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Abstract: In order to accelerate the spherical/spheroidal
harmonic synthesis of any function, we developed a new
recursive method to compute the sine/cosine series co-
e�cient of the 4π fully- and Schmidt quasi-normalized
associated Legendre functions. The key of the method is
a set of increasing-degree/order mixed-wavenumber two-
to four-term recurrence formulas to compute the diago-
nal terms. They are used in preparing the seed values of
the decreasing-order �xed-degree, and �xed-wavenumber
two- and three-term recurrence formulas, which are ob-
tained bymodifying the classic relations. The newmethod
is accurate and capable to deal with an arbitrary high de-
gree/order/wavenumber. Also, it runs signi�cantly faster
than the previous method of ours utilizing the Wigner d
function, say around 20 times more when the maximum
degree exceeds 1,000.

Keywords: associated Legendre function, Fourier series
expansion, recurrence formula, spherical harmonic ex-
pansion, spheroidal harmonic expansion

1 Introduction
The spherical and spheroidal harmonic synthesis and
analysis are basic mathematical tools mostly used in
geodesy and geophysics as well as planetary sciences
(Heiskanen and Moritz, 1967; Stacey and Davis, 2008;
de Pater and Lissauer, 2010). However, it is true that
their computational labor is signi�cantly large even after
recent developments in their computational procedures
(Fukushima, 2012a,b, 2013, 2014, 2016). This is especially
true for large values of N, the maximum degree/order of

*Corresponding Author: T. Fukushima: National Astronomical
Observatory of Japan, Graduate University of Advanced Study /
SOKENDAI, 2-21-1, Ohsawa, Mitaka, Tokyo 181-8588, Japan , E-mail:
Toshio.Fukushima@nao.ac.jp

the expansion, say 21,600 or more as intended by recent
studies (Rexer and Hirt, 2015a,b).

A good approach to accelerate the actual procedure
of the synthesis/analysis is the utilization of the two-
dimensional FFT on the unit sphere after the translation
of the harmonic expansions into the Fourier transform
(Colombo, 1981). Refer to Fig. 1 of Fukushima (2018) illus-
trating the superiority of the FFT method in the prepara-
tion of the lumped coe�cients in the spherical/spheroidal
harmonic synthesis. Nevertheless, for this purpose, we
need a speci�c procedure to transform Cnm and Snm, the
harmonic expansion coe�cients with the 4π full normal-
ization, into Akm and Bkm, the corresponding Fourier se-
ries expansion coe�cients such that (Sneeuw and Bun,
1996)

Akm =
N∑

n=max(k,m),n−k:even

pnmkCnm , (1)

Bkm =
N∑

n=max(k,m),n−k:even

pnmkSnm . (2)

Here pnmk is the sine/cosine series coe�cients of Pnm(t),
the 4π fully normalized associated Legendre function
(fnALF) (Heiskanen and Moritz, 1967), such that

Pnm(cos θ) =
n∑

k=0,n−k:even
pnmkhm(kθ). (3)

where hm(ψ) is a trigonometric function conditionally de-
�ned as

hm(ψ) ≡
{

cosψ, (m : even),
sinψ, (m : odd).

(4)

The computation of pnmk is a classic problem (Egersdorfer
and Egersdorfer, 1936). Recently, we developed an accu-
ratemethod to compute pnmk for arbitrary large indices, n,
m, and k, say with 15 e�ective digits for indices up to 230 ≈
109 (Fukushima, 2018, §2.1). Nevertheless, we must admit
that its execution speed is not so fast. This becomes promi-
nent if compared with that of qnmk (Fukushima, 2018,
§2.2), the similar coe�cients of the inverse transformation
from Akm and Bkm to Cnm and Snm, respectively.
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Therefore, we re-examined the computation method
of pnmk proposed by Hofsommer and Potters (1960): a
�xed-order recursive computation of pnmk. Since the re-
currence formula is not suitable for the forward recursion,
we use it in the backward manner. For this purpose, how-
ever,wemust prepare the diagonal terms, pnnk, as the seed
values. Gruber andAbrykosov (2016) recommended an ap-
proach to solve for themby comparisonwith the analytical
solutions of pn0k after the execution of a generic form of
the recursion by regarding pnnk as unknowns to be solved.
Nonetheless, this formulation is di�cult to be extended to
arbitrary large values of n, m, and/or k.

In order to overcome this situation, we obtained a
group of forward recurrence formulae to compute pnnk.
Combining it with themain recurrence relation of Hofsom-
mer and Potters (1960) regarded as a backward formula af-
ter an appropriate renormalization, we developed a new
recursive method to compute pnmk. As will be shown in
Fig. 1, the newmethod is as precise as the previousmethod
of ours (Fukushima, 2018, §2.1). Also, Fig. 2 given later il-
lustrates that the newmethod runs around 20 times faster
than the old method if N is su�ciently large, say greater
than 1,024.

Below, we explain the new method in Section 2, and
present its numerical experiments in Section 3. Also,
we derive the new recurrence formulae in Appendix A,
extend the formulation to the case of Schmidt quasi-
normalization (Winch et al., 2005) in Appendix B, de-
scribe the algorithms to implement the newmethod in Ap-
pendix C, and display the Fortran programs to execute the
algorithm in Appendix D.

2 Method
Let us consider thenumerical computationof pnmk. Hinted
by the recursive formulation to evaluate qnmk (Fukushima,
2018, §2.2) and noting the zero value formulae of pnmk ex-
pressed as

pnmk = 0, (n − k : even), (5)

pnm0 = 0, (n : even; m : odd), (6)

pnmk = 0, (n < m), (7)

pnmk = 0, (n < k), (8)

we developed a new method to compute pnmk recursively,
thedetailedderivationofwhich is provided inAppendixA.
Let us show its compact summary below.

