
Open Access. © 2019 G. Panou and R. Korakitis, published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License.

J. Geod. Sci. 2019; 9:1–12

Research Article Open Access

G. Panou* and R. Korakitis

Geodesic equations and their numerical solution
in Cartesian coordinates on a triaxial ellipsoid
https://doi.org/10.1515/jogs-2019-0001
Received November 8, 2018; accepted February 4, 2019

Abstract: In this work, the geodesic equations and their
numerical solution in Cartesian coordinates on an oblate
spheroid, presented by Panou and Korakitis (2017), are
generalized on a triaxial ellipsoid. A new exact analytical
method and a new numerical method of converting Carte-
sian to ellipsoidal coordinates of a point on a triaxial ellip-
soid are presented. An extensive test set for the coordinate
conversion is used, in order to evaluate the performance of
the two methods. The direct geodesic problem on a triax-
ial ellipsoid is described as an initial value problem and is
solved numerically in Cartesian coordinates. The solution
provides the Cartesian coordinates and the angle between
the line of constant λ and the geodesic, at any point along
the geodesic. Also, the Liouville constant is computed at
any point along the geodesic, allowing to check the preci-
sion of the method. An extensive data set of geodesics is
used, in order to demonstrate the validity of the numeri-
cal method for the geodesic problem. We conclude that a
complete, stable and precise solution of the problem is ac-
complished.

Keywords: coordinates conversion, direct geodesic prob-
lem, ellipsoidal coordinates, geometrical geodesy, Liou-
ville’s constant

1 Introduction
It is known that a triaxial ellipsoid is used as a model
in geodesy and other interdisciplinary sciences, even in
medicine. For example, it is used as a geometrical and
physical model of the Earth and other celestial objects.
Also, it is used as a geometrical model of the cornea and
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retina of the human eye (Aguirre 2018). Other applications
of a triaxial ellipsoid are mentioned in Panou et al. (2016).

In order to describe aproblemusing a triaxial ellipsoid
as model, it is necessary to introduce a triaxial coordinate
system (see Panou 2014, Panou et al. 2016). In many appli-
cations the ellipsoidal coordinate system is used, which is
a triply orthogonal system. Comments on the variants of
the ellipsoidal coordinates are presented in Panou (2014).
It is important that the ellipsoidal coordinates constitute
an orthogonal net of curves on the triaxial ellipsoid.

In this work, the general exact analytical method of
converting the Cartesian coordinates to the ellipsoidal
coordinates, presented by Panou (2014), is speci�ed for
points exclusively on the surface of a triaxial ellipsoid.
Another exact analytical method is described in Baillard
(2013). Furthermore, a new numerical method of convert-
ing the Cartesian coordinates (x, y, z) to ellipsoidal co-
ordinates (β, λ), which is based on the method of least
squares, is presented. We note that another numerical
method is developed by Bektaş (2015), which is also pre-
sented in Florinsky (2018). The precision of the exact ana-
lytical methods, which involve complex expressions, suf-
fer when one approaches singular points and/or when ex-
ecuted on a computer with limited precision. On the other
hand, numerical methods, which essentially involve iter-
ative approximations, can be more precise but the execu-
tion time, di�cult to predict, may be longer.

Traditionally, there are two problems concerning
geodesics on a triaxial ellipsoid: (i) the direct problem:
given a point Σ0 on a triaxial ellipsoid, together with a
direction α0 and the geodesic distance s01 to a point Σ1,
determine the point Σ1 and the direction α1 at this point,
and (ii) the inverse problem: given two points Σ0 and Σ1
on a triaxial ellipsoid, determine the geodesic distance s01
between them and the directions α0, α1at the end points.
These problems have a long history, as reviewed byKarney
(2018a).

There are several methods of solving the above two
problems. In general, the methods make use of the ellip-
tic integrals presented by Jacobi (1839), where the inte-
grands are expressed in a variant of the ellipsoidal coor-
dinates, e.g. Bespalov (1980), Klingenberg (1982), Baillard
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(2013), Karney (2018b) and include a constant presented
by Liouville (1844). On the other hand, there are meth-
ods which make use of the di�erential equations of the
geodesics on a triaxial ellipsoid, e.g. Holmstrom (1976),
Knill and Teodorescu (2009) and Panou (2013). Finally,
Shebl and Farag (2007) use the technique of conformal
mapping in order to approximate a geodesic on a triax-
ial ellipsoid. Because the elliptic integrals of the classi-
cal work of Jacobi (1839) have singularities, the methods
which use them are preferable in the study of the qual-
itative characteristics of the geodesics, as presented in
Arnold (1989), together with excellent illustrations by Kar-
ney (2018b). On the other hand, di�erential equations of
the geodesics can be directly solved using an approxi-
mate analytical method (Holmstrom 1976) or a numerical
method (Knill and Teodorescu 2009). It is worth empha-
sizing that, as presented in Panou and Korakitis (2017),
geodesic equations expressed in Cartesian coordinates are
insensitive to singularities. AlthoughHolmstrom (1976) ex-
pressed the geodesic equations on a triaxial ellipsoid in
Cartesian coordinates, his approximate analytical solution
is of low precision.

In this work, the geodesic equations and their numer-
ical solution in Cartesian coordinates on a triaxial ellip-
soid are presented. Since the numerical solution involves
computations at many points along the geodesic, it can be
used as a convenient and e�cient approach to trace the
full path of the geodesic. Also, part of this solution con-
stitutes the solution of the direct geodesic problem. Fur-
thermore, in contrast to Holmstrom (1976), wemake use of
the ellipsoidal coordinates which are involved in Liouville
equation, allowing to check the precision of the method.

