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Abstract: In this work, the geodesic equations and their
numerical solution in Cartesian coordinates on an oblate
spheroid, presented by Panou and Korakitis (2017), are
generalized on a triaxial ellipsoid. A new exact analytical
method and a new numerical method of converting Carte-
sian to ellipsoidal coordinates of a point on a triaxial ellip-
soid are presented. An extensive test set for the coordinate
conversion is used, in order to evaluate the performance of
the two methods. The direct geodesic problem on a triax-
ial ellipsoid is described as an initial value problem and is
solved numerically in Cartesian coordinates. The solution
provides the Cartesian coordinates and the angle between
the line of constant A and the geodesic, at any point along
the geodesic. Also, the Liouville constant is computed at
any point along the geodesic, allowing to check the preci-
sion of the method. An extensive data set of geodesics is
used, in order to demonstrate the validity of the numeri-
cal method for the geodesic problem. We conclude that a
complete, stable and precise solution of the problem is ac-
complished.

Keywords: coordinates conversion, direct geodesic prob-
lem, ellipsoidal coordinates, geometrical geodesy, Liou-
ville’s constant

1 Introduction

It is known that a triaxial ellipsoid is used as a model
in geodesy and other interdisciplinary sciences, even in
medicine. For example, it is used as a geometrical and
physical model of the Earth and other celestial objects.
Also, it is used as a geometrical model of the cornea and
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retina of the human eye (Aguirre 2018). Other applications
of a triaxial ellipsoid are mentioned in Panou et al. (2016).

In order to describe a problem using a triaxial ellipsoid
as model, it is necessary to introduce a triaxial coordinate
system (see Panou 2014, Panou et al. 2016). In many appli-
cations the ellipsoidal coordinate system is used, which is
a triply orthogonal system. Comments on the variants of
the ellipsoidal coordinates are presented in Panou (2014).
It is important that the ellipsoidal coordinates constitute
an orthogonal net of curves on the triaxial ellipsoid.

In this work, the general exact analytical method of
converting the Cartesian coordinates to the ellipsoidal
coordinates, presented by Panou (2014), is specified for
points exclusively on the surface of a triaxial ellipsoid.
Another exact analytical method is described in Baillard
(2013). Furthermore, a new numerical method of convert-
ing the Cartesian coordinates (x,y, z) to ellipsoidal co-
ordinates (B, A), which is based on the method of least
squares, is presented. We note that another numerical
method is developed by Bektas (2015), which is also pre-
sented in Florinsky (2018). The precision of the exact ana-
lytical methods, which involve complex expressions, suf-
fer when one approaches singular points and/or when ex-
ecuted on a computer with limited precision. On the other
hand, numerical methods, which essentially involve iter-
ative approximations, can be more precise but the execu-
tion time, difficult to predict, may be longer.

Traditionally, there are two problems concerning
geodesics on a triaxial ellipsoid: (i) the direct problem:
given a point Xy on a triaxial ellipsoid, together with a
direction ag and the geodesic distance sg; to a point X'q,
determine the point X; and the direction a; at this point,
and (ii) the inverse problem: given two points Xy and X
on a triaxial ellipsoid, determine the geodesic distance sg;
between them and the directions ag, a;at the end points.
These problems have a long history, as reviewed by Karney
(2018a).

There are several methods of solving the above two
problems. In general, the methods make use of the ellip-
tic integrals presented by Jacobi (1839), where the inte-
grands are expressed in a variant of the ellipsoidal coor-
dinates, e.g. Bespalov (1980), Klingenberg (1982), Baillard
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(2013), Karney (2018b) and include a constant presented
by Liouville (1844). On the other hand, there are meth-
ods which make use of the differential equations of the
geodesics on a triaxial ellipsoid, e.g. Holmstrom (1976),
Knill and Teodorescu (2009) and Panou (2013). Finally,
Shebl and Farag (2007) use the technique of conformal
mapping in order to approximate a geodesic on a triax-
ial ellipsoid. Because the elliptic integrals of the classi-
cal work of Jacobi (1839) have singularities, the methods
which use them are preferable in the study of the qual-
itative characteristics of the geodesics, as presented in
Arnold (1989), together with excellent illustrations by Kar-
ney (2018b). On the other hand, differential equations of
the geodesics can be directly solved using an approxi-
mate analytical method (Holmstrom 1976) or a numerical
method (Knill and Teodorescu 2009). It is worth empha-
sizing that, as presented in Panou and Korakitis (2017),
geodesic equations expressed in Cartesian coordinates are
insensitive to singularities. Although Holmstrom (1976) ex-
pressed the geodesic equations on a triaxial ellipsoid in
Cartesian coordinates, his approximate analytical solution
is of low precision.

