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Abstract: The topographic potential bias at geoid level is
the error of the analytically continued geopotential from
or above the Earth’s surface to the geoid. We show that the
topographic potential can be expressed as the sum of two
Bouguer shell components, where the density distribution
of one is spherical symmetric and the other is harmonic at
any point along the normal to a sphere through the com-
putation point. As a harmonic potential does not affect the
bias, the resulting topographic bias is that of the first com-
ponent, i.e. the spherical symmetric Bouguer shell. This
implies that the so-called terrain potential is not likely to
contribute significantly to the bias. We present three ex-
amples of the geoid bias for different topographic density
distributions.

Keywords: density distribution, geoid, geopotential, ter-
rain, topographic bias

1 Introduction

As the determination of the Earth’s potential by Stokes’
formula requires no masses outside the sphere of inte-
gration, the effect of the topographic masses need special
treatment. In the remove-compute-restore technique (e.g.,
Sjoberg and Bagherbandi, 2017, Sect. 6.2.1) it means that
the effect is first removed from the gravity observations
(the direct topographic effect) prior to Stokes integration
and then added back as a potential correction (the indi-
rect topographic effect) to the preliminary computed geoid
height.

In contrast, the KTH method (e.g. Sjoberg 2003,
Sj6berg and Bagherbandi 2017, Sect. 6.2.2) first determines
a preliminary geoid height by Stokes’ formula using sur-
face gravity anomalies, which result is corrected for the
error caused by its harmonic/analytical continuation (AC)
through the topography to the geoid. The resulting geoid
height is biased whenever the geoid is located inside the
topography, and the bias, which is caused only by the fact
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that the topographic potential is not harmonic along the
vertical between the computation point and its foot point
at the geoid, we call the topographic bias (of the geoid
height). This bias can be treated as the sum of that for
a Bouguer shell through the computation point and that
for the remaining topography (the terrain effect). Sjoberg
(2007, 2008 and 2009a, b) claimed that (from a practical
view) the total bias is that of the Bouguer shell, although
the final proof that there is no contribution from the terrain
in the near zone is still debated. See also Wang (1990).

Here we will reconsider the bias using a slightly dif-
ferent approach. However, we will not discuss the bias in
the AC when using an external type spherical harmonic ex-
pansion of the geopotential; see Sjoberg and Bagherbandi
(2017, Sect. 5.2.6.)

2 The topographic potential and its
bias in analytical continuation

The topographic potential at an arbitrary point P can be
determined by the Newton integral

rs 2
vE-= ///y%drda, where [p = \/r}%+r2 - 2rprecosy.
o R

@

For rp = R one arrives at the topographic potential at
sea/geoid level:

2
2
ve= ///y;—odrdo, where Iy = /R2 +r2 - 2Rcos .
J R

@)

Here o is the unit sphere, y is gravitational constant
times density of mass, 1 is the geocentric angle between
computation and integration points, R, rp, r and rs are
the radii at sea level (or geoid level, approximated by a
sphere), computation and integration points and topo-
graphic surface above or below the computation point, re-
spectively.

The AC either upward or downward of the topographic

potential, denoted (V; ) , can be performed by the Taylor
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series of VE at P along the vertical (Wang 1990; Hofmann-
Wellenhof and Moritz 2005, Sect.8.6; Sjoberg 2009a):

1\ _ - (chp)* OFVf
(v#) L o G

where hp = rp — R. If the AC is carried out in free space,
downward or upward, implying that the potential is har-
monic and all its radial derivatives exjst between P and
the foot point of the geoid, then( VIT,) = VI, otherwise
it is biased. Hence, the bias of the (topographic) potential
is defined by

bias(VE) = (vg)* ~vE. 4)

The bias is frequently divided into those of the po-
tentials of a Bouguer shell (v{?) and the remaining topo-
graphic potential, the terrain potential (Vf,e”), defined as
follows:

bias (Vg) = bias (Vf) + bias (V}e”) ,  (58)
where
rq )
B r
Vp =///ul—drd0 (5b)
o R b
and
(50)

Ts ;
fo"=///y;—drda.
0 rq P

Here r is the surface radius along the vertical through P.
(Note that P is arbitrarily located on or outside the topog-

raphy.)