2 Ellipsoidal to Cartesian
coordinates conversion and vice
versa

2.1 From ellipsoidal to Cartesian
coordinates

A triaxial ellipsoid in Cartesian coordinates is described by

x2

a2x
+ y

2

a2y
+ z

2

b2 = 1, 0 < b < ay < ax (1)

where ax, ay and b are its three semi-axes. The linear ec-
centricities are given by

Ex =
√
a2x − b2, Ey =

√
a2y − b2, Ee =

√
a2x − a2y (2)

with E2e = E2x − E2y . The Cartesian coordinates (x, y, z) of
a point on the triaxial ellipsoid can be obtained from the
ellipsoidal coordinates (β, λ) by the following expressions
(Jacobi 1839)

x = ax
Ex
B

1
2 cos λ (3)

y = ay cos β sin λ (4)

z = b
Ex

sin βL
1
2 (5)

where
B = E2xcos2β + E2esin2β (6)

and
L = E2x − E2ecos2λ (7)

while −π
2 ≤ β ≤ +π

2 and −π < λ ≤ + π. At the umbilical
points, i.e. when β = ± π2 and λ = 0 or λ = +π, from Eqs.
(3)-(5) we get the Cartesian coordinates x = ±ax EeEx , y = 0,
z = ±b EyEx . Further details on the ellipsoidal coordinates,
along with their geometrical interpretation, are presented
in Panou (2014). Finally, in the case of an oblate spheroid,
where ax = ay ≡ a, i.e. Ex = Ey ≡ E and Ee = 0, Eqs. (3)-
(5) reduce to well-known expressions (see Heiskanen and
Moritz 1967).

2.2 From Cartesian to ellipsoidal
coordinates

2.2.1 Exact analytical method

The ellipsoidal coordinates (β, λ) can be obtained from the
Cartesian coordinates (x, y, z) of a point on the triaxial el-
lipsoid by solving the following quadratic equation in t
(see Panou 2014)

t2 + c1t + c0 = 0 (8)

where
c1 = x2 + y2 + z2 −

(
a2x + a2y + b2

)
(9)

and

c0 =a2xa2y + a2xb2 + a2yb2 −
(
a2y + b2

)
x2 −

(
a2x + b2

)
y2

−
(
a2x + a2y

)
z2 (10)

with two real roots, which can be expressed as

t1 =
c0
t2

(11)

and

t2 =
−c1 +

√
c21 − 4c0
2 (12)
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The connection between the roots t1, t2 and the ellip-
soidal coordinates (β, λ) is given by the relations

t1 = a2ysin2β + b2cos2β (13)

t2 = a2xsin2λ + a2ycos2λ (14)

where b2 ≤ t1 ≤ a2y and a2y ≤ t2 ≤ a2x , while t1 = t2 = a2y at
the umbilical points. Inverting Eqs. (13) and (14) results in

β = arctan
(√

t1 − b2
a2y − t1

)
= arccot

√a2y − t1
t1 − b2

 (15)

λ = arctan

√ t2 − a2y
a2x − t2

 = arccot
(√

a2x − t2
t2 − a2y

)
(16)

where the conventions with regard to the proper quadrant
for the β and λ need to be applied from the signs of x, y and
z. In the case of an oblate spheroid, corresponding expres-
sions have been presented inHeiskanen andMoritz (1967).

2.2.2 Numerical method

Assuming that the Cartesian coordinates x, y and z of
a point on the triaxial ellipsoid are measurements, the
method of least squares (Ghilani and Wolf 2006) may be
employed to obtain the best estimates of the ellipsoidal co-
ordinates β and λ. This technique requires writing Eqs. (3)-
(5) in the form

ax
Ex
B

1
2 cos λ = x + υ1 (17)

ay cos β sin λ = y + υ2 (18)

b
Ex

sin βL
1
2 = z + υ3 (19)

which are non-linear equations and hence the solution
process is iterative. This means that approximate values of
ellipsoidal coordinates are assumed, corrections are com-
puted and the approximate values are updated. The pro-
cess is repeated until the corrections become negligible.

The linear approximation of Eqs. (17)-(19) can be rep-
resented in matrix form as

J
[
δβ
δλ

]
= δl + υ (20)

where

J =


∂x
∂β

∂x
∂λ

∂y
∂β

∂y
∂λ

∂z
∂β

∂z
∂λ

 (21)

is a 3×2matrix containing the partial derivatives (Jacobian
matrix)

∂x
∂β = −

axE2y
2Ex

sin (2β)
B 1

2
cos λ (22)

∂y
∂β = −ay sin β sin λ (23)

∂z
∂β = b

Ex
cos βL

1
2 (24)

∂x
∂λ = −axEx

B
1
2 sin λ (25)

∂y
∂λ = ay cos β cos λ (26)

∂z
∂λ = bE

2
e

2Ex
sin β sin (2λ)

L 1
2

(27)

computed from the approximate ellipsoidal coordinates β0

and λ0,

δl =

 x − x0

y − y0

z − z0

 (28)

is a 3 × 1 vector of terms which are “given Cartesian co-
ordinates – computed Cartesian coordinates from the ap-
proximate ellipsoidal coordinates using Eqs. (3)-(5)” and
υ is a 3 × 1 vector of residuals. The corrections to the ap-
proximate ellipsoidal coordinates are the elements of the
solution vector [

δβ
δλ

]
= N−1JTδl (29)

where

N = JTJ =
[
n11 n12
n21 n22

]
(30)

and hence

N−1 = 1
n11n22 − n12n21

[
n22 −n12
−n21 n11

]
(31)