In this work, the geodesic equations and their numer-
ical solution in Cartesian coordinates on a triaxial ellip-
soid are presented. Since the numerical solution involves
computations at many points along the geodesic, it can be
used as a convenient and efficient approach to trace the
full path of the geodesic. Also, part of this solution con-
stitutes the solution of the direct geodesic problem. Fur-
thermore, in contrast to Holmstrom (1976), we make use of
the ellipsoidal coordinates which are involved in Liouville
equation, allowing to check the precision of the method.

2 Ellipsoidal to Cartesian
coordinates conversion and vice
versa

2.1 From ellipsoidal to Cartesian
coordinates

A triaxial ellipsoid in Cartesian coordinates is described by
x2 . y? N 22
a; a; b?
where ax, ay and b are its three semi-axes. The linear ec-
centricities are given by

Ex=+\/a}-b%, Ey=,/aj-b?, Ee=,/ai-a; (2

=1, O<b<ay<ax 6))]
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with E2 = E% - Ej. The Cartesian coordinates (x, y, z) of
a point on the triaxial ellipsoid can be obtained from the
ellipsoidal coordinates (3, A) by the following expressions
(Jacobi 1839)

x = ZBi cosA 3)
Ex
y = ay cos BsinA (4)
zZ= b sin ﬂL% (5)
X
where
B = E2cos®p + E2sin’p (6)
and
L =E? - E%cos’A 7

while 3f < B <  and - < A < + ;1. At the umbilical
points, i.e. when f = +J and A = O or A = +m, from Egs.
(3)-(5) we get the Cartesian coordinates x = iaxg—j, y =0,
z = rbg—i. Further details on the ellipsoidal coordinates,
along with their geometrical interpretation, are presented
in Panou (2014). Finally, in the case of an oblate spheroid,
where ax = ay = a, i.e. Ex = E, = E and E. = 0, Egs. (3)-
(5) reduce to well-known expressions (see Heiskanen and
Moritz 1967).

2.2 From Cartesian to ellipsoidal
coordinates

2.2.1 Exact analytical method

The ellipsoidal coordinates (8, A) can be obtained from the
Cartesian coordinates (x, y, z) of a point on the triaxial el-
lipsoid by solving the following quadratic equation in ¢

(see Panou 2014)
(8)

?+cit+co=0

where
C1=X2+y2+22—<a,2(+a}2,+b2) 9)

and

co =azay + axb® + ayb* - (af, + bz) x? - (a)z( + bz) y?

- (a,z( + a)z,) 22 (10)
with two real roots, which can be expressed as
t =<0 (11)
to
and
—C1 +4/C3 - 4eco
t) = (12)
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The connection between the roots t1, t, and the ellip-
soidal coordinates (B, A) is given by the relations

t; = a,z,sinzﬂ + bzcoszﬁ (13)

(14)

where b? < t; < aj and aj < t, < ag, while t; = t, = aj at
the umbilical points. Inverting Egs. (13) and (14) results in

t1 - b?
B = arctan ( 12 . > = arccot

t, = a,z(sinz/\ + a}z,cosz/l

a)z,—tl

o2 ®

ay 1

A = arctan

t) - aj 2 _
27 ) - arccot( f" ;g) (16)

a)z(_tZ 2~ 4y

where the conventions with regard to the proper quadrant
for the f and A need to be applied from the signs of x, y and
z. In the case of an oblate spheroid, corresponding expres-
sions have been presented in Heiskanen and Moritz (1967).

2.2.2 Numerical method

Assuming that the Cartesian coordinates x, y and z of
a point on the triaxial ellipsoid are measurements, the
method of least squares (Ghilani and Wolf 2006) may be
employed to obtain the best estimates of the ellipsoidal co-
ordinates 8 and A. This technique requires writing Egs. (3)-
(5) in the form

x g3 cosA =x+vq 17
Ex

aycosfBsind =y + v, (18)
b . 1

—sinBL? =z +wv3 (19)

Ex
which are non-linear equations and hence the solution
process is iterative. This means that approximate values of
ellipsoidal coordinates are assumed, corrections are com-
puted and the approximate values are updated. The pro-
cess is repeated until the corrections become negligible.

The linear approximation of Egs. (17)-(19) can be rep-
resented in matrix form as

6B | _
]{ 51 } =8l+v (20)
where
ox ox
% %
_ |9y 9y
V=138 an @)
0z 0z

o oA
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is a 3x2 matrix containing the partial derivatives (Jacobian
matrix)
ox _axEy sin(2B)

B 2E Bl cos A (22)
oy . .
35 -ay sin fsin A (23)
g—; = EA cos ,BL% (24)
X
% = —%B% sinA (25)
X
oy
51 = @ycospcosi (26)
) .
0z _ bE? sin (24) @7)

oA~ 2E, sin 8 71
computed from the approximate ellipsoidal coordinates g°
and A°,
x-x°
y-y°

z-2°

81 = (28)

is a 3 x 1 vector of terms which are “given Cartesian co-
ordinates — computed Cartesian coordinates from the ap-
proximate ellipsoidal coordinates using Egs. (3)-(5)” and
v is a 3 x 1 vector of residuals. The corrections to the ap-
proximate ellipsoidal coordinates are the elements of the
solution vector