Table 1: Sample values of sine/cosine series coe�cients of fnALF.
Listed are the literal expression and 20 digits of all non-zero values
of pnmk when 0 ≤ m ≤ n ≤ 4 and 0 ≤ k ≤ n. Notice that pnmk = 0
when (i) n − k is odd, (ii) n is even, m is odd, and k = 0, (ii) n > m,
and/or (iii) n > k.

n m k pnmk
0 0 0 1 +1.0
1 0 1

√
3 +1.7320508075688772935

1 1 1
√
3 +1.7320508075688772935

2 0 0
√
5/4 +0.5590169943749474241

2 0 2 3
√
5/4 +1.6770509831248422723

2 1 2
√
15/2 +1.9364916731037084426

2 2 0
√
15/4 +0.9682458365518542213

2 2 2 −
√
15/4 −0.9682458365518542213

3 0 1 3
√
7/8 +0.9921567416492214714

3 0 3 5
√
7/8 +1.6535945694153691191

3 1 1
√
42/16 +0.4050462936504912644

3 1 3 5
√
42/16 +2.0252314682524563222

3 2 1
√
105/8 +1.2808688457449497979

3 2 3 −
√
105/8 −1.2808688457449497979

3 3 1 3
√
70/16 +1.5687375497513916525

3 3 3 −
√
70/16 −0.5229125165837972175

4 0 0 27/64 +0.421875
4 0 2 15/16 +0.9375
4 0 4 105/64 +1.640625
4 1 2 3

√
10/16 +0.5929270612815711247

4 1 4 21
√
10/32 +2.0752447144854989366

4 2 0 9
√
5/32 +0.6288941186718158521

4 2 2 3
√
5/8 +0.8385254915624211362

4 2 4 −21
√
5/32 −1.4674196102342369883

4 3 2 3
√
70/16 +1.5687375497513916525

4 3 4 −3
√
70/32 −0.7843687748756958262

4 4 0 9
√
35/64 +0.8319487194983835060

4 4 2 −3
√
35/16 −1.1092649593311780080

4 4 4 3
√
35/64 +0.2773162398327945020

First, the main recurrence formula is a decreasing-
order, �xed-degree, and �xed-wavenumber three-term for-
mula expressed as

pnmk = k(−1)mαnmpn,m+1,k + βnmpn,m+2,k ,

(m = n − 2, n − 3, . . . , 0), (9)

where αnm and βnm are numerical coe�cients de�ned as

αnm ≡
√

2 (2 − δm0)
(n − m)(n + m + 1) , (10)

βnm ≡

√
(2 − δm0) (n − m − 1)(n + m + 2)

2(n − m)(n + m + 1) . (11)
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This recurrence relation is meaningful when n − k is even
and 0 ≤ k ≤ n. Since βn,n−1 = 0, the semi-diagonal case
when m = n − 1 is simpli�ed as

pn,n−1,k = k(−1)n−1αn,n−1pnnk ,

(n = 1, 2, . . . ; 0 ≤ k ≤ n; n − k : even). (12)

Next, the backward recurrence formula, Eq. (9), and its
special case, Eq. (12), require pnnk as their seed values.
They are computed by a variety of increasing-degree/order
mixed-wavenumber recurrence formulae expressed as

pnn0 = γn (2pn−2,n−2,0 − pn−2,n−2,2) ,

(n = 6, 8, 10, . . . ), (13)

pnn1 = γn (3pn−2,n−2,1 − pn−2,n−2,3) ,

(n = 5, 7, 9, . . . ), (14)

pnn2 = γn (−2pn−2,n−2,0 + 2pn−2,n−2,2 − pn−2,n−2,4) ,

(n = 6, 8, 10, . . . ), (15)

pnnk = γn
(
−pn−2,n−2,k−2 + 2pn−2,n−2,k

−pn−2,n−2,k+2
)
,

(n = 7, 8, 9, . . . ; 3 ≤ k ≤ n − 4; n − k : even), (16)

pnn,n−2 = γn (−pn−2,n−2,n−4 + 2pn−2,n−2,n−2) ,

(n = 5, 6, 7, . . . ), (17)

pnnn = −γnpn−2,n−2,n−2, (n = 5, 6, 7, . . . ), (18)

where γn is a numerical coe�cient de�ned as

γn ≡
1
8

√
(2n − 1)(2n + 1)

n(n − 1) , (19)

while n − k should be even once again. Finally, the above
scheme to prepare pnnk demands a group of their initial
values, namely pnnk for (i) 0 ≤ n ≤ 4, (ii) 0 ≤ k ≤ n, and (iii)
n − k is even. They are explicitly provided in Table 1. Thus,
the formulation is completed.
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Figure 1: Di�erence in transformed coe�cients between old and
new methods. Shown are the absolute di�erences in Akm between
the old method (Fukushima, 2018, §2.1) and the new method de-
scribed in Sect. 2. The input data are the model spherical harmonic
coe�cients, Cnm ≡ 1/

(
1 + n2 + m

)
, where 0 ≤ m ≤ n ≤ N = 4096.

Plotted is the maximum absolute di�erence of Akm for 0 ≤ k ≤ N as
a function of m in a double logarithmic manner.
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Figure 2: Maximum degree dependence of CPU time to conduct
transformation from

(
Cnm , Snm

)
to (Akm , Bkm). Displayed are the

CPU times to execute the transformation from the given surface
spherical harmonic coe�cients,

(
Cnm , Snm

)
, to the corresponding

Fourier series coe�cients on the sphere, (Akm , Bkm). The CPU times
are measured at a consumer PC with an Intel Core i7-4600U CPU
running at 2.10 GHz clock by allowing its 2 cores and 4 threads fully
employed. Compared are the computation using the old scheme
(Fukushima, 2018, §2.1) and that by the new method. Both of
them are roughly in proportional to N3, where N is the maximum
degree/order of the spherical harmonic coe�cients to be trans-
formed. However, the proportional coe�cients are signi�cantly
di�erent, say a factor of 20 or more when N ≥ 210 = 1, 024, such
that the new method is signi�cantly faster.
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3 Numerical experiments
Let us examine the computational accuracy of the new
method. Refer to Fig. 1 illustrating a comparison of Akm
obtained by the old method (Fukushima, 2018, §2.1)
and the new method when Cnm is modelled as Cnm =
1/
(
1 + n2 + m

)
. Notice that this is a toy model without

physical meaning although it has a simple analytic form
and mimics Kaula’s rule to some extent. At any rate, we
omit the result for Bkm since the situation is the same. Ob-
viously, the observed di�erence between the two methods
are negligibly small. This fact con�rms the new method is
of a su�cient accuracy.