3 The bias of the Bouguer shell

In case of a Bouguer plate potential of thickness H and
constant density uo Wang (1990) showed that the bias be-
comes 2o H?, and similarly for a spherical Bouguer shell
potential Sjoberg (2007) came to the bias of 2muoH*(1 +
%—g), where H is the thickness and R the inner radius of the
shell.

In Sect. 3.1 we will consider the topographic density as
spherically symmetric, while in Sect. 3.2it is generalized to
an arbitrary distribution.

3.1 The bias for a spherical symmetric
density distribution

Here we consider the bias of a spherical Bouguer shell be-
tween the spheres of radii R and ry > R, having a spherical
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symmetric layered density distribution u (r). The potential
of the shell becomes

rQ -1
VE=2ﬂ/y(r)r2/$dr
R pr

rq
= 27‘[/}1(}/) rzwdr, (6a)
rpr
R
where the surface element of Eq. (1) was written
do = -sinypdypda = dtda, t=cosy (6b)

and a is azimuth.
Equation (6a) can be decomposed into an external po-
tential

g
2
vpe = 471/},1(r) :—dr, if rp>rg (7a)
P
R
and an internal potential (at the geoid or below):

rq
Vg’i =4n /y(r) rdr, if rp <R, (7b)
R

and, finally,if R<rp<rqg:
r}.’ 2 rq
vEet - 471/ u( :—dr+4ﬂ/y(r) rdr.  (7c)
P
R rp

By taking the difference of the potentials in Egs. (7a) and
(7c) at any point inside the shell, one finds the bias for the
external Bouguer shell potential:

rQ
2
bias(VE)" = 471/}1 () <:— - r) dr; R<rpsrg, (8a)
P
rp

which vanishes at the surface with rp = ry and becomes
. 2 2
. By\* B B r
bias(Vp) = (VP> -Vy = lm/y(r)(ﬁ -r)dr (8b)
R

at the geoid (with radius R).
In particular, for y = u(r) = constantand ry = R+ Hp,

the bias at geoid level becomes
r3 r2 ) r=R+Hp

bias(fo) = 47Ty ( —

2H3
R - 2, 2P
3R 2 2nu (HP+ 3R>'

)

r=R

See also Sjoberg (2007).
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3.2 The bias for an arbitrary density
distribution

Let us now decompose the arbitrary density u (which may
vary in 3D) into a radial symmetric distribution p4(r) and
the residual component v4 = pu — pa (r). Here the sub
index A means a selected point on the sphere such that
ua(r) = u(r, Qy), where Q = (p,A) = (latitude, longi-
tude), implying that v4(r) = O at any point along the verti-
cal through A. Then the potential of the Bouguer shell be-
tween spheres of radii R and rg > R can be written (cf.
Eq. 1):

rq
. 2
V§=///(HA(r)+vA);—drd0
¢ R F
rq rz rq rz
= ua(r)—drdo + va—drdo
Ip Ip
o R 0 R

= VBl vE2, (10a)

It follows directly from Sect. 3.1 that the bias of Vﬁ 1is
the same as that in Eq. (9) with p = g .

