a J. Geod. Sci. 2018; 8:162-173

DE GRUYTER

Research Article

T. Fukushima*

Open Access

Fast computation of sine/cosine series
coefficients of associated Legendre function of
arbitrary high degree and order

https://doi.org/10.1515/jogs-2018-0017
Received August 27, 2018; accepted December 7, 2018

Abstract: In order to accelerate the spherical/spheroidal
harmonic synthesis of any function, we developed a new
recursive method to compute the sine/cosine series co-
efficient of the 4m fully- and Schmidt quasi-normalized
associated Legendre functions. The key of the method is
a set of increasing-degree/order mixed-wavenumber two-
to four-term recurrence formulas to compute the diago-
nal terms. They are used in preparing the seed values of
the decreasing-order fixed-degree, and fixed-wavenumber
two- and three-term recurrence formulas, which are ob-
tained by modifying the classic relations. The new method
is accurate and capable to deal with an arbitrary high de-
gree/order/wavenumber. Also, it runs significantly faster
than the previous method of ours utilizing the Wigner d
function, say around 20 times more when the maximum
degree exceeds 1,000.

Keywords: associated Legendre function, Fourier series
expansion, recurrence formula, spherical harmonic ex-
pansion, spheroidal harmonic expansion

1 Introduction

The spherical and spheroidal harmonic synthesis and
analysis are basic mathematical tools mostly used in
geodesy and geophysics as well as planetary sciences
(Heiskanen and Moritz, 1967; Stacey and Davis, 2008;
de Pater and Lissauer, 2010). However, it is true that
their computational labor is significantly large even after
recent developments in their computational procedures
(Fukushima, 2012a,b, 2013, 2014, 2016). This is especially
true for large values of N, the maximum degree/order of

*Corresponding Author: T. Fukushima: National Astronomical
Observatory of Japan, Graduate University of Advanced Study /
SOKENDAI, 2-21-1, Ohsawa, Mitaka, Tokyo 181-8588, Japan , E-mail:
Toshio.Fukushima@nao.ac.jp

the expansion, say 21,600 or more as intended by recent
studies (Rexer and Hirt, 2015a,b).

A good approach to accelerate the actual procedure
of the synthesis/analysis is the utilization of the two-
dimensional FFT on the unit sphere after the translation
of the harmonic expansions into the Fourier transform
(Colombo, 1981). Refer to Fig. 1 of Fukushima (2018) illus-
trating the superiority of the FFT method in the prepara-
tion of the lumped coefficients in the spherical/spheroidal
harmonic synthesis. Nevertheless, for this purpose, we
need a specific procedure to transform Cnm and Sum, the
harmonic expansion coefficients with the 4m full normal-
ization, into A, and By,,, the corresponding Fourier se-
ries expansion coefficients such that (Sneeuw and Bun,
1996)

N
Agm = Z pnmkEnm, (1)
n=max(k,m),n-k:even
N —
Bim = Z pnmkSYlm-)]

n=max(k,m),n-k:even

Here p,mx is the sine/cosine series coefficients of Pym(f),
the 4m fully normalized associated Legendre function
(fnALF) (Heiskanen and Moritz, 1967), such that

n

>

k=0,n-k:even

Pam(cos 0) = Prmihm(k6). 3)

where hm (1) is a trigonometric function conditionally de-
fined as

cos, (m: even),

siny, (m: odd). “)

hm(lp) = {
The computation of p,,, is a classic problem (Egersdorfer
and Egersdorfer, 1936). Recently, we developed an accu-
rate method to compute p,,,i for arbitrary large indices, n,
m, and k, say with 15 effective digits for indices up to 23° ~
10° (Fukushima, 2018, §2.1). Nevertheless, we must admit
that its execution speed is not so fast. This becomes promi-
nent if compared with that of g, (Fukushima, 2018,
§2.2), the similar coefficients of the inverse transformation
from Ay, and By, to Cnm and Sum, respectively.

80pen Access. © 2018 T. Fukushima, published by De Gruyter. This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 4.0 License.

https://doi.org/10.1515/jogs-2018-0017

DE GRUYTER

Therefore, we re-examined the computation method
of pu.mi proposed by Hofsommer and Potters (1960): a
fixed-order recursive computation of p,,x. Since the re-
currence formula is not suitable for the forward recursion,
we use it in the backward manner. For this purpose, how-
ever, we must prepare the diagonal terms, p .k, as the seed
values. Gruber and Abrykosov (2016) recommended an ap-
proach to solve for them by comparison with the analytical
solutions of p,q after the execution of a generic form of
the recursion by regarding p,,,x as unknowns to be solved.
Nonetheless, this formulation is difficult to be extended to
arbitrary large values of n, m, and/or k.

In order to overcome this situation, we obtained a
group of forward recurrence formulae to compute p,.
Combining it with the main recurrence relation of Hofsom-
mer and Potters (1960) regarded as a backward formula af-
ter an appropriate renormalization, we developed a new
recursive method to compute p,,,,x. As will be shown in
Fig. 1, the new method is as precise as the previous method
of ours (Fukushima, 2018, §2.1). Also, Fig. 2 given later il-
lustrates that the new method runs around 20 times faster
than the old method if N is sufficiently large, say greater
than 1,024.

Below, we explain the new method in Section 2, and
present its numerical experiments in Section 3. Also,
we derive the new recurrence formulae in Appendix A,
extend the formulation to the case of Schmidt quasi-
normalization (Winch et al., 2005) in Appendix B, de-
scribe the algorithms to implement the new method in Ap-
pendix C, and display the Fortran programs to execute the
algorithm in Appendix D.