One should note that the determinant of matrix
N(n11n22−n12n21) equals zero at the umbilical points. The
updated values of the approximate ellipsoidal coordinates
are [

β
λ

]
=
[
β0

λ0

]
+
[
δβ
δλ

]
(32)

The residuals are computed from Eq. (20) and an esti-
mate of the variance factor σ̂20 can be computed using the
following equation

σ̂20 =
υTυ
d (33)
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where d represents the degrees of freedom (in this case,
d = 1). The iterative process is terminated when the cor-
rections δβ and δλ become negligible. Another criterion of
ending the iterative process is the convergence of the vari-
ance factor σ̂20 which, in the case ofmeasurements of equal
precision, is an estimate of the variance of the Cartesian
coordinates computed from the adjustment (a posteriori).
Finally, the variance-covariance matrix of the computed
ellipsoidal coordinates is given by

V̂β
λ

 = σ̂20N−1 (34)

Comparing theprevious twomethods,wenote that the
operations in the exact analytical method lead to a loss
of accuracy for points near the planes x = 0 or y = 0 or
z = 0. Also, the importance of the numerical method is
that we avoid the degeneracy of the variable t2 in Eq. (16),
which may yield inaccurate results, since the intervals of
variation of the coordinates β and λ remain invariants as a
triaxial ellipsoid transforms to an oblate spheroid, where
t2 = a2. Therefore, the values resulting from the exact an-
alytical method can be considered as initial, approximate
ellipsoidal coordinates in thenumericalmethod.However,
because Eqs. (3)-(5) are numerically stable, the results of
both methods can be checked by comparing the resulting
Cartesian coordinates

(
x0, y0, z0

)
with the given Cartesian

coordinates (x, y, z), e.g. by the simple formula

δr =
√(

x − x0
)2 + (y − y0)2 + (z − z0)2 (35)

3 Geodesic equations
The geodesic initial value problem, expressed in Cartesian
coordinates on a triaxial ellipsoid, consists of determining
a geodesic, parametrized by its arc length s, x = x (s), y =
y (s), z = z (s), with angles α = α (s) along it, between the
line of constant λ and the geodesic, which passes through
a given point Σ0 (x (0) , y (0) , z (0)) in a known direction
(given angle α0 = α (0)) and has a certain length s01.

Now, we consider a triaxial ellipsoid which is de-
scribed in Cartesian coordinates (x, y, z) by

S (x, y, z) =̇x2 + y2

1 − e2e
+ z2

1 − e2x
− a2x = 0 (36)

where the squared eccentricities e2x and e2e are given by

e2x =
(
a2x − b2

)
a2x

, e2e =
(
a2x − a2y

)
a2x

(37)

It iswell-known, from the theory of di�erential geome-
try, that theprincipal normal to the geodesicmust coincide

with the normal to the triaxial ellipsoid (Struik 1961), i.e.
d2x
ds2
∂S
∂x

=
d2y
ds2
∂S
∂y

=
d2z
ds2
∂S
∂z

= −m (38)

where m is a function of s. From these equations, together
with Eq. (36), it is possible to determine x (s), y (s), z (s)
and m (s). Using Eq. (36), Eqs. (38) become

1
x
d2x
ds2

= 1 − e2e
y

d2y
ds2

= 1 − e2x
z

d2z
ds2

= −2m (39)

Di�erentiating Eq. (36), we have

x dxds +
y

1 − e2e
dy
ds +

z
1 − e2x

dz
ds = 0 (40)

and a further di�erentiation yields

x d
2x
ds2

+ y
1 − e2e

d2y
ds2

+ z
1 − e2x

d2z
ds2

= −
[(

dx
ds

)2
+ 1
1 − e2e

(
dy
ds

)2
+ 1
1 − e2x

(
dz
ds

)2
]

(41)

Hence, from Eqs. (39) and (41), we obtain

m = h
2H (42)

where
H = x2 + y2(

1 − e2e
)2 + z2(

1 − e2x
)2 (43)

and

h =
(
dx
ds

)2
+ 1
1 − e2e

(
dy
ds

)2
+ 1
1 − e2x

(
dz
ds

)2
(44)

Substituting Eq. (42) into Eqs. (39), we obtain the
geodesic equations in Cartesian coordinates on a triaxial
ellipsoid

d2x
ds2

+ h
H x = 0 (45)

d2y
ds2

+ h
H

y
1 − e2e

= 0 (46)

d2z
ds2

+ h
H

z
1 − e2x

= 0 (47)

which are subject to the initial conditions

x0 = x (0) ,
dx
ds

∣∣∣∣
0
= dxds (0) (48)

y0 = y (0) ,
dy
ds

∣∣∣∣
0
= dyds (0) (49)

z0 = z (0) ,
dz
ds

∣∣∣∣
0
= dzds (0) (50)

where expressions for the values of the derivatives at
point Σ0 (x0, y0, z0) are produced below. Hence, the direct
geodesic problem is described as an initial value problem
in Cartesian coordinates on a triaxial ellipsoid by Eqs. (45)
to (50).
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4 Numerical solution
In order to solve the above problem, the system of three
non-linear second order ordinary di�erential equations
(Eqs. (45) to (47)) is rewritten as a system of six �rst-order
di�erential equations:

d
ds (x) =

dx
ds (51)

d
ds

(
dx
ds

)
= − hH x (52)

d
ds (y) =

dy
ds (53)

d
ds

(
dy
ds

)
= − hH

y
1 − e2e

(54)

d
ds (z) =

dz
ds (55)

d
ds

(
dz
ds

)
= − hH

z
1 − e2x

(56)

This system can be integrated on the interval [0, s] us-
ing a numericalmethod, such as Runge-Kutta (see Butcher
1987). The step size δs is given by δs = s

n , where n is the
number of steps. For the variables x, y and z, the initial
conditions are x0, y0 and z0, respectively. To obtain the re-
quired derivatives, we proceed to describe the unit vectors
to a geodesic through a point Σ (x, y, z) on a triaxial ellip-
soid (see Fig. 1).