Finding the bias of V5% is more complicated. If one ap-
plies the Laplace operator to each component of Eq. (10a),
one obtains, term by term from Laplace’s and Poisson’s
equations:

0=0+0, (10b)
if P is located on or outside the shell, and
—47u = 47Uy — 4TIV, (10c)

if P is located inside the shell.
In the special case that P is located inside the shell
along the vertical through A, Eq. (10c) becomes

47U = —4mU,, (10d)

implying that v4 = 0 and Av, = O at any point along
this vertical. Hence, it is tempting to suggest that Vg’z
is harmonic along the vertical so that this potential does
not contribute to the topographic bias in AC. However, as
stated by Kellog (1953, p. 211), a potential is harmonic at
a point P only “if its second derivatives exist and are con-
tinuous and satisfy Laplace’s equation throughout some
neighborhood of that point”. That is, satisfying the Lapla-
cian at the point is not a sufficient condition for being har-
monic, but in the present case a thin (but finite) hole along
the vertical from the geoid to the surface would be suf-
ficient. Hence, one may only state that Vg,z is approxi-
mately unbiased, or

bias (Vf?) ~ 0. (11)
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F. Sans6 (private communication) presented a sim-
ple counter example of the potential of a spherical shell
with a laterally variable density. Although the example
shows that the downward continued potential is biased
even along the normal where the density vanishes, we
found that this error is only about 11 um at the peak of Mt.
Everest (see Appendix).

Hence, from the discussion in Sect. 3.1 and above,
Eqg. (10a) leads to the following practical bias of the AC of
the external Bouguer shell potential at the geoid:

bias(v,?)* - (V}E)* —vB- 4nfyA(r)(rI: —Pdr, (12)
R

i.e. the bias is practically the same as that for the spherical
symmetric layered shell.

4 The bias of the terrain potential

The mass of the terrain is the topographic mass not in-
cluded in the Bouguer shell. A general formula for the ter-
rain potential was given in Eq. (5¢). Wang (1990) found the
following estimate of its bias for a constant topographic
density of the terrain:

. 3}1 4 h hs
~ =T hp //x2++y2+h2dXdy’

where A is the horizontal- or (x,y)-plane. However, this
estimate is the result of a series expansion truncated at
power 2, and the truncation error is not included. Sjoberg
(2009a) found that the terrain correction/bias vanishes or
is limited to the integration over a small portion of the ter-
rain around the computation point. Here we will be more
precise in estimating this potential component.

terr
bms

(13)

4.1 New results for the terrain bias

The terrain potential of Eq. (5¢) can be decomposed into

Vterr Vterr+ V}t)err—, (14)
where
Ts+ 2
Vi = ///y;—drda >0, (15a)
g g P
and
(15b)

T 2
fo”‘=///yl—drd0s0,
p
o 1q
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where rs, and rs- are the surface radii for terrain masses
above and below the sphere of radius r(.

It is obvious that V¥~ could have been included as
part of the Bouguer shell potential Vf,”z , which is har-
monic and therefore without bias. Also VE'™ is harmonic
for rp < rq , suggesting that it does not contribute to the
bias in the AC to the geoid. Next we present a proof.

If rp is located in the interval R < rp < rq, then VE"™*
can be expressed as a convergent inner type Laplace series

t o T

err+ P +

VP = Z m Vi,
n=0 Q

(16a)

where
|78 2n+1///y ——drPn (cos ) do. (16b)
Here Py, (cos 1) is the n-th Legendre’s polynomial.
In particular, for rp = R
terr+ S R" +
Vo = Z et Va, (17)
n=0 Q

which is the terrain potential at the geoid.

It remains to show that AC of the surface terrain poten-
tial, given by Eq. (16a), equals Eq. (17). Hence, by inserting
Eq. (16a) into Eq. (3) one obtains

* had k o
(fo’”) :Z(_h) Zn(n 1).. £:11+1k+ ik v
k=0 n=0 Q
(18)
or
terr+ * - V;;
(VP ) =er,7+11n(rP’hP)’ (193)
n=0 Q
where
1 k+1
In(rp,hp)=z”(” ) k(!” 1) ek Cpy), (19b)

k=0

which is the binomial series of (rp — hp)", i.e

In(rp, hp) =) ( Z ) ik (~hp)k = (rp — hp)" = R™.
k=0
(19¢)

Therefore, by inserting Eq. (19¢) into Eq. (19a) one ar-
rives at Eq. (17), which shows that there is no contribution
to the topographic bias from the terrain potential, V¥,
This result is a consequence of that the terrain potential is
harmonic along the radius vector at the computation point
P, implying that it is correctly continued to the geoid in the
AC process.