6B 1T
=N 61 2
KES .
where
N =ITI _ [ nip Niz } (30)
ny1 Nz
and hence
N - 1 Ny, N2 (1)
NNy —N12N21 | —Np1 N1

One should note that the determinant of matrix
N(nq1n»,-n1>n,1) equals zero at the umbilical points. The
updated values of the approximate ellipsoidal coordinates

MR

The residuals are computed from Eq. (20) and an esti-
mate of the variance factor (7(2) can be computed using the
following equation

(32

<
<

(33)

Q>
onN
Il
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where d represents the degrees of freedom (in this case,
d = 1). The iterative process is terminated when the cor-
rections 6 and 61 become negligible. Another criterion of
ending the iterative process is the convergence of the vari-
ance factor (7(2) which, in the case of measurements of equal
precision, is an estimate of the variance of the Cartesian
coordinates computed from the adjustment (a posteriori).
Finally, the variance-covariance matrix of the computed
ellipsoidal coordinates is given by

Vi
A

= 6oN! (34)

Comparing the previous two methods, we note that the
operations in the exact analytical method lead to a loss
of accuracy for points near the planes x = Oory = O or
z = 0. Also, the importance of the numerical method is
that we avoid the degeneracy of the variable t, in Eq. (16),
which may yield inaccurate results, since the intervals of
variation of the coordinates  and A remain invariants as a
triaxial ellipsoid transforms to an oblate spheroid, where
t, = a®. Therefore, the values resulting from the exact an-
alytical method can be considered as initial, approximate
ellipsoidal coordinates in the numerical method. However,
because Egs. (3)-(5) are numerically stable, the results of
both methods can be checked by comparing the resulting
Cartesian coordinates (x°, y°, z°) with the given Cartesian
coordinates (x, y, z), e.g. by the simple formula

or = \/(x—xo)2 + (y—yo)2 + (2—20)2

(35)

3 Geodesic equations

The geodesic initial value problem, expressed in Cartesian
coordinates on a triaxial ellipsoid, consists of determining
a geodesic, parametrized by its arc length s, x = x (s), y =
y(s), z = z(s), with angles a = a (s) along it, between the
line of constant A and the geodesic, which passes through
a given point X (x (0),y (0), z(0)) in a known direction
(given angle ap = a (0)) and has a certain length sp;.

Now, we consider a triaxial ellipsoid which is de-
scribed in Cartesian coordinates (x, y, z) by

2 2
. z
S(x,y,z)=x2+y7+1_78)2(—a,2(=0

6
1-e (36)

where the squared eccentricities e2 and eZ are given by

) _(ai-b) L (s-a))

eX = a)z( ’ ee = a)z( (37)

It is well-known, from the theory of differential geome-
try, that the principal normal to the geodesic must coincide
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with the normal to the triaxial ellipsoid (Struik 1961), i.e.

&x Ay &z
ds’ _ ds? _ ds?
s as )
ox oy 0z

=-m (38)

where m is a function of s. From these equations, together
with Eq. (36), it is possible to determine x (s), y (s), z(s)
and m (s). Using Eq. (36), Egs. (38) become

Lax 1-didly 1-eid

xas? Ty a4tz a2
Differentiating Eq. (36), we have
dx y dy z dz _
Xds "1-ezds "1-e2ds (40)
and a further differentiation yields
x oy @y oz s
ds® 1-elds® 1-elds?
3 dx\’ 1 dy\’ 1 dz\’
“{(@)+1—%<%)+1—&(“> “y
Hence, from Egs. (39) and (41), we obtain
h
where
y? 22
H=x"+ S+ > (43)
(1-e2) (1-e2)
and
dx\* 1 dy 2 1 dz\’
h_(E) +1—e§<E) T1-ez\ds (“44)

Substituting Eq. (42) into Egs. (39), we obtain the
geodesic equations in Cartesian coordinates on a triaxial

ellipsoid
d’x h

T 0 (45)
% % 1 —y e? =0 (46)
;if+zl_ze§=o (47)

which are subject to the initial conditions
0=xO), G| =GO (48)
=y, | -0 (49)
=200 G| =GO (50)

where expressions for the values of the derivatives at
point Xy (xo, Yo, 20) are produced below. Hence, the direct
geodesic problem is described as an initial value problem
in Cartesian coordinates on a triaxial ellipsoid by Egs. (45)
to (50).
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Let 0 be a unit vector tangent to an arbitrary geodesic
through . Then, we can express ¢ in terms of the unit vec-
tors p, q and the angle a between the line of constant A and
the geodesic (Fig. 1):