Figure 1: Unit vectors to a geodesic through a point Σ on a triaxial el-
lipsoid: σ tangent to the geodesic, n normal to the triaxial ellipsoid,
p tangent to the line of constant β, q tangent to the line of constant
λ.

Let σ be a unit vector tangent to an arbitrary geodesic
through Σ. Then, we can express σ in terms of the unit vec-
torsp,q and the angle α between the line of constant λ and
the geodesic (Fig. 1):

σ =
(
dx
ds ,

dy
ds ,

dz
ds

)
= p sin α + q cos α (57)

The unit vector normal to a triaxial ellipsoid (using the
gradient operator and Eqs. (36), (43)) can be expressed as
(Fig. 1):

n = (n1, n2, n3) =
(
x
H 1

2
, y(
1 − e2e

)
H 1

2
, z(
1 − e2x

)
H 1

2

)
(58)

The unit vector p = (p1, p2, p3), tangent to the line of
constant β, canbedeterminedusingEqs. (25)-(27) andEqs.
(7) and (14) (Fig. 1):

p1 = −
(
L
Ft2

) 1
2 ax
Ex
B

1
2 sin λ (59)

p2 =
(
L
Ft2

) 1
2

ay cos β cos λ (60)

p3 =
1

(Ft2)
1
2

bE2e
2Ex

sin β sin (2λ) (61)

where
F = E2ycos2β + E2esin2λ (62)

Also, this vector canbe expressed in termsof Cartesian
coordinates with the help of Eqs. (13) and (14):

p1 = −sgn(y)
(
L
Ft2

) 1
2 ax
ExEe

B
1
2

√
t2 − a2y (63)

p2 = sgn(x)
(
L
Ft2

) 1
2 ay
EyEe

√(
a2y − t1

) (
a2x − t2

)
(64)

p3 = sgn(x)sgn(y)sgn(z)
1

(Ft2)
1
2

b
ExEy√(

t1 − b2
) (
t2 − a2y

) (
a2x − t2

)
(65)

where
B = E

2
x
E2y

(
a2y − t1

)
+ E

2
e
E2y

(
t1 − b2

)
(66)

L = t2 − b2 (67)

and
F = t2 − t1 (68)

while sgn (x) = 1 if x > 0, sgn (x) = −1 if x < 0 and
sgn (0) = 0.
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However, vector p has singularities at the umbilical
points, where we can simply set p = (p1, p2, p3) =
(0, ±1, 0). Finally, in the case of an oblate spheroid,
Eqs. (59)-(61) reduce to the expressions (PanouandKoraki-
tis 2017)

p = (p1, p2, p3) = (− sin λ, cos λ, 0) (69)

and Eqs. (63)-(65) can be replaced by

p = (p1, p2, p3) =
(

−y√
x2 + y2

, x√
x2 + y2

, 0
)

(70)

The unit vector q = (q1, q2, q3), tangent to the line of
constant λ, can now be determined as the cross product of
unit vectors n and p, i.e. q = n × p (Fig. 1):

q1 = n2p3 − n3p2 (71)

q2 = n3p1 − n1p3 (72)

q3 = n1p2 − n2p1 (73)

Finally, substituting the vectors p and q into Eq. (57),
we obtain the required values of the derivatives at point
Σ0 (x0, y0, z0)

dx
ds

∣∣∣∣
0
= p1 (0) sin α0 + q1 (0) cos α0 (74)

dy
ds

∣∣∣∣
0
= p2 (0) sin α0 + q2 (0) cos α0 (75)

dz
ds

∣∣∣∣
0
= p3 (0) sin α0 + q3 (0) cos α0 (76)

5 Angles and Liouville’s constant
Taking the scalar product of Eq. (57) successively with p
and q and dividing the resulting equations, yields the an-
gle at which the geodesic cuts the curve of constant λ

α = arctan
(
P
Q

)
= arccot

(
Q
P

)
(77)

where
P = p · σ = p1

dx
ds + p2

dy
ds + p3

dz
ds (78)

Q = q · σ = q1
dx
ds + q2

dy
ds + q3

dz
ds (79)

Note that Eqs. (77) involve all the variables x, dxds , y,
dy
ds ,

z and dz
ds , which are obtained by the numerical integration.

Along a geodesic on a triaxial ellipsoid, the Liouville
equation holds (Liouville 1844)

E2ycos2βsin2α − E2esin2λcos2α = c (80)

where c is the Liouville constant. Also, this equation can
be expressed in terms of Cartesian coordinates with the
help of Eqs. (13) and (14):

a2y −
(
t1sin2α + t2cos2α

)
= c (81)

At any value of the independent variable s, we can
estimate the di�erence δc = c − c0 between the com-
puted value c and the known value c0 at point Σ0, from
the given β0, λ0 and α0, by means of Liouville’s equation
(Eq. (80)). Furthermore, because thenumerical integration
is performed in space, we can compute, at any value of s,
the function S, given by Eq. (36). Therefore, we can check
both theprecision of themethodandof thenumerical inte-
gration, since the di�erence δc and the function S should
be zero (meters squared) at any point along the geodesic
on a triaxial ellipsoid.