Next, we compare the computational speed of the new
method with the old one. Refer to Fig. 2 illustrating a
comparison of the CPU time of the coe�cient transfor-
mation between the old method (Fukushima, 2018, §2.1)
and the new method. Obviously, Fig. 2 indicates that the
newmethod runs around 20 times faster than the previous
method of ours. Whatmakes such a signi�cant di�erence?

The answer is the di�erence in the complexity of
the innermost loop. Indeed, the main recurrence for-
mula of the previous method is the increasing-degree
�xed-order/wavenumber three term recursion of Enkm
(Fukushima, 2017, Eq. (28)) written as

Enkm = −ankmEn−1,km − bnkmEn−2,km , (20)

where ankm and bnkm are numerical coe�cient de�ned as

ankm ≡
km(2n − 1)

(n − 1)
√(

n2 − k2
) (
n2 − m2

) , (21)

bnkm ≡
n

n − 1

√[
(n − 1)2 − k2

] [
(n − 1)2 − m2

](
n2 − k2

) (
n2 − m2

) . (22)

Compare these expressions of ankm and bnkm with those of
αnm and βnm given in Eqs (10) and (11). In the former case,
k is included inside the square roots in a complicatedman-
ner. Meanwhile, in the latter case, the coe�cients αnm and
βnm are independent with k. Namely, the wavenumber k
appears as a simplemultiplicative factor in themain recur-
rence relation, Eq (9). As a result, by setting the innermost
loop as that with k, we can minimize the computational
amount in the innermost loop. This results in a signi�cant
di�erence in the total computational labor as clearly indi-
cated in Fig. 2.

4 Conclusion
In order to improve the slowness of the previous method
of ours (Fukushima, 2018, §2.1) to compute pnmk, the
sine/cosine series coe�cient of the 4π fully normalized
associated Legendre function (ALF), we developed a new
method to do the same computation. The key compo-
nent of the new method is a set of newly developed
recurrence formulae to obtain the diagonal coe�cients,
pnnk. They are increasing-order, �xed-degree, and mixed-
wavenumber two- to four-term formulae. Their expres-
sions are signi�cantly di�erent with each other depending
on the wavenumber. These results are extended to p̃nmk,
the coe�cients for the Schmidt quasi-normalization of
ALF.Numerical experiments revealed that thenewmethod
to compute pnmk runs more than 20 times faster than the
previousmethod (Fukushima, 2018, §2.1) and its computa-
tional speed is comparable with that of qnmk (Fukushima,
2018, §2.2), which does accelerate the harmonic analysis
in general. Thus, the new method will be useful in accel-
erating the harmonic synthesis of any function on the unit
sphere.

Acknowledgement: The author thanks the anonymous
referees for their valuable advices to improve the quality
of the present article.

A Derivation of recurrence formulae
Let us derive the recurrence formulae presented in Sec-
tion 2. For this purpose, we introduce the sine/cosine se-
ries expression of Pnm(t), the unnormalized ALF, as

Pnm(cos θ) =
n∑

k=0, n−k:even
tnmkhm(kθ), (23)

where tnmk is the unnormalized version of pnmk. Below,we
shall �rst obtain the recurrence formulae for tnmk and next
translate them into those of pnmk. All the derived formulae
have been literally validated by using Mathematica com-
mand sequences (Wolfram, 2003).

A.1 General and semi-diagonal terms

Once Bosch (2000, Eqs (8) and (11)) presented a pair of
non-singular recurrence relations of the derivative of ALF
with respect to the colatitude as

2
(
dPnm(cos θ)

dθ

)
= (n + m)(n − m + 1)Pn,m−1(cos θ)
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−Pn,m+1(cos θ), (1 ≤ m ≤ n − 1) (24)

dPnn(cos θ)
dθ = nPn,n−1(cos θ), (n = 1, 2, . . . ). (25)

These relations are not so popular. In fact, they are miss-
ing in the standard reference books on special functions
(Abramowitz and Stegun, 1964; Olver et al., 2010; Zwill-
inger and Moll, 2014). Also, they are not used in the stan-
dard recurrence formulations to compute the derivatives
of the fnALF (Fukushima, 2012b).

In any case, let us obtain a recurrence relation of tnmk
by means of these recurrence formulae of Pnm(cos θ). Not-
ing the di�erential formula of hm(ψ) (Fukushima, 2017)
rewritten as

dhm(ψ)
dψ = (−1)m−1hm−1(ψ), (26)

we conduct the di�erentiation of Pnm(cos θ) in terms of
them as

dPnm(cos θ)
dθ

= (−1)m−1
n∑

k=1, n−k:even
ktnmkhm−1(kθ). (27)

Substitute this expression of derivatives and the original
expression of the point values, Eq. (23), into the above re-
currence relations, Eqs (24) and (25), while noting the peri-
odicity relation of hm(ψ) expressed as hm+1(ψ) = hm−1(ψ).
Thanks to the complete orthogonality of hm(kθ), by com-
paring the both sides of the rewritten relations term by
term, we obtain a pair of �xed-degree �xed-wavenumber
relations of tnmk as

2k(−1)m−1tnmk = (n + m)(n − m + 1)tn,m−1,k

−tn,m+1,k , (1 ≤ m ≤ n − 1) (28)

k(−1)n−1tnnk = ntn,n−1,k , (n = 1, 2, . . . ). (29)
Apart from thenormalization constant, Eq. (28) is the same
as Eq. (3.3) of Hofsommer and Potters (1960) although the
derivation is signi�cantly di�erent. Through preliminary
numerical experiments, we con�rmed that the main re-
lation, Eq. (28), is stable when used as a backward re-
currence formula with respect to m. Therefore, we rewrite
these relations into a decreasing-order manner as

tn,n−1,k =
k(−1)n−1

n tnnk , (n = 1, 2, . . . ). (30)

tnmk =
2k(−1)m tn,m+1,k + tn,m+2,k

(n − m)(n + m + 1) ,

(m = n − 2, n − 3, . . . , 0). (31)

A.2 Diagonal term

Before going further, let us write the diagonal term in a
simpler form as

tnk ≡ tnnk . (32)
This becomes the seed value for the decreasing-order re-
currence formulae, Eqs (30) and (31). In order to �nd a
formulation to prepare tnk, recall that the sectorial com-
ponent of the ALF is explicitly expressed (Heiskanen and
Moritz, 1967, Eq. (1-57)) as

Pnn(cos θ) = (2n − 1)!! sinn θ, (33)

if noting (−1)!! = 1. When n ≥ 2, this expression is trans-
lated into a multiplicative recurrence relation in a leap-
frog manner as

Pnn(cos θ) = 2rn (1 − cos 2θ) Pn−2,n−2(cos θ),

(n = 2, 3, . . . ), (34)
where rn is an auxiliary coe�cient de�ned as

rn ≡ (2n − 1)(2n − 3)/4, (35)

and we used a formula of the trigonometric functions,
sin2 θ = (1 − cos 2θ)/2. Hereafter, we shall split the dis-
cussion depending on the value and the parity of n.