4 Numerical solution

In order to solve the above problem, the system of three
non-linear second order ordinary differential equations

(]?qs. (45? to (47)) .15 rewritten as a system of six first-order _ ( @’ @’ @) _psina +qcosa (57)
differential equations: ds’ ds’ ds
d ) - dx (51) The unit vector normal to a triaxial ellipsoid (using the
ds "’ ds gradient operator and Egs. (36), (43)) can be expressed as
(Fig. 1):
d (dx h
ds (E) “THY G2 _ [ x y z
n_(n1)n27n3)_ 10 1 T
p p H: (1-e2)H2 (1-e})H:
S0=% (53) G8)
The unit vector p = (p1, p2, p3), tangent to the line of
d (dy hoy constant f, can be determined using Egs. (25)-(27) and Egs.
as (%) S THi-el (54)  (7) and (14) (Fig. 1):
1
d _dz 3 L \Zay 1 .
% (Z) = % (55) pl == (E) EBZ Sln/‘ (59)
d (dz h =z 1
— | == =" 6 2
ds <d5> H1-e2 (56) P2 = (FLt> ay cos fcos A (60)
2
This system can be integrated on the interval [0, s] us-
. . 2
ing a numerical n.lethod., sth as Runge-Kutta (see Bu.tcher D3 = 1 . 1291:; ¢ sin Bsin (21) (61)
1987). The step size 6s is given by s = 3, where n is the (Ftp)? <5x
number of steps. For the variables x, y and z, the initial here
conditions are xo, yo and z, respectively. To obtain the re- F = Ejcos + E2sin’A (62)

quired derivatives, we proceed to describe the unit vectors
to a geodesic through a point X (x, y, z) on a triaxial ellip-
soid (see Fig. 1).

Also, this vector can be expressed in terms of Cartesian
coordinates with the help of Egs. (13) and (14):

- L\ g
p1= sgn(y)<Ft2> EXEEBZ t-ay (63)

p2 = sgn(x) (F%) i E%e V@ -t) (@-t) 68

1 b
p3 = sgn()sgn(y)sgn(z) —— z—=
(Fty)? Exty
V(i -b2) (t2 - a3) (@~ t,) (65)
where N X
E E
B-3 (a7-t2) + = (6-2) (66)
y y
L=t,-b’ (67)
Figure 1: Unit vectors to a geodesic through a point X on a triaxial el- d
lipsoid: o tangent to the geodesic, n normal to the triaxial ellipsoid, an
p tangent to the line of constant j3, q tangent to the line of constant F=t-t; (68)

A while sgn(x) = 1ifx > 0, sgn(x) = -1if x < 0 and

sgn(0) = 0.
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However, vector p has singularities at the umbilical
points, where we can simply set p = (p1,p2,p3) =
(0, 1, 0). Finally, in the case of an oblate spheroid,
Egs. (59)-(61) reduce to the expressions (Panou and Koraki-
tis 2017)

p=(p1’p2’p3)=(_5in/l’ COSA’ 0) (69)
and Egs. (63)-(65) can be replaced by
-y X
= y D2, = , , 0 70
P = (p1, b2, 3) (\/XZ 7 ity ) (70)

The unit vector q = (g1, 42, q3), tangent to the line of
constant A, can now be determined as the cross product of
unit vectors n and p, i.e. q = n x p (Fig. 1):

q1 = nyp3 - n3p (71
q2 = n3p1 —n1ps3 (72)
q3 = n1py —Nyp; (73)

Finally, substituting the vectors p and q into Eq. (57),
we obtain the required values of the derivatives at point
20 (X0 Yo, 20)

dx| _ p1(0)sin ag + g1 (0) cos ag (74)
ds|,

dy .

| =p2(0)sinag + g2 (0) cos ag (75)
ds 0

dz .

——| =p3(0)sinag + g3 (0) cos ag (76)
ds o

5 Angles and Liouville’s constant

Taking the scalar product of Eq. (57) successively with p
and q and dividing the resulting equations, yields the an-
gle at which the geodesic cuts the curve of constant A

_ P\ _ Q
a = arctan (6) = arccot ( P) 77
where
_ _dx dy dz
P=p a—plﬁ +p2%+p3£ (78)
_ _dx dy dz
Q=q O=q1 5.+t B4 (79)

Note that Egs. (77) involve all the variables x, %, Vv, %,
zand %, which are obtained by the numerical integration.
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Along a geodesic on a triaxial ellipsoid, the Liouville
equation holds (Liouville 1844)

Ef,coszﬁsinza - E2sin’Acos’a = ¢ (80)
where c is the Liouville constant. Also, this equation can
be expressed in terms of Cartesian coordinates with the

help of Egs. (13) and (14):

a; - (tlsinza + tzcosza) =c (81)

At any value of the independent variable s, we can
estimate the difference 6c = ¢ - co between the com-
puted value ¢ and the known value ¢y at point Xy, from
the given B, Ao and a, by means of Liouville’s equation
(Eq. (80)). Furthermore, because the numerical integration
is performed in space, we can compute, at any value of s,
the function S, given by Eq. (36). Therefore, we can check
both the precision of the method and of the numerical inte-
gration, since the difference 6c and the function S should
be zero (meters squared) at any point along the geodesic
on a triaxial ellipsoid.