6 Numerical experiments

6.1 Test set for coordinates conversion

In order to validate the two methods of conversion pre-
sented above and to evaluate their performance, we used
an extensive test set of points. This is a set of 1725 points
on a triaxial ellipsoid, distributed into ten groups, as de-
scribed in Table 1, where N stands for the number of points
in each group. For simplicity and without loss of general-
ity, β and λ were chosen in [0◦, 90◦].

Using a triaxial ellipsoid with ax = 6378172 m,
ay = 6378103 m and b = 6356753 m, (Ligas 2012) the
Cartesian coordinates for any point were computed using
Eqs. (3)-(5).

All algorithms were coded in C++, were compiled by
the open-source GNU GCC compiler (at Level 2 optimiza-
tion) and employing the open-source “libquadmath”, the
GCC Quad-Precision Math Library, which provides a preci-
sion of 33 digits. In contrast, use of the C++ long-double
standard type (referred simply as double in the follow-
ing sections) provides a precision of 18 digits. The codes
were executed on a personal computer running a 64-bit
Linux Debian operating system. The main characteristics
of the hardware were: Intel Core i5-2430M CPU (clocked at
2.4 GHz) and 6 GB of RAM.
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Table 1: Description of the points in the test set

Group 𝛽𝛽 𝜆𝜆 Case Ν 

1 5° − 85° every 5° 5° − 85° every 5° 1st octant 289 
2 0° 0° − 90° every 5° 𝑥𝑥𝑥𝑥 − plane 19 
3 5° − 85° every 5° 0° 𝑥𝑥𝑥𝑥 − plane 17 
4 90° 5° − 90° every 5 18 
5 89.0° − 89.9 … 9° up to 14 

decimals 
1.0° − 0.0 … 1° up to 14 

decimals 
near umbilic 225 

6 5° − 85° every 5° 90° 𝑦𝑦𝑦𝑦 − plane 17 
7 1.0° − 0.0 … 1° up to 14 

decimals 
0° − 90° every 5° near 𝑥𝑥𝑥𝑥 − plane 285 

8 0° − 90° every 5° 1.0° − 0.0 … 1° up to 14 
decimals 

near 𝑥𝑥𝑥𝑥 − plane 285 

9 89.0° − 89.9 … 9° up to 14 
decimals 

0° − 90° every 5° 285 

10 0° − 90° every 5° 89.0° − 89.9 … 9° up to 14 
decimals 

near 𝑦𝑦𝑦𝑦 − plane 285 

 

6.1.1 Results

The exact analyticalmethodwas appliedusingdouble and
quad precision and the Cartesian coordinates x, y and z as
input data. From the resulting β0 and λ0 at any point, we
computed the di�erences δβ = β − β0 and δλ = λ − λ0 and
recorded the max |δβ| and the max |δλ| for every Group.
Furthermore, the results at any point were converted back
to Cartesian coordinates, we computed the value δr using
Eq. (35) and recorded the maxδr for every Group. All re-
sults are presented in Table 2.

Comparing the results of maxδr presented in Table 2
between the double and quad precision, we conclude that
only quad precision provides results suitable for most
practical applications. Also,we remark that only the quan-
tity δr can be computed in a problem starting with knowl-
edge of Cartesian coordinates only.

Similarly, the numerical method was applied using
double and quad precision and the Cartesian coordinates
x, yand z as input data. From the resulting β0 and λ0 at
any point, we computed the di�erences δβ = β − β0 and
δλ = λ − λ0 and recorded the max |δβ| and the max |δλ|
for every Group. It is known that, using the method of
least squares, we compute the matrix N and hence the
variance-covariance matrix of the computed values of β
and λ. Therefore, we can estimate the errors of β and λ
(from the diagonal elements of matrix V̂), so we recorded
themax

∣∣σ̂β∣∣ andmax ∣∣σ̂λ∣∣ for every Group. Furthermore,
we computed the value δr using Eq. (35) and recorded the
maxδr for every Group. Finally, we recorded themean and
themaximumvalue of iterations i, whichwere needed, us-
ing as criterion of convergence of the standard error σ̂0 the

values 10−19 and 10−33, for double and quad precision, re-
spectively. All results are presented in Tables 3 and 4.

Comparing the results of maxδr presented in Tables 3
and 4 between the double and quad precision, we con-
clude that both precisions can give results suitable for
most practical applications (better than 1 mm for double
and 1 nm for quad precision).

6.2 Data set for geodesics

In order to evaluate the performance of the presented
method with respect to stability and precision, we used
an extensive data set of 150000 geodesics for a triaxial
ellipsoid with ax = 6378172 m, ay = 6378103 m and
b = 6356753m (Ligas 2012). The geodesics of the set were
distributed into �ve groups (A – E) with di�erent quali-
tative characteristics, as described in Tables 5 – 9. Each
geodesic of the data set was de�ned by the values of β0 (in
degrees), λ0 (in degrees), α0 (clockwise from λ = constant
in degrees) and s01 (in meters). Furthermore, β0, λ0 and
α0 were taken to be multiples of 10−12 deg and s01 a mul-
tiple of 0.1 µm in [0 m, 20003987.55893028 m], where
the upper bound for the s01 is the geodesic distance be-
tween opposite umbilical points (i.e. the half arc length of
the ellipse with axes ax and b).