Let us begin with the case when n is even. Substitut-
ing the sine/cosine series expression of the ALF, Eq. (23),
into the rewritten formula, Eq. (34), we obtained a series
equation expressed as

n∑
k=0, n−k:even

tnk cos kθ = 2rn (1 − cos 2θ) ×

n−2∑
j=0, n−j:even

tn−2,j cos jθ, (n = 2, 4, . . . ). (36)

By utilizing the product-to-sum identity of the cosine func-
tions,

2 cos 2θ cos jθ = cos(j + 2)θ + cos(j − 2)θ, (37)

and comparing the coe�cients of the cosine functions of
the same wavenumber in the both sides, we decompose
Eq. (36) as

tnk =



rn (2tn−2,0 − tn−2,2) ,
(k = 0; n = 4, 6, . . . ),

rn (−2tn−2,0 + 2tn−2,2 − tn−2,4) ,
(k = 2; n = 6, 8, . . . ),

rn
(
−tn−2,k−2 + 2tn−2,k − tn−2,k+2

)
,

(k = 4, 6, . . . , n − 4; n = 8, 10, . . . ),
rn (−tn−2,n−4 + 2tn−2,n−2) ,

(k = n − 2; n = 6, 8, . . . ),
rn (−tn−2,n−2) ,

(k = n; n = 4, 6, . . . ).

(38)
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Similarly, when n is odd, we obtained another series equa-
tion expressed as

n∑
k=1, n−k:even

tnk sin kθ = 2rn (1 − cos 2θ) ×

n−2∑
j=1, n−j:even

tn−2,j sin jθ, (n = 3, 5, . . . ). (39)

This time, by utilizing the product-to-sum identity of the
sine functions,

2 cos 2θ sin jθ = sin(j + 2)θ + sin(j − 2)θ, (40)

and comparing the coe�cients of the sine functions of the
samewavenumber in the both sides, we resolve Eq. (39) as

tnk =



rn (3tn−2,1 − tn−2,3) ,
(k = 1; n = 5, 7, . . . ),

rn
(
−tn−2,k−2 + 2tn−2,k − tn−2,k+2

)
,

(k = 3, 5, . . . , n − 4; n = 7, 9, . . . ),
rn (−tn−2,n−4 + 2tn−2,n−2) ,

(k = n − 2; n = 5, 7, . . . ),
rn (−tn−2,n−2) ,

(k = n; n = 3, 5, . . . ).

(41)

Notice a delicate di�erence for the cases k = 0, 1, and 2
between Eqs (38) and (41).

A.3 4π full normalization

In the previous subsections, we obtained the recurrence
relations of tnmk. Let us transform them to those of pnmk
by a normalization. The ratio of pnmk and tnmk is nothing
but the 4π full normalization factor as

pnmk
tnmk

=

√
(2 − δm0) (2n + 1)

(n − m)!
(n + m)! . (42)

Since it is independent on the wavenumber k, the trans-
lation is automatic. In fact, we rewrite Eqs (30), (31), (38),
and (41) as

pnmk = k(−1)m
√

2 (2 − δm0)
(n − m)(n + m + 1) pn,m+1,k

+

√
(2 − δm0) (n − m − 1)(n + m + 2)

2(n − m)(n + m + 1) pn,m+2,k , (43)

pn,n−1,k = k(−1)n−1
√

2 − δn1
n pnnk , (44)

pnn0 =
1
8

√
(2n + 1)(2n − 1)

n(n − 1) (2pn−2,n−2,0

−pn−2,n−2,2) , (45)

pnn1 =
1
8

√
(2n + 1)(2n − 1)

n(n − 1) (3pn−2,n−2,1

−pn−2,n−2,3) , (46)

pnn2 =
1
8

√
(2n + 1)(2n − 1)

n(n − 1) (−2pn−2,n−2,0

+2pn−2,n−2,2 − pn−2,n−2,4) , (47)

pnnk =
1
8

√
(2n + 1)(2n − 1)

n(n − 1)
(
−pn−2,n−2,k−2

+2pn−2,n−2,k − pn−2,n−2,k+2
)
, (48)

pnn,n−2 =
1
8

√
(2n + 1)(2n − 1)

n(n − 1) (−pn−2,n−2,n−4

+2pn−2,n−2,n−2) , (49)

pnnn =
−1
8

√
(2n + 1)(2n − 1)

n(n − 1) pn−2,n−2,n−2. (50)

These are the same as Eqs (9), (12), and (13)–(18), respec-
tively, if noting (i) the de�nitions of recursion coe�cients,
Eqs (10), (11), and (19), and (ii) the zero value formulae,
Eqs (5)–(8). Thus, the derivation is completed.