6 Numerical experiments

6.1 Test set for coordinates conversion

In order to validate the two methods of conversion pre-
sented above and to evaluate their performance, we used
an extensive test set of points. This is a set of 1725 points
on a triaxial ellipsoid, distributed into ten groups, as de-
scribed in Table 1, where N stands for the number of points
in each group. For simplicity and without loss of general-
ity, B and A were chosen in [0°, 90°].

Using a triaxial ellipsoid with ax = 6378172 m,
ay = 6378103 mand b = 6356753 m, (Ligas 2012) the
Cartesian coordinates for any point were computed using
Egs. (3)-(5).

All algorithms were coded in C++, were compiled by
the open-source GNU GCC compiler (at Level 2 optimiza-
tion) and employing the open-source “libquadmath”, the
GCC Quad-Precision Math Library, which provides a preci-
sion of 33 digits. In contrast, use of the C++ long-double
standard type (referred simply as double in the follow-
ing sections) provides a precision of 18 digits. The codes
were executed on a personal computer running a 64-bit
Linux Debian operating system. The main characteristics
of the hardware were: Intel Core i5-2430M CPU (clocked at
2.4 GHz) and 6 GB of RAM.
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Table 1: Description of the points in the test set
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Group B 1 Case N
1 5° — 85° every 5° 5° — 85° every 5° 1st octant 289
2 0° 0° — 90° every 5° xy — plane 19
3 5° — 85° every 5° 0° xz — plane 17
4 90° 5°—90°every 5 18
5 89.0°—89.9..9°up to 14 1.0°—-0.0..1°upto 14 near umbilic 225

decimals decimals
6 5° — 85° every 5° 90° yz — plane 17
1.0°=0.0...1°upto 14 0° —90° every 5° near xy — plane 285
decimals
8 0° — 90° every 5° 1.0°—0.0..1°up to 14 near xz — plane 285
decimals
9 89.0°—89.9...9°up to 14 0° —90° every 5° 285
decimals
10 0° —90° every 5° 89.0°—89.9...9°up to 14 near yz — plane 285
decimals

6.1.1 Results

The exact analytical method was applied using double and
quad precision and the Cartesian coordinates x, y and z as
input data. From the resulting ﬁo and A° at any point, we
computed the differences 68 = § - ﬁo and 64 =1 -A° and
recorded the max |68| and the max|8A| for every Group.
Furthermore, the results at any point were converted back
to Cartesian coordinates, we computed the value 6r using
Eq. (35) and recorded the maxér for every Group. All re-
sults are presented in Table 2.

Comparing the results of maxér presented in Table 2
between the double and quad precision, we conclude that
only quad precision provides results suitable for most
practical applications. Also, we remark that only the quan-
tity 6r can be computed in a problem starting with knowl-
edge of Cartesian coordinates only.

Similarly, the numerical method was applied using
double and quad precision and the Cartesian coordinates
x, yand z as input data. From the resulting ° and A° at
any point, we computed the differences 88 = g - ° and
8A = A - A° and recorded the max|8f| and the max |6A|
for every Group. It is known that, using the method of
least squares, we compute the matrix N and hence the
variance-covariance matrix of the computed values of j
and A. Therefore, we can estimate the errors of § and A
(from the diagonal elements of matrix V), so we recorded
the max |65| and max |6;| for every Group. Furthermore,
we computed the value 6r using Eq. (35) and recorded the
maxér for every Group. Finally, we recorded the mean and
the maximum value of iterations i, which were needed, us-
ing as criterion of convergence of the standard error 6, the

values 107° and 10733, for double and quad precision, re-
spectively. All results are presented in Tables 3 and 4.

Comparing the results of maxdr presented in Tables 3
and 4 between the double and quad precision, we con-
clude that both precisions can give results suitable for
most practical applications (better than 1 mm for double
and 1 nm for quad precision).

6.2 Data set for geodesics

In order to evaluate the performance of the presented
method with respect to stability and precision, we used
an extensive data set of 150000 geodesics for a triaxial
ellipsoid with ax = 6378172 m, ay = 6378103 m and
b = 6356753 m (Ligas 2012). The geodesics of the set were
distributed into five groups (A — E) with different quali-
tative characteristics, as described in Tables 5 — 9. Each
geodesic of the data set was defined by the values of 8, (in
degrees), Ao (in degrees), ag (clockwise from A = constant
in degrees) and so; (in meters). Furthermore, §,, Ao and
o were taken to be multiples of 10712 deg and sp; a mul-
tiple of 0.1 um in [0 m, 20003987.55893028 m], where
the upper bound for the sy, is the geodesic distance be-
tween opposite umbilical points (i.e. the half arc length of
the ellipse with axes ax and b).