6.2.1 Results

The direct geodesic problem in Cartesian coordinates was
solved using the input data β0, λ0, α0 and s01. At the start-
ing point, the Cartesian coordinates (x0, y0, z0) were com-
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Table 2: Performance of the exact analytical method using double and quad precision

Group double quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 (m) 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 (m) 

1 1.27 · 10−6 1.38 · 10−4 4.13 · 10−4 5.14 · 10−21 1.04 · 10−18 2.80 · 10−18 
2 1.66 · 10−2 1.54 · 10−1 4.78 1.05 · 10−9 9.45 · 10−21 3.23 · 10−8 
3 5.40 · 10−7 2.44 8.44 4.62 · 10−21 6.44 · 10−8 6.55 · 10−7 
4 9.32 · 10−1 1.46 · 10−2 6.44 1.41 · 10−7 1.72 · 10−16 6.33 · 10−7 
5 50.6 8.90 · 102 8.08 1.63 · 10−2 2.86 · 10−1 6.97 · 10−7 
6 1.24 · 10−7 5.24 · 10−1 8.33 3.27 · 10−21 1.04 · 10−7 5.87 · 10−7 
7 1.81 · 10−2 3.10 · 10−1 9.59 1.05 · 10−9 1.89 · 10−8 5.85 · 10−7 
8 50.6 8.90 · 102 10.6 1.55 · 10−2 2.50 · 10−1 7.11 · 10−7 
9 50.6 8.90 · 102 10.8 1.63 · 10−2 2.86 · 10−1 6.97 · 10−7 
10 2.01 · 10−1 3.56 10.4 2.16 · 10−8 1.97 · 10−7 6.68 · 10−7 

 

Table 3: Performance of the numerical method using double precision

Group 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚�𝜎𝜎�𝛽𝛽� (") 𝑚𝑚𝑚𝑚𝑚𝑚|𝜎𝜎�𝜆𝜆| (") 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 (m) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) 
1 3.75 · 10−14 6.25 · 10−14 7.76 · 10−9 6.46 · 10−8 1.16 · 10−12 3 5 
2 0 2.50 · 10−14 5.52 · 10−9 5.50 · 10−9 8.20 · 10−13 3 5 
3 1.87 · 10−14 0 3.56 · 10−9 3.42 · 10−8 9.10 · 10−13 3 4 
4 0 1.58 · 10−13 1.75 · 10−8 3.08 · 10−7 4.82 · 10−13 4 6 
5 3.33 · 10−1 5.81 8.12 · 10−3 1.43 · 10−1 2.92 · 10−4 6 10 
6 2.50 · 10−14 0 4.30 · 10−9 8.24 · 10−9 6.53 · 10−13 3 5 
7 1.56 · 10−15 2.50 · 10−14 6.11 · 10−9 6.08 · 10−9 1.02 · 10−12 3 5 
8 3.33 · 10−1 5.81 1.19 · 10−3 2.09 · 10−2 2.92 · 10−4 3 9 
9 1.98 · 10−1 3.48 8.09 · 10−3 1.42 · 10−1 1.03 · 10−4 4 9 
10 2.50 · 10−14 2.50 · 10−14 7.59 · 10−9 5.34 · 10−8 1.16 · 10−12 3 5 

 

Table 4: Performance of the numerical method using quad precision

Group 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝛿𝛿| (") 𝑚𝑚𝑚𝑚𝑚𝑚�𝜎𝜎�𝛽𝛽� (") 𝑚𝑚𝑚𝑚𝑚𝑚|𝜎𝜎�𝜆𝜆| (") 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 (m) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) 
1 2.00 · 10−28 4.88 · 10−28 4.66 · 10−23 3.68 · 10−22 6.96 · 10−27 3 6 
2 0 1.77 · 10−28 4.12 · 10−23 4.10 · 10−23 6.06 · 10−27 3 5 
3 1.77 · 10−28 0 3.63 · 10−23 3.13 · 10−22 5.42 · 10−27 3 4 
4 0 7.60 · 10−28 2.48 · 10−22 4.35 · 10−21 4.85 · 10−27 3 5 
5 6.36 · 10−5 1.12 · 10−3 1.90 · 10−6 3.35 · 10−5 1.06 · 10−11 4 10 
6 2.22 · 10−28 0 3.04 · 10−23 2.58 · 10−22 4.71 · 10−27 3 5 
7 1.80 · 10−29 2.22 · 10−28 3.95 · 10−23 3.94 · 10−23 6.51 · 10−27 3 5 
8 5.55 · 10−5 9.76 · 10−4 8.45 · 10−11 1.48 · 10−9 8.13 · 10−12 3 9 
9 6.83 · 10−5 1.20 · 10−3 3.01 · 10−10 5.28 · 10−9 1.23 · 10−11 3 8 
10 2.22 · 10−28 8.87 · 10−29 4.49 · 10−23 5.69 · 10−22 6.72 · 10−27 3 6 

 

puted using Eqs. (3)-(5) and the Liouville constant c0 us-
ing Eq. (80). For each geodesic in the data set, the unit
vector p was computed using Eqs. (59)-(61) and the sys-
tem of �rst-order di�erential equations (Eqs. (51)-(56)) was
integrated using the fourth-order Runge-Kutta numerical
method (see Butcher 1987) with 20000 steps. This num-
ber of steps was chosen because the e�ects of the number
of steps for the same problem on an oblate spheroid were
studied in thework of Panou andKorakitis (2017). All algo-

rithms were coded and executed on the system described
in section 6.1.