B Case of Schmidt
quasi-normalization

In geomagnetism, another kind of the normalization
is popular: Schmidt quasi-normalization (Winch et al.,
2005). Let us denote by p̃nmk for the variation of pnmk in
that normalization. Its de�nition is related to tnmk by fol-
lowing the de�nition of the Schmidt quasi-normalization
(Winch et al., 2005, Eq. (3.2)) as

p̃nmk
tnmk

=

√
(2 − δm0)

(n − m)!
(n + m)! . (51)

Then, the ratio of pnmk and p̃nmk is written as

pnmk =
√
2n + 1p̃nmk . (52)
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Table 2: Sample values of sine/cosine series coe�cients of Schmidt
quasi-normalized ALF. Same as Table 1 but for p̃nmk, the corre-
sponding coe�cients of Schmidt quasi-normalized ALF.

n m k p̃nmk
0 0 0 1 +1.0
1 0 1 1 +1.0
1 1 1 1 +1.0
2 0 0 1/4 +0.25
2 0 2 3/4 +0.75
2 1 2

√
3/2 +0.866025403784438646764

2 2 0
√
3/4 +0.433012701892219323382

2 2 2 −
√
3/4 −0.433012701892219323382

3 0 1 3/8 +0.375
3 0 3 5/8 +0.625
3 1 1

√
6/16 +0.153093108923948631137

3 1 3 5
√
6/16 +0.765465544619743155687

3 2 1
√
15/8 +0.484122918275927110647

3 2 3 −
√
15/8 −0.484122918275927110647

3 3 1 3
√
10/16 +0.592927061281571124750

3 3 3 −
√
10/16 −0.197642353760523708250

4 0 0 3/64 +0.046875
4 0 2 5/16 +0.3125
4 0 4 35/64 +0.546875
4 1 2

√
10/16 +0.197642353760523708250

4 1 4 7
√
10/32 +0.691748238161832978875

4 2 0 3
√
5/32 +0.209631372890605284038

4 2 2
√
5/8 +0.279508497187473712051

4 2 4 −7
√
5/32 −0.489139870078078996090

4 3 2
√
70/16 +0.522912516583797217486

4 3 4 −
√
70/32 −0.261456258291898608743

4 4 0 3
√
35/64 +0.277316239832794501995

4 4 2 −
√
35/16 −0.369754986443726002660

4 4 4
√
35/64 +0.092438746610931500665

Substitution of this relation into the expressions of pnmk
given in the main text produces the recurrence formulae
of p̃nmk as

p̃nmk = k(−1)mαnm p̃n,m+1,k + βnm p̃n,m+2,k ,

(m = n − 2, n − 3, . . . , 0), (53)

p̃n,n−1,k = k(−1)n−1αn,n−1p̃nnk ,

(n = 1, 2, . . . ; 0 ≤ k ≤ n; n − k : even). (54)

p̃nn0 = γ̃n (2p̃n−2,n−2,0 − p̃n−2,n−2,2) ,

(n = 6, 8, 10, . . . ), (55)

p̃nn1 = γ̃n (3p̃n−2,n−2,1 − p̃n−2,n−2,3) ,

(n = 5, 7, 9, . . . ), (56)

p̃nn2 = γ̃n (−2p̃n−2,n−2,0 + 2p̃n−2,n−2,2 − p̃n−2,n−2,4) ,

(n = 6, 8, 10, . . . ), (57)

p̃nnk = γ̃n
(
−p̃n−2,n−2,k−2 + 2p̃n−2,n−2,k
−p̃n−2,n−2,k+2

)
,

(n = 7, 8, 9, . . . ; 3 ≤ k ≤ n − 4; n − k : even), (58)

p̃nn,n−2 = γ̃n (−p̃n−2,n−2,n−4 + 2p̃n−2,n−2,n−2) ,

(n = 5, 6, 7, . . . ), (59)

p̃nnn = −γ̃n p̃n−2,n−2,n−2, (n = 5, 6, 7, . . . ), (60)

where αnm and βnm are already given in Eqs (10) and (11)
while γ̃n is de�ned as

γ̃n ≡
2n − 1

8
√
n(n − 1)

. (61)

Meanwhile, the starting values needed in the recursion is
listed in Table 2.

C Algorithms

C.1 Computation of sine/cosine series
coe�cients

Let us consider an algorithm to prepare a set of the
sine/cosine series coe�cients of the fnALF, pnmk, for the
given domain of indices, 0 ≤ m ≤ n ≤ N and 0 ≤ k ≤ n. First
of all, we note the general zero value formula, pnmk = 0
when n−k is odd. In order to save the computermemory by
using this fact, we introduce a compact rewriting of pnmk
as

Pnmj ≡ pnm,µn+2j , (62)

where µn =
[
1 − (−1)n

]
/2 is the parity factor. First, by us-

ing the index not k but j ≡ [k/2]�oor, we explicitly evalu-
ate the initial values, namely Pnmj when 0 ≤ m ≤ n ≤ 4
and 0 ≤ j ≤ [n/2]�oor. Next, depending on the parity of
degree, n, we split the sequence to compute the diagonal
and semi-diagonal terms into two parts. For this purpose,
we �rst introduce some auxiliary quantities as

` ≡ [n/2]�oor, J ≡ [N/2]�oor. (63)
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Then, the computation of the diagonal and semi-diagonal
terms are conducted sequentially. In fact, they are written
for even degrees, namely when n = 6, 8, . . . , 2J,

Pnn0 = γn (2Pn−2,n−2,0 − Pn−2,n−2,1) , (64)

Pnn1 = γn (−2Pn−2,n−2,0 + 2Pn−2,n−2,1

−Pn−2,n−2,2) , (65)

Pnnj = γn
(
−Pn−2,n−2,j−1 + 2Pn−2,n−2,j

−Pn−2,n−2,j+1
)
, (j = 2, 3, . . . , ` − 2) , (66)

Pnn,`−1 = γn
(
−Pn−2,n−2,`−2 + 2Pn−2,n−2,`−1

)
, (67)

Pnn` = −γnPn−2,n−2,`−1, (68)

Pn,n−1,j = −2jαnPnnj , (j = 0, 1, . . . , `) , (69)

where γn and αn are already introduced in the main text.
For odd degrees, namely when n = 5, 7, . . . , 2J + 1, the
formulae are expressed as

Pnn0 = γn (3Pn−2,n−2,0 − Pn−2,n−2,1) , (70)

Pnnj = γn
(
−Pn−2,n−2,j−1 + 2Pn−2,n−2,j

−Pn−2,n−2,j+1
)
, (j = 1, 2, . . . , ` − 2) , (71)

Pnn,`−1 = γn
(
−Pn−2,n−2,`−2 + 2Pn−2,n−2,`−1

)
, (72)

Pnn` = −γnPn−2,n−2,`−1, (73)