6.2.1 Results
The direct geodesic problem in Cartesian coordinates was

solved using the input data 8, Ao, @p and sp;. At the start-
ing point, the Cartesian coordinates (xq, Yo, zo) Were com-
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Table 2: Performance of the exact analytical method using double and quad precision

Group double quad
max|5B] (") max|5A| (") maxér (m) max|5B] (") max|5A| (") maxdér (m)
1 1.27-107° 1.38-107* 413-107* 5.14-1072! 1.04-10718 2.80-10718
5 1.66 - 1072 1.54-10"1 478 1.05-107° 9.45.10~21 3.23-1078
3 5.40-1077 2.44 8.44 4.62-1072 6.44 -1078 6.55-1077
4 9.32-1071 1.46-1072 6.44 1.41-1077 1.72- 10716 6.33-1077
5 50.6 8.90 - 102 8.08 1.63-1072 2.86-1071 6.97-1077
6 1.24-1077 524 - 1071 8.33 3.27-10721 1.04 - 1077 5.87-1077
7 1.81-107? 3.10-1071 9.59 1.05-107° 1.89-1078 5.85-1077
8 50.6 8.90 - 102 10.6 1.55-102 2.50-1071 7.11-1077
9 50.6 8.90 - 102 10.8 1.63-1072 2.86-1071 6.97 1077
10 2.01-107? 3.56 10.4 2.16-1078 1.97-1077 6.68-1077
Table 3: Performance of the numerical method using double precision
Group | max|sB] (") max|6] (") max|8s| () max|6y| () | maxdr (m) | mean(i) | max(i)
1 3.75-10" 6.25-1071 7.76 - 107° 6.46-1078 1.16 - 10712 3 5
2 0 2.50-1071 5.52-107° 5.50 - 107° 8.20-10713 3 5
3 1.87 -1071* 0 3.56-107° 342-1078 | 9.10-10713 3 4
4 0 1.58-10"13 1.75-108 3.08-1077 | 4.82-10713 4 6
5 3.33-1072 5.81 8.12-1073 1.43-1071 2.92-107* 6 10
6 2.50- 10714 0 430-107° 824-10™° | 6.53-10713 3 5
7 1.56-10715 | 2.50-1071* 6.11-107° 6.08-10™° | 1.02-10712 3 5
8 3.33-1071 5.81 1.19-1073 2.09-1072 | 292-107* 3 9
9 1.98-1071 3.48 8.09-1073 1421071 1.03-107* 4 9
10 2.50-10" | 250107 7.59.107° 534-10"8 | 1.16-10712 3 5
Table 4: Performance of the numerical method using quad precision
Group | max|8Bl () max|6A| (") max|ég| (") max|6;| (") maxsr (m) | mean(i) | max(i)
1 2.00- 10728 4.88-107%8 4.66-10723 3.68 - 10722 6.96 - 10727 3 6
5 0 1.77-1072 | 4.12-10"23 | 4.10-10"2 | 6.06-107%7 3 5
3 1.77 - 10728 0 3.63-1072% | 3.13-10722 | 54210727 3 4
4 0 7.60 - 10728 2.48-10722 435-10721 4.85-107%7 3 5
5 6.36-1075 1.12-1073 1.90- 107 335-1075 | 1.06-10"1% 4 10
6 2.22-10728 0 3.04-10723 | 258-10722 | 4.71-107% 3 5
7 1.80-10"2° | 222-10728 | 3.95.1072% | 3.94-10723 | 6.51 10727 3 5
8 5.55-1075 9.76 - 10~* 8.45-10711 1.48-107° 8.13-10712 3 9
9 6.83-1075 1.20-1073 3.01-10710 5.28-107° 1.23-1071 3 8
10 2.22-107%8 8.87-107%° | 4.49-107% | 569-10722 | 6.72-107% 3 6

puted using Egs. (3)-(5) and the Liouville constant cqy us-
ing Eq. (80). For each geodesic in the data set, the unit
vector p was computed using Egs. (59)-(61) and the sys-
tem of first-order differential equations (Egs. (51)-(56)) was
integrated using the fourth-order Runge-Kutta numerical
method (see Butcher 1987) with 20000 steps. This num-
ber of steps was chosen because the effects of the number
of steps for the same problem on an oblate spheroid were
studied in the work of Panou and Korakitis (2017). All algo-

rithms were coded and executed on the system described
in section 6.1.