The results x1, y1 and z1 at the end point were con-
verted to ellipsoidal coordinates β1 and λ1 using the nu-
merical method of subsection 2.2.2. Then, the unit vector
pwas computed using Eqs. (59)-(61) and the angle α1 from
Eq. (77). Also, the Liouville constant c1 was computed us-
ing Eq. (80) and the di�erence δc1 = c1 − c0 recorded. Fur-
thermore,we recorded the value S1 of the function S, given
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Table 5: Description of the geodesics in the Group A

Group A: 𝛽𝛽0 ∈ (0°, 90°),     𝜆𝜆0 = −90°,     𝛼𝛼0 ∈ [0°, 180°] 

Subgroup Case Number 

A.1 randomly distributed 5000 

A.2 nearly antipodal 5000 

A.3 short distances 5000 

A.4 𝛽𝛽0 ≅ 90° (one end near 𝑧𝑧 = 𝑏𝑏) 5000 

A.5 𝛽𝛽0 ≅ 90° & 𝑠𝑠01 ≅ 20003879 m 
(both ends near opposite 𝑧𝑧 = 𝑏𝑏) 

5000 

A.6 𝛼𝛼0 ≅ 0° or 𝛼𝛼0 ≅ 180° 5000 

A.7 𝛽𝛽0 ≅ 0° & 𝛼𝛼0 ≅ 90° 5000 

A.8 𝛼𝛼0 ≅ 90° 5000 

A.9 𝛼𝛼0 = 90° 5000 

 

Table 6: Description of the geodesics in the Group B

Group B: 𝛽𝛽0 ∈ (0°, 90°),     𝜆𝜆0 = 0°,     𝛼𝛼0 ∈ [0°, 180°],     𝑐𝑐0 ≥ 0 

Subgroup Case Number 

B.1 randomly distributed 5000 

B.2 nearly antipodal 5000 

B.3 short distances 5000 

B.4 𝛽𝛽0 ≅ 90° (one end near an umbilic point) 5000 

B.5 𝛽𝛽0 ≅ 90° & 𝑠𝑠01 ≅ 20003988 m 
(both ends near opposite umbilical points) 

5000 

B.6 𝛼𝛼0 ≅ 0° or 𝛼𝛼0 ≅ 180° 5000 

B.7 𝛽𝛽0 ≅ 0° & 𝛼𝛼0 ≅ 90° 5000 

B.8 𝛼𝛼0 ≅ 90° 5000 

B.9 𝛼𝛼0 = 90° 5000 

 

 Table 7: Description of the geodesics in the Group C

Group C: 𝛽𝛽0 = 90°,     𝜆𝜆0 ∈ (0°, 90°],     𝛼𝛼0 ∈ [90°, 270°],     𝑐𝑐0 ≤ 0 

Subgroup Case Number 

C.1 randomly distributed 5000 

C.2 nearly antipodal 5000 

C.3 short distances 5000 

C.4 𝜆𝜆0 ≅ 90° (one end near 𝑧𝑧 = 𝑏𝑏) 5000 

C.5 𝜆𝜆0 ≅ 0° (one end near an umbilic point) 5000 

C.6 𝜆𝜆0 ≅ 90° & 𝑠𝑠01 ≅ 20003879 m 
(both ends near opposite 𝑧𝑧 = 𝑏𝑏) 

5000 

C.7 𝜆𝜆0 ≅ 0° & 𝑠𝑠01 ≅ 20003988 m 
(both ends near opposite umbilical points) 

5000 

C.8 𝜆𝜆0 = 45° & 𝛼𝛼0 ≅ 180° 5000 

C.9 𝛼𝛼0 = 90° 5000 
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Table 8: Description of the geodesics in the Group D

Group D (Umbilical geodesics): 𝛽𝛽0 = 90°,     𝜆𝜆0 = 0°,     𝛼𝛼0 ∈ [0°, 180°],     𝑐𝑐0 = 0 

Subgroup Case Number 

D.1 randomly distributed 4639 

D.2 𝛼𝛼0 every 0.5°,     𝑠𝑠01 = 20003987.55893028 m 361 

 

Table 9: Description of the geodesics in the Group E

Group E: 𝛽𝛽0 ∈ (−90°, 90°),     𝜆𝜆0 ∈ (−180°, 180°),     𝛼𝛼0 ∈ (0°, 360°), 
𝑠𝑠01 ∈ (1000 m, 20003879 m) 

Case Number 

randomly distributed 10000 

 

by Eq. (36). Detailed results of the maximum values of
|δc1| and |S1| for each subgroup in double and quad pre-
cision are presented in Tables 10 – 14. We emphasize that
the value of S1 is a�ected by the precision of the numerical
integration (which depends on the number of steps), while
the value of δc1 is mostly a�ected by the errors of the con-
version of Cartesian to ellipsoidal coordinates at the end
point.

From the results of Tables 10 – 14we conclude that our
method is almost independent of the qualitative character-
istics of each geodesic (the order of magnitude of values
remains almost the same).

In order to study in detail the di�erences between the
double and quad precision, taking into account the pre-
cision of the input data, we searched for the geodesics of
the whole set where the di�erences in the results at the
end point were larger than 10−6 m for the x1, y1, z1 and
10−10 deg for the β1, λ1 and α1. Only 436 geodesics were
found, distributed in the subgroups as follows: 10 in B.5,
53 in C5, 11 in C.7, 1 in D.1 and 361 in D.2. In all these cases,
one or both umbilical points are involved.

In addition, in order to examine the stability of the
method and, furthermore, to obtain an estimate of the
precision of the results, we modi�ed the distance s01 by
10−7 m in all groups of the dataset (except, of course, sub-
group D2, where s01 is �xed). After performing the new
computation,we found that the di�erences in the values of
(x1 , y1 , z1)were alwaysboundedby10−7m, thereforewe
conclude that 20000 steps in the numerical integration are
adequate. With regard to the value of α1, most di�erences
were of the order 10−10 deg or less, except for geodesics
close to umbilical points, where the di�erences were up
to 10−3 deg (subgroup B5). These expected di�erences are
due to the rapid change of the (β, λ) coordinate grid in the
vicinity of the umbilical points and to the limited accu-

racy in the determination of β1, λ1and, subsequently, of
the vector p. In most cases, however, knowledge of the an-
gle α1 and/or the Liouville constant is not required.