Pn,n−1,j = +(2j + 1)αnPnnj , (j = 0, 1, . . . , `) . (74)

Finally, according as the value and parity of degree and
order, we again split the main recursion into several cases
in order to reduce the chance of conditional switch maxi-
mally: when both n and m are even and j = 0,

Pnm0 = βnmPn,m+2,0, (m = n − 2, n − 4, . . . , 0), (75)

when both n and m are even and j ̸ = 0,

Pnmj = +2jαnmPn,m+1,j + βnmPn,m+2,j ,

(m = n − 2, n − 3, . . . , 0), (76)

when n is even, m is odd, and j ̸ = 0,

Pnmj = −2jαnmPn,m+1,j + βnmPn,m+2,j ,

(m = n − 2, n − 3, . . . , 0), (77)

when n is odd and m is even,

Pnmj = +(2j + 1)αnmPn,m+1,j + βnmPn,m+2,j ,

(m = n − 2, n − 3, . . . , 0), (78)

and when both of n and m are odd,

Pnmj = −(2j + 1)αnmPn,m+1,j + βnmPn,m+2,j ,

(m = n − 2, n − 3, . . . , 0), (79)

where βnm is speci�ed in the main text. In the above, we
excluded the case when n is even, m is odd, and j = 0.
This is because Pnm0 = 0 in that case, which corresponds
to one of the zero value formulae.

C.2 Hints on parallel computation

Once the diagonal and semi-diagonal terms are prepared,
the main recursion can be conducted in parallel with re-
spect to n for its range, n = 2, 3, . . . , N, and j for its
range, j = 0, 1, . . . , J. This fact will signi�cantly accel-
erate the actual computation by its vector/parallel execu-
tion. Of course, the vector length of the main recursion is
variable with respect to degree n, namely in proportion to
n − 1. However, the resulting unbalance of the computa-
tional load is e�ectively avoided by the technique of do-
loop folding (Fukushima, 2012c), namely by pairing the
loops of degree, n and N − n + 2, and assigning the pairs
to each computing unit. See also other examples of the ac-
celeration by folding (Fukushima, 2011).

C.3 Application of X-number formulation

The recursive formulation described in the previous sub-
sections experiences the under�ow in the computation of
the diagonal terms, Pnnj, as in the recursive computation
of the fnALF (Fukushima, 2012a). In order to avoid the
resulting precision degrade, we conduct the so-called X-
number formulation (Fukushima, 2012a) in the recursive
computation of Pnmj. Namely, we treat Pnmj as X-numbers
and regard αnm, βnm, and γn as F-numbers.
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C.4 Distributed summation of Fourier series
coe�cients

Once pnmk are known, it is straightforward to transform
the given spherical harmonic coe�cients,

(
Cnm , Snm

)
, to

the corresponding Fourier series coe�cients, (Alm , Bkm),
as described in the main text. However, a trick is required
in its e�cient implementation: a distributed summation.
This is because pnmk is sequentially determined for de-
creasing orders, m = n, n − 1, . . . , 0 while the summation
must be conducted for increasing degrees, n = max(k,m),
. . . , N, where N is the maximum degree. For this pur-
pose, we adopt a following algorithm: to initialize all the
Fourier coe�cients by assigning zero values, and to incre-
ment them for each computed value of pnmk as

A(k, m) = A(k, m) + p(n, m, k) * C(n, m);

B(k, m) = B(k, m) + p(n, m, k) * S(n, m);

if m ≤ n, k ≤ n, and n − k is even. Actually, this process
is written as a triple do-loop as implemented in xfsh2f as
seen in Tables 8 and 9.

D Fortran programs
Here we gather a group of Fortran subroutines to execute
the newmethod presented in themain text. First of all, Ta-
ble 3 shows pinit, a primitive subroutine to return Pnmj
when 0 ≤ n ≤ 4. Next come dpeven and dpodd listed in Ta-
bles 4 and 5, respectively. They return the double precision
(DP) X-number vectors representing Pnnj and Pn,n−1,j, the
diagonal and semi-diagonal transformation coe�cients,
for even and odd degree/order n, respectively. In using
them, we assume that the DP X-number vector of the two-
step-previous values, Pn−2,n−2,j, is provided externally if
n ≥ 2. This is the reason why, in xfsh2f, we separated
the diagonal computation into even and odd sequences of
n, which can be conducted in parallel. At any rate, apart
from the special value formulae for 0 ≤ n ≤ 4, the sequen-
tial calls of dpeven for n = 6, 8, . . . and those of dpodd
for n = 5, 7, . . . provide a set of the diagonal and semi-
diagonal terms. Thirdly, Tables 6 and 7 illustrate gpeven
and gpodd. They return a vector of Pnmj with respect to
j when n is even and odd, respectively. The programs re-
quire two previous vectors, Pn,m+1,j and Pn,m+2,j. Finally,
we prepared Tables 8 and 9 listing xfsh2f, a Fortran sub-
routine to transform the 4π fully normalized spherical har-
monic coe�cients, Cnm and Snm, into the corresponding
Fourier coe�cients,Akm and Bkm. It internally calls pinit,
dpeven, dpodd, gpeven, and gpodd.

Table 3: Fortran subroutine to return Pnmj when n ≤ 4. It returns
p(j) = Pnmj as a vector with respect to j. This is a straightforward
implementation using Table 1.