The results x1, y; and z; at the end point were con-
verted to ellipsoidal coordinates 8, and A; using the nu-
merical method of subsection 2.2.2. Then, the unit vector
p was computed using Egs. (59)-(61) and the angle a; from
Eq. (77). Also, the Liouville constant c; was computed us-
ing Eq. (80) and the difference 6c1 = ¢; — ¢o recorded. Fur-
thermore, we recorded the value S, of the function S, given
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Table 5: Description of the geodesics in the Group A
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Group A: B € (0°,90%), 1, =—90° a, € [0°,180°]

Subgroup Case Number
A1l randomly distributed 5000
A2 nearly antipodal 5000
A3 short distances 5000
A.4 Bo = 90° (one end near z = b) 5000
A5 Bo = 90° & 50, = 20003879 m 5000

(both ends near opposite z = b)
A6 @y = 0° or @y = 180° 5000
A7 Bo = 0° & oy = 90° 5000
A8 ap = 90° 5000
A9 ap = 90° 5000
Table 6: Description of the geodesics in the Group B
Group B: By € (0°,90°), 25 =0° @ €[0°180°], ¢

Subgroup Case Number
B.1 randomly distributed 5000
B.2 nearly antipodal 5000
B.3 short distances 5000
B.4 o = 90° (one end near an umbilic point) 5000
B.5 ) = 90° & S5, = 20003988 m 5000

(both ends near opposite umbilical points)
B.6 ay = 0°oray = 180° 5000
B.7 Bo = 0° & a = 90° 5000
B.8 @y =90° 5000
B.9 @y =90° 5000
Table 7: Description of the geodesics in the Group C
Group C: B, = 90°, Ay € (0°,90°], aq € [90°,270°], ¢, <0

Subgroup Case Number
Cc1 randomly distributed 5000
C.2 nearly antipodal 5000
C3 short distances 5000
C.4 Ao = 90° (one end nearz = b) 5000
C.5 Ao = 0° (one end near an umbilic point) 5000
c.6 Ao = 90° & sp; = 20003879 m 5000

(both ends near opposite z = b)
c7 Ao = 0° & 55, = 20003988 m 5000
(both ends near opposite umbilical points)
c.8 Ao = 45° & g = 180° 5000
c.9 ap =90° 5000
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Table 8: Description of the geodesics in the Group D

DE GRUYTER

Group D (Umbilical geodesics): B, = 90°, A, =0° a, € [0°,180°], ¢, =0

Subgroup Case Number

D.1 randomly distributed 4639

D.2 ay every 0.5°, sp; = 20003987.55893028 m 361

Table 9: Description of the geodesics in the Group E
Group E: B, € (—90°,90°), 1, € (—180°,180°), a, € (0°,360°),
So1 € (1000 m, 20003879 m)

Case Number

randomly distributed 10000

by Eq. (36). Detailed results of the maximum values of
|6c1| and |S;]| for each subgroup in double and quad pre-
cision are presented in Tables 10 — 14. We emphasize that
the value of S; is affected by the precision of the numerical
integration (which depends on the number of steps), while
the value of 6c; is mostly affected by the errors of the con-
version of Cartesian to ellipsoidal coordinates at the end
point.

From the results of Tables 10 — 14 we conclude that our
method is almost independent of the qualitative character-
istics of each geodesic (the order of magnitude of values
remains almost the same).

In order to study in detail the differences between the
double and quad precision, taking into account the pre-
cision of the input data, we searched for the geodesics of
the whole set where the differences in the results at the
end point were larger than 107 m for the x4, Y1, z1 and
10710 deg for the B1, A1 and a;. Only 436 geodesics were
found, distributed in the subgroups as follows: 10 in B.5,
53in C5,11in C.7, 1in D.1 and 361 in D.2. In all these cases,
one or both umbilical points are involved.

In addition, in order to examine the stability of the
method and, furthermore, to obtain an estimate of the
precision of the results, we modified the distance sy; by
1077 min all groups of the dataset (except, of course, sub-
group D2, where sg; is fixed). After performing the new
computation, we found that the differences in the values of
(X1, y1 5 21) were always bounded by 1077 m, therefore we
conclude that 20000 steps in the numerical integration are
adequate. With regard to the value of a1, most differences
were of the order 1071 deg or less, except for geodesics
close to umbilical points, where the differences were up
to 1072 deg (subgroup B5). These expected differences are
due to the rapid change of the (8, 1) coordinate grid in the
vicinity of the umbilical points and to the limited accu-

racy in the determination of ;, A;and, subsequently, of
the vector p. In most cases, however, knowledge of the an-
gle a; and/or the Liouville constant is not required.
Finally, using only Cartesian coordinates in the algo-
rithm, we computed vector p with Egs. (63)-(65) and the Li-
ouville constant with Eq. (81). Then, we repeated the com-
putation of the data set and Table 15 presents some of the
corresponding results. It is remarkable that, using Carte-
sian coordinates for the computation of vector p, we are
led to a great loss of accuracy. This result is expected, since
Egs. (63)-(65) are numerically ill-behaved for a small dif-
ference between the ax and ay axes. In addition, in this
case the computed vector p is a space vector not necessar-
ily confined to the tangent plane of the triaxial ellipsoid.