Finally, using only Cartesian coordinates in the algo-
rithm,we computed vectorpwith Eqs. (63)-(65) and the Li-
ouville constant with Eq. (81). Then, we repeated the com-
putation of the data set and Table 15 presents some of the
corresponding results. It is remarkable that, using Carte-
sian coordinates for the computation of vector p, we are
led to a great loss of accuracy. This result is expected, since
Eqs. (63)-(65) are numerically ill-behaved for a small dif-
ference between the ax and ay axes. In addition, in this
case the computed vector p is a space vector not necessar-
ily con�ned to the tangent plane of the triaxial ellipsoid.

7 Concluding remarks
A numerical solution of the geodesic initial value problem
in Cartesian coordinates on a triaxial ellipsoid has been
presented. The advantage of the proposedmethod is that it
is a generalization of the method presented by Panou and
Korakitis (2017) and hence can be used for a triaxial ellip-
soid with arbitrary axes.

Comparing the results of using the vector p in ellip-
soidal and Cartesian coordinates, we conclude that only
expressing the vectorp in ellipsoidal coordinates provides
satisfactory results, i.e. works in the entire range of input
data, it is stable and precise, so it is recommended for use.
However, this requires the conversion of the Cartesian
to ellipsoidal coordinates, therefore a new numerical
method has been presented which is adequate to provide
excellent results. In any case, it would be interesting to
get a knowledge of the performance of other methods of
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Table 10: Results in the Group A

Subgroup double quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 

A.1 1.83 · 10−6 1.21 · 10−3 1.17 · 10−11 5.05 · 10−7 

A.2 1.59 · 10−6 1.20 · 10−3 6.07 · 10−12 5.32 · 10−7 

A.3 5.07 · 10−5 2.23 · 10−2 3.63 · 10−21 1.42 · 10−18 

A.4 6.00 · 10−9 1.21 · 10−3 1.37 · 10−16 4.86 · 10−7 

A.5 5.65 · 10−9 1.29 · 10−3 6.13 · 10−17 5.18 · 10−7 

A.6 2.33 · 10−10 1.06 · 10−3 1.50 · 10−19 4.67 · 10−7 

A.7 7.45 · 10−8 1.07 · 10−3 2.09 · 10−19 1.66 · 10−7 

A.8 1.86 · 10−6 1.30 · 10−3 9.19 · 10−12 4.68 · 10−7 

A.9 2.65 · 10−6 1.29 · 10−3 9.17 · 10−12 5.18 · 10−7 

 

Table 11: Results in the Group B

Subgroup double quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 

B.1 2.07 · 10−6 9.92 · 10−4 1.17 · 10−11 5.07 · 10−7 

B.2 1.87 · 10−6 1.63 · 10−3 6.04 · 10−12 5.35 · 10−7 

B.3 2.87 · 10−5 2.14 · 10−2 3.45 · 10−21 1.53 · 10−18 

B.4 8.45 · 10−8 1.08 · 10−3 1.85 · 10−13 4.82 · 10−7 

B.5 9.17 · 10−8 1.44 · 10−3 7.08 · 10−16 5.22 · 10−7 

B.6 6.62 · 10−12 9.46 · 10−4 1.50 · 10−19 4.73 · 10−7 

B.7 7.45 · 10−8 1.14 · 10−3 2.07 · 10−19 1.66 · 10−7 

B.8 2.16 · 10−6 1.53 · 10−3 9.19 · 10−12 4.64 · 10−7 

B.9 1.78 · 10−6 1.50 · 10−3 9.19 · 10−12 5.13 · 10−7 

 

Table 12: Results in the Group C

Subgroup double quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 

C.1 8.26 · 10−8 1.11 · 10−3 1.83 · 10−13 4.98 · 10−7 

C.2 8.15 · 10−8 1.37 · 10−3 1.39 · 10−15 5.22 · 10−7 

C.3 3.16 · 10−7 3.83 · 10−2 4.58 · 10−23 1.57 · 10−18 

C.4 5.44 · 10−9 1.14 · 10−3 1.33 · 10−16 4.95 · 10−7 

C.5 9.25 · 10−8 1.13 · 10−3 1.83 · 10−13 4.93 · 10−7 

C.6 5.70 · 10−9 1.27 · 10−3 5.95 · 10−17 5.18 · 10−7 

C.7 8.69 · 10−8 1.45 · 10−3 7.08 · 10−16 5.22 · 10−7 

C.8 1.25 · 10−8 1.39 · 10−3 9.28 · 10−14 5.13 · 10−7 

C.9 3.44 · 10−24 1.10 · 10−3 2.58 · 10−53 5.11 · 10−7 

 

conversion (e.g. Bektaş 2015).
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Table 13: Results in the Group D

Subgroup double quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 

D.1 9.23 · 10−8 1.08 · 10−3 1.85 · 10−13 5.13 · 10−7 

D.2 5.88 · 10−8 1.28 · 10−3 6.97 · 10−16 5.22 · 10−7 

 

Table 14: Results in the Group E

double quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 

2.30 · 10−6 1.88 · 10−3 1.06 · 10−11 4.97 · 10−7 
 

Table 15: Results using Eqs. (63)-(65) and Eq. (81)

Subgroup quad 
𝑚𝑚𝑚𝑚𝑚𝑚|𝛿𝛿𝑐𝑐1| (m2) 𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆1| (m2) 

A.1 5.79 · 107 12.6 

E 1.70 · 10−1 4.97 · 10−7 
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