subroutine pinit(n,m,p)
integer n,m;real*8 p(0:*)
if(n.eq.0) then

p(0)=1.d0
elseif(n.eq.1) then

p(0)=+1.7320508075688773d0
elseif(n.eq.2) then

if(m.eq.0) then
p(0)=+0.5590169943749474d0
p(1)=+1.6770509831248423d0

elseif(m.eq.1) then
p(0)=0.d0
p(1)=+1.9364916731037084d0

elseif(m.eq.2) then
p(0)=+0.9682458365518542d0
p(1)=−0.9682458365518542d0

endif
elseif(n.eq.3) then

if(m.eq.0) then
p(0)=+0.9921567416492215d0
p(1)=+1.6535945694153691d0

elseif(m.eq.1) then
p(0)=+0.4050462936504913d0
p(1)=+2.0252314682524563d0

elseif(m.eq.2) then
p(0)=+1.2808688457449498d0
p(1)=−1.2808688457449498d0

elseif(m.eq.3) then
p(0)=+1.5687375497513917d0
p(1)=−0.5229125165837972d0

endif
elseif(n.eq.4) then

if(m.eq.0) then
p(0)=+0.421875d0
p(1)=+0.9375d0
p(2)=+1.640625d0

elseif(m.eq.1) then
p(0)=0.d0
p(1)=+0.5929270612815711d0
p(2)=+2.0752447144854989d0

elseif(m.eq.2) then
p(0)=+0.6288941186718159d0
p(1)=+0.8385254915624211d0
p(2)=−1.4674196102342370d0

elseif(m.eq.3) then
p(0)=0.d0
p(1)=+1.5687375497513917d0
p(2)=−0.7843687748756958d0

elseif(m.eq.4) then
p(0)=+0.8319487194983835d0
p(1)=−1.1092649593311780d0
p(2)=+0.2773162398327945d0

endif
endif
return;end
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Table 4: Fortran subroutine to return Pnnj and Pn,n−1,j when de-
gree n is even and n ≥ 6. The returned values are (xp(j), ip(j))
and (xp1(j), ip1(j)), double precision X-number vectors represent-
ing Pnnj and Pn,n−1,j, respectively. We assume the availability of
Pn−2,n−2,j as (xpold(j), ipold(j)). The subroutine internally calls
xnorm and xlsum2 listed in Tables 7 and 8 of Fukushima (2012a),
respectively.

subroutine dpeven(n,xpold,xp,xp1,ipold,ip,ip1)
integer n,ipold(0:*),ip(0:*),ip1(0:*)
integer jx,jxm2,jxm1,n2,j,itemp,jm1,jp1
real*8 xpold(0:*),xp(0:*),xp1(0:*)
real*8 gamma,gamma2,xtemp,alpha2
jx=n/2;jxm2=jx−2;jxm1=jx−1;n2=n*2
gamma=sqrt(dble(n2+1)*dble(n2−1)/ &

(dble(n)*dble(n−1)))*0.125d0
gamma2=gamma*2.d0
call xlsum2(gamma2,xpold(0),−gamma,xpold(1), &

xp(0),ipold(0),ipold(1),ip(0))
call xlsum2(−gamma2,xpold(0),gamma2,xpold(1), &

xtemp,ipold(0),ipold(1),itemp)
call xlsum2(1.d0,xtemp,−gamma,xpold(2),xp(1), &

itemp,ipold(2),ip(1))
do j=2,jxm2

jm1=j−1;jp1=j+1
call xlsum2(−gamma,xpold(jm1),gamma2, &

xpold(j),xtemp,ipold(jm1),ipold(j),itemp)
call xlsum2(1.d0,xtemp,−gamma,xpold(jp1), &

xp(j),itemp,ipold(jp1),ip(j))
enddo
call xlsum2(−gamma,xpold(jxm2),gamma2,xpold(jxm1), &

xp(jxm1),ipold(jxm2),ipold(jxm1),ip(jxm1))
xp(jx)=−gamma*xpold(jxm1);ip(jx)=ipold(jxm1)
call xnorm(xp(jx),ip(jx))
alpha2=sqrt(2.d0/dble(n))*2.d0
xp1(0)=0.d0;ip1(0)=0
do j=1,jx

xp1(j)=−dble(j)*alpha2*xp(j);ip1(j)=ip(j)
call xnorm(xp1(j),ip1(j))

enddo
return;end

Table 5: Fortran subroutine to return Pnnj and Pn,n−1,j when n is odd
and n ≥ 5. Same as Table 4 but when n is odd and n ≥ 5.

subroutine dpodd(n,xpold,xp,xp1,ipold,ip,ip1)
integer n,ipold(0:*),ip(0:*),ip1(0:*)
integer jx,jxm2,jxm1,n2,j,itemp,jm1,jp1
real*8 xpold(0:*),xp(0:*),xp1(0:*)
real*8 gamma,gamma2,xtemp,alpha
jx=(n−1)/2;jxm2=jx−2;jxm1=jx−1;n2=n*2
gamma=sqrt(dble(n2+1)*dble(n2−1)/ &

(dble(n)*dble(n−1)))*0.125d0
gamma2=gamma*2.d0
call xlsum2(gamma*3.d0,xpold(0),−gamma,xpold(1), &

xp(0),ipold(0),ipold(1),ip(0))
do j=1,jxm2

jm1=j−1;jp1=j+1
call xlsum2(−gamma,xpold(jm1),gamma2, &

xpold(j),xtemp,ipold(jm1),ipold(j),itemp)
call xlsum2(1.d0,xtemp,−gamma,xpold(jp1), &

xp(j),itemp,ipold(jp1),ip(j))
enddo
call xlsum2(−gamma,xpold(jxm2),gamma2,xpold(jxm1), &

xp(jxm1),ipold(jxm2),ipold(jxm1),ip(jxm1))
xp(jx)=−gamma*xpold(jxm1);ip(jx)=ipold(jxm1)
call xnorm(xp(jx),ip(jx))
alpha=sqrt(2.d0/dble(n))
do j=0,jx

xp1(j)=dble(2*j+1)*alpha*xp(j);ip1(j)=ip(j)
call xnorm(xp1(j),ip1(j))

enddo
return;end
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Table 6: Fortran subroutine to return Pnmj when n is even. The re-
turned values are (xp0(j), ip0(j)), a double precision X-number
vector representing Pnmj. We assume that Pn,m+1,j and Pn,m+2,j are
externally provided as (xp1(j), ip1(j)) and (xp2(j), ip2(j)), respec-
tively. The subroutine internally calls xnorm and xlsum2 provided in
Tables 7 and 8 of Fukushima (2012a).