7 Concluding remarks

A numerical solution of the geodesic initial value problem
in Cartesian coordinates on a triaxial ellipsoid has been
presented. The advantage of the proposed method is that it
is a generalization of the method presented by Panou and
Korakitis (2017) and hence can be used for a triaxial ellip-
soid with arbitrary axes.

Comparing the results of using the vector p in ellip-
soidal and Cartesian coordinates, we conclude that only
expressing the vector p in ellipsoidal coordinates provides
satisfactory results, i.e. works in the entire range of input
data, it is stable and precise, so it is recommended for use.
However, this requires the conversion of the Cartesian
to ellipsoidal coordinates, therefore a new numerical
method has been presented which is adequate to provide
excellent results. In any case, it would be interesting to
get a knowledge of the performance of other methods of
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Table 10: Results in the Group A

Subgroup double quad

max|8cy| (m?) max|S;| (m?) max|8c,| (m?) max|S;| (m?)
Al 1.83-106 1.21-1073 1.17-10- 1t 5.05-10~7
A2 1.59 -107° 1.20-1073 6.07 -10712 5.32-1077
A3 5.07-1075 223-1072 3.63-10721 14210718
' 6.00-107° 1.21-1073 1.37 - 10716 4.86-1077
A5 5.65-107° 1.29-1073 6.13-10"%7 5181077
A6 2.33-10°1° 1.06 - 1073 1.50 - 10-1° 4.67-1077
A7 7.45-1078 1.07 -1073 2.09-107%° 1.66 - 1077
A8 1.86-107° 1.30-1073 9.19- 10712 4.68-1077
A9 2.65-1076 1.29-1073 9.17- 10712 5181077

Table 11: Results in the Group B

Subgroup double quad

max|8c;| (m?) max|S;| (m?) max|8c;| (m?) max|S;| (m?)
B.1 2.07-107° 9.92-107* 1.17 -10711 5.07 -1077
B.2 1.87-107° 1.63-1073 6.04-10712 5.35-1077
B.3 2.87-1075 2.14-1072 34510721 1.53-10718
B.4 8.45-1078 1.08-1073 1.85-10713 4.82-1077
B.5 9.17-1078 1.44-1073 7.08 - 10716 5.22-1077
B.6 6.62 - 10712 9.46-107* 1.50 - 10719 4.73-1077
B.7 7.45-1078 1.14-1073 2.07-1071° 1.66 - 1077
B.8 2.16-107° 1.53-1073 9.19-10712 4.64-1077
B.9 1.78-107¢ 1.50-1073 9.19-10712 5.13-1077

Table 12: Results in the Group C

Subgroup double quad

max|8c;| (m?) max|S;| (m?) max|8c;| (m?) max|S;| (m?)
c1 8.26-1078 1.11-1073 1.83-10°13 4981077
C.2 8.15-1078 1.37-1073 1.39-10°15 5221077
c3 3.16-1077 3.83-10°2 458-102% 1.57 10718
Ch 544 -107° 1.14-1073 1.33-10716 495.1077
C5 9.25-108 1.13-1073 1.83-1013 4.93-1077
C.6 570 -10~° 1.27-1073 5.95.10"17 5181077
C.7 8.69-1078 1.45-1073 7.08 - 10716 5.22-1077
c.8 1.25-1078 1391073 9.28- 1074 5131077
C.9 3.44-1072* 1.10-1073 2.58-10753 511-1077

conversion (e.g. Bektas 2015). (https://github.com/gkaguirrelab/gkaModelEye), where

the method presented here can be used. Also, we wish
Acknowledgements: The authors wish to thank to thank Mr. O. Korakitis, Universitat Politécnica de
Professor G. K. Aguirre, Perelman School of Medicine, Catalunya, for his assistance in exploiting the capabilities
University of Pennsylvania, for indicating to us his of the Quad-Precision Math Library.
work “A model of the entrance pupil of the human eye”
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Table 13: Results in the Group D
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Subgroup double quad
max|8c;| (m?) max|S;| (m?) max|8c;| (m?) max|S;| (m?)
D.1 9.23-1078 1.08-1073 1.85-10713 5.13-1077
D.2 5.88-1078 1.28-1073 6.97 - 10716 5.22-1077
Table 14: Results in the Group E
double quad
max|8c;| (m?) max|S;| (m?) max|8c;| (m?) max|S;| (m?)
2.30-107° 1.88-1073 1.06 - 10711 497-1077

Table 15: Results using Eqgs. (63)-(65) and Eq. (81)

Subgroup quad
max|8c;| (m?) max|S;| (m?)
Al 5.79 - 107 12.6
E 1.70- 1071 497 -1077
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