DE GRUYTER

5 Arefined approach

In the following we will avoid the approximation of sea
level to a sphere. Introducing the radii Ry and rg of the en-
veloping/Brillouin and Bjerhammar spheres, respectively,
with Rg > (7s)pax and g < (7g)pmin» Where rg is the radius
of the geoid, the topographic potential can be expressed:

Ro 2
Vg=///y;—drd0,
J i

which is identical to Eq. (1) as p = O for rg < r < rg and
rs < r < Rg. Inserting the substitution

U = ug (r) + v, into Eq. (20), where u, (1) and v, were de-
fined in Sect. 3.2, one obtains

Ro RO
. 2 2
Vp = ///yA(r)—drd0+ ///VA—drdo
. lp . Ip
o 1B o 1B

_yhl, yT.2
=Vp +Vp”.

(20)

(1)

V}f’z is harmonic for r > rp and for r < rp the bias is not
significant, yielding

R
(V;T,)* = (V;J)* = 4n/yA (r)gdr

s

rq )
471/;1A (r):—dr,

. g

Tg

(22)
and the bias becomes

N ? 2
bias(VE) = 471/ Ha (1) (:—g —r)dr. (23)

In case that the geoid is located above the Earth’s sur-
face, it holds that py (1) = 0 in Eq. (23), and the bias cor-
rectly vanishes.

6 Examples

Example 1: If the topographic density (denoted p) is con-
stant, Eq. (23) yields

bias(Vg)* = 21y (H2 231;1 )

where H is the orthometric height at P.

Example 2: Assume that the density is distributed into two
layers, such that it is constantly po from the surface down
to radius r; and then constantly pu; down to the geoid at

(24)
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radius rg. Then Eq. (23) yields the bias

r rqQ
* 2 2
i Ty - r_ r_
bzas(Vp> —lmyl/(rg r>dr+4ﬂy0/(rg r)dr.
rg n

(25)

Comparing with the bias for a constant topographic den-
sity in Eq. (24), there is here and additional bias of

. 3
Abias(Vg) = 2nAp (H% + %) ,

(26)
where Ay = yy —poand Hy =ry —rg.

Example 3: Let the density be g at the topographic surface
and linearly changing to y; at the geoid. Then the density
atradiusr, rg <1 <rq, can be expressed:

—Ig ro-—-r

rQq—r r
() = Mo+ (1 = Ho) =4 = po—pr* + > (27)

so that in this case there is an additional bias at the geoid
of

H? H? > 28)

. T * _ a 4

Abzas(Vp> =2nAu < T+ 6rg
Comparing with the bias of Example 1 (denoted
biasg), one can see that the relative additional bias be-

comes

Abias _ All+H/2rg _Au
biasoy Mo 3+2H[rg 3o’

(29)

Hence, if the densities at the surface and geoid are 2.7 and
3.3 g/cm?, the approximate relative additional bias is 7.4
%, independent of topographic height.

7 Concluding remarks

We have shown that the potential of an arbitrary topo-
graphic density distribution can be decomposed into two
Bouguer shell potentials, where one component has a
spherical symmetric density distribution, and the other is
practically harmonic at any point along the normal to the
Brillouin sphere through the computation point. As the to-
pographic bias is not affected by a harmonic potential, it is
practically determined only by the first component. Com-
pared to earlier investigations, this study refines the bias
by not using a spherical approximation of the geoid radius,
and it generalizes the result to an arbitrary density distri-
bution.

