2 + 2H3

3R

)
(A.10b)

is the postulated bias, and

Dev = −πµ0H
4

3γ0R2
Y10 (A.10c)

is the error of Post, which is insigni�cant at any point on
the shell.
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