subroutine gpeven(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
integer jmax,n,m,ip2(0:*),ip1(0:*),ip0(0:*),m1,m2,modd
real*8 xp2(0:*),xp1(0:*),xp0(0:*),u,alpha2,beta
m1=m+1;m2=m+2;modd=m−int(m/2)*2
if(m.eq.0) then

u=sqrt(0.5d0/(dble(n)*dble(n+1)))
else

u=sqrt(1.d0/(dble(n−m)*dble(n+m1)))
endif
alpha2=4.d0*u;beta=sqrt(dble(n−m1)*dble(n+m2))*u
xp0(0)=beta*xp2(0);ip0(0)=ip2(0)
call xnorm(xp0(0),ip0(0))
if(modd.eq.0) then

do j=1,jmax
call xlsum2(dble(j)*alpha2,xp1(j),beta, &

xp2(j),xp0(j),ip1(j),ip2(j),ip0(j))
enddo

else
do j=1,jmax

call xlsum2(−dble(j)*alpha2,xp1(j),beta, &
xp2(j),xp0(j),ip1(j),ip2(j),ip0(j))

enddo
endif
return;end

Table 7: Fortran subroutine to return Pnmj when n is odd. Same as
Table 6 but when n is odd.

subroutine gpodd(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
integer jmax,n,m,ip2(0:*),ip1(0:*),ip0(0:*),m1,m2,modd
real*8 xp2(0:*),xp1(0:*),xp0(0:*),u,alpha,beta
m1=m+1;m2=m+2;modd=m−int(m/2)*2
if(m.eq.0) then

u=sqrt(0.5d0/(dble(n)*dble(n+1)))
else

u=sqrt(1.d0/(dble(n−m)*dble(n+m1)))
endif
alpha=2.d0*u;beta=sqrt(dble(n−m1)*dble(n+m2))*u
if(modd.eq.0) then

do j=0,jmax
call xlsum2(dble(2*j+1)*alpha,xp1(j),beta, &

xp2(j),xp0(j),ip1(j),ip2(j),ip0(j))
enddo

else
do j=0,jmax

call xlsum2(−dble(2*j+1)*alpha,xp1(j),beta, &
xp2(j),xp0(j),ip1(j),ip2(j),ip0(j))

enddo
endif
return;end

Table 8: Fortran subroutine to transform
(
Cnm , Snm

)
, the 4π fully

normalized spherical harmonic coe�cients of a given function de-
�ned on the spherical surface, to (Akm , Bkm), the corresponding
Fourier series coe�cients of the function. In the program, (i) x2f
and xnorm are the Fortran function/subroutine to handle X-numbers
(Fukushima, 2012a, tables 6 and 7), and (ii) pinit, dpeven, dpodd,
gpeven, and gpodd are the Fortran subroutines listed in Tables 3–7,
respectively (continuing).

subroutine xfsh2f(nmax,c,s,a,b)
integer nmax,m,k,n,jmax,n1,NX;parameter (NX=2200)
real*8 c(0:NX,0:NX),s(0:NX,0:NX)
real*8 a(0:NX,0:NX),b(0:NX,0:NX)
integer ipold(0:NX),ip(0:NX),ip0(0:NX)
integer ip1(0:NX),ip2(0:NX)
real*8 xpold(0:NX),xp(0:NX),xp0(0:NX)
real*8 xp1(0:NX),xp2(0:NX),pj,x2f
do m=0,nmax

do k=0,nmax
a(k,m)=0.d0;b(k,m)=0.d0

enddo
enddo
do n=0,4,2

jmax=int(n/2)
do m=0,n

call pinit(n,m,xp)
do j=0,jmax

k=2*j;a(k,m)=a(k,m)+xp(j)*c(n,m)
b(k,m)=b(k,m)+xp(j)*s(n,m)

enddo
enddo

enddo
do j=0,jmax

ip(j)=0
enddo
do n=6,nmax,2

do j=0,jmax
xpold(j)=xp(j);ipold(j)=ip(j)

enddo
jmax=int(n/2);n1=n−1
call dpeven(n,xpold,xp,xp1,ipold,ip,ip1)
do j=0,jmax

k=2*j;pj=x2f(xp(j),ip(j))
a(k,n)=a(k,n)+pj*c(n,n)
b(k,n)=b(k,n)+pj*s(n,n)
pj=x2f(xp1(j),ip1(j))
a(k,n1)=a(k,n1)+pj*c(n,n1)
b(k,n1)=b(k,n1)+pj*s(n,n1)
xp2(j)=xp(j);ip2(j)=ip(j)

enddo
do m=n−2,0,−1

call gpeven(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
do j=0,jmax

k=2*j;pj=x2f(xp0(j),ip0(j))
a(k,m)=a(k,m)+pj*c(n,m)
b(k,m)=b(k,m)+pj*s(n,m)
xp2(j)=xp1(j);ip2(j)=ip1(j)
xp1(j)=xp0(j);ip1(j)=ip0(j)

enddo
enddo

enddo
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Table 9: Fortran subroutine to transform
(
Cnm , Snm

)
to (Akm , Bkm)

(continued).

do n=1,3,2
jmax=int((n−1)/2)
do m=0,n

call pinit(n,m,xp)
do j=0,jmax

k=2*j+1;a(k,m)=a(k,m)+xp(j)*c(n,m)
b(k,m)=b(k,m)+xp(j)*s(n,m)

enddo
enddo

enddo
do j=0,jmax

ip(j)=0
enddo
do n=5,nmax,2

do j=0,jmax
xpold(j)=xp(j);ipold(j)=ip(j)

enddo
jmax=int((n−1)/2);n1=n−1
call dpodd(n,xpold,xp,xp1,ipold,ip,ip1)
do j=0,jmax

k=2*j+1;pj=x2f(xp(j),ip(j))
a(k,n)=a(k,n)+pj*c(n,n)
b(k,n)=b(k,n)+pj*s(n,n)
pj=x2f(xp1(j),ip1(j))
a(k,n1)=a(k,n1)+pj*c(n,n1)
b(k,n1)=b(k,n1)+pj*s(n,n1)
xp2(j)=xp(j);ip2(j)=ip(j)

enddo
do m=n−2,0,−1

call gpodd(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
do j=0,jmax

k=2*j+1;pj=x2f(xp0(j),ip0(j))
a(k,m)=a(k,m)+pj*c(n,m)
b(k,m)=b(k,m)+pj*s(n,m)
xp2(j)=xp1(j);ip2(j)=ip1(j)
xp1(j)=xp0(j);ip1(j)=ip0(j)

enddo
enddo

enddo
return;end
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