The result implies that gravimetric geoid models can
be carried out without the terrain correction, and the for-
mal terrain correction determined in an arbitrarily thin
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(but finite) channel between the geoid and the surface
along the vertical through the computation point, is likely
not significant in real cases as shown by the example in
Appenix. This can be performed as a two-step procedure:
first the disturbing potential at the surface point is deter-
mined; second an AC procedure of this potential to the
geoid yields a biased potential that needs a correction
(which is actually the simple Bouguer plate correction; see
Sjoberg 2015).

Note that the series for the AC of Eq. (3) is infinite. In
this view, a practical obstacle could be that the rougher the
terrain is around the computation point, the higher degree
of truncation of the series is needed to fulfil a certain re-
quirement of accuracy.

In Example 3 we showed that for a linearly increas-
ing topographic density with depth from 2.7 g/cm? at the
surface to 3.3 g/cm’ at the geoid, there is an additional
analytical continuation bias of 7 % (independent of topo-
graphic height) vs. that for the constant topographic den-
sity 2.7 g/cm?>.

The method discussed here for analytical continua-
tion of the topographic potential down to the geoid could
be extended for the inversion of the gravity potential to
any depth within the Earth, e.g. to the Moho.

Acknowledgement: I appreciate a constructive discus-
sion with F. Sanso.
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A Appendix

Example Al. (F. Sanso’s counterexample: The AC for a
spherical shell with a laterally variable density)

Let the density of a spherical shell be a function of the
co-latitude 0:

1(6) = po[1-Y10(0)], (A1)

where Y19 = v/3cos0 is the fully normalized first de-
gree zonal spherical harmonic, implying that the den-
sity changes with co-latitude between (1 -+/3) po and
(1 +/3) po, where yg is a constant.

Generally, the potential of the shell, bounded by the
spheres of radii R, and R with R; > R, can be written

R
2
V(P) = //y/yrl—drda.
S p

In the exterior case (with rp > R4) this potential can be
expanded to

(A.2)

V)~ [[ nolt - Yao(ol

o

R 4 0
rn+2dr

/3 @nrnyryt 2o Yim @A) doYan(P),

R 0 m=-n

n=

(A.3)

or, after lateral followed by radial integration:
R

! 2
V(P)=4ny0/ (5
R

_4muo [R3-R* RY-R*
T3 rp 4?’}23

r3

Ylo(P)) dr
3r3

Yio (ep)] L (a4

Similarly, the potential for rp < R after expanding 1/1p
as an internal type series, becomes

le

V(P) = Ho / Z WynmdrYnm(P), (A.5)
R n=0

or

R? -R? Ri1-R
1 R )Y10(9P)

5 3 (A.6)

V(P) = 4mug [
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We now limit the following discussion by focusing
on the analytical continuation and its true value for
O0p =54.°7356, where Y19 (0p) = 1. Then, upon setting
Ry = R+H, the AC of (A4) down to the radius rp = R yields,

(A7)

2RH H? H*
3 2 ’

vV = 4mug [7 + 12R2

and the true potential at radius rp = R (assumed to be at
the geoid) follows from Eq. (A6) as:

+ —

3 5 (A.8)

2
V™M (P) = 4mpg <2RH H ) .
Hence, using Bruns’ formula to get the topographic

bias of the geoid height due to the terrain of becomes
V* _ Vtrue

. muoH*
bias(N) = = - s
(V) Yo 3R2yq

(A9)

where yo is normal gravity on the reference ellipsoid.
Hence, formally there is a contribution of the terrain to the
topographic bias. However, if the density of mass in pg is
set to 2670 kg/m3 and R is 6371 km, for the height of Mt.
Everest (8.848 km) the bias becomes only — 3 um , which
is negligible.

If one studies the bias at an arbitrary point on the
spherical shell with the density u = po(1 - Y10) , then the
bias can be expressed:

bias(N) = Post + Dev, (A.10a)
where
Post = 2’;210 (HZ + 23}11:) (A.10Db)
is the postulated bias, and
Dey = - THoH" Y10 (A.10¢)
3yoR?2

is the error of Post, which is insignificant at any point on
the shell.
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