2 Method

Let us consider the numerical computation of p,,,,.. Hinted
by the recursive formulation to evaluate gy, (Fukushima,
2018, §2.2) and noting the zero value formulae of p,,,,; ex-
pressed as

Pnmk =0, (n-k:even), (5)
Pnmo =0, (n:even; m: odd), 6)
Pnmk =0, (n<m), @)

Pnmk =0, (n<k), 8

we developed a new method to compute p,,,,x recursively,
the detailed derivation of which is provided in Appendix A.
Let us show its compact summary below.

Fast computation of Fourier coefficients of ALF —— 163

Table 1: Sample values of sine/cosine series coefficients of fnALF.
Listed are the literal expression and 20 digits of all non-zero values
of pumk When0 < m < n < 4and 0 < k < n. Notice that pe = 0
when (i) n - k is odd, (ii) n is even, mis odd, and k = 0, (i) n > m,
and/or (iiij) n > k.

n m k Prnmk

0 0 0 1 +1.0

1 0 1 V3 +1.7320508075688772935
1 1 1 V3 +1.7320508075688772935
2 0 0 V5/4 +0.5590169943749474241
2 0 2 3v5/4 +1.6770509831248422723
2 1 2 Vv15/2 +1.9364916731037084426
2 2 0 V15/4 +0.9682458365518542213
2 2 2 -v15/4 -0.9682458365518542213
3 0 1 3V7/8 +0.9921567416492214714
3 0 3 5V7/8 +1.6535945694153691191
3 1 1 V42[/16 +0.4050462936504912644
3 1 3 5V42/16 +2.0252314682524563222
3 2 1 V105/8 +1.2808688457449497979
3 2 3 -y/105/8 -1.2808688457449497979
3 3 1 3y70/16 +1.5687375497513916525
3 3 3 -/70/16 -0.5229125165837972175
4 0 0 27/64 +0.421875

4 0 2 15/16 +0.9375

4 0 4 105/64 +1.640625

4 1 2 3y10/16 +0.5929270612815711247
4 1 4 21V10/32 +2.0752447144854989366
4 2 0 9/5/32 +0.6288941186718158521
4 2 2 3v/5/8 +0.8385254915624211362
4 2 4 -21\/5/32 -1.4674196102342369883
4 3 2 3y70/16 +1.5687375497513916525
4 3 4 -3y/70/32 -0.7843687748756958262
4 4 0 9v35/64 +0.8319487194983835060
4 4 2 -3/35/16 -1.1092649593311780080
4 4 4 3y/35/64 +0.2773162398327945020

First, the main recurrence formula is a decreasing-
order, fixed-degree, and fixed-wavenumber three-term for-
mula expressed as

m
Pnmk = k(_l) AnmPn,m+1,k +B"mpn,m+2,k’

(m=n-2,n-3,...,0), 9

where anm and Bnm are numerical coefficients defined as

_ 2(2-6mo)
nm = m-mhn+m+1)’ (10)
R =-6mo)(n-m-1)(n+m+2)
Brm = \/ 2n-mn+m+1)) (1)

164 —— T.Fukushima

This recurrence relation is meaningful when n - k is even
and O < k < n. Since Bp,n-1 = O, the semi-diagonal case
when m = n - 1 is simplified as

Pnn-1,k = k(_l)nilan,n—lpnnk’

(n=1,2,...; 0<k<n; n-k:even). (12)

Next, the backward recurrence formula, Eq. (9), and its
special case, Eq. (12), require p,,x as their seed values.
They are computed by a variety of increasing-degree/order
mixed-wavenumber recurrence formulae expressed as

Pnno = ¥n (2Pn-2,n-2,0 = Pn-2,n-2,2) »

(n=6,8,10,...), (13)
Prnt = v (3Pn-2,n-2,1 =~ Pn-2,n-2,3) »
n=5,7,9,...), (14)

Prn2 = (=2Pn-2,n-2,0 + 2Pn-2,n-2,2 ~ Pn-2,n-2,4) »

(n=6,8,10,...), (15)
Dnnk =n (—Pn—z,n—z,k—z + 2pn—2,n—2,k
_pn—z,n—z,k+2) >
n=7,8,9,...;3<ks<n-4; n-k:even), (16)
DPnn,n-2 = Yn (=Pn-2,n-2,n-4 + 2Pn-2,n-2,n-2)
(n=5,6,7,...), @17)
Dnnn = _'ann—z,n—z,n—Z, (n = 5’ 69 7’ e)’ (18)
where ~, is a numerical coefficient defined as
1 [2n-1)(2n+1)
= — e ’ 1
m=3 \/ n(n-1) 9)

while n - k should be even once again. Finally, the above
scheme to prepare p,,x demands a group of their initial
values, namely p,,,x for (i) 0 < n < 4, (ii) O < k < n, and (iii)
n - k is even. They are explicitly provided in Table 1. Thus,
the formulation is completed.

DE GRUYTER

Difference in Transformed Coefficients

|
=
)]

N=4096, C,,=1/(1+n"+m)

1
=
o

|
=
~
<

i

I
=
[e¢)

log o maxJAA,|

|
[y
©

|
N
o

|
N
ey

01 2 3 45 6 7 8 9 101112
log, m

Figure 1: Difference in transformed coefficients between old and
new methods. Shown are the absolute differences in Ay, between
the old method (Fukushima, 2018, §2.1) and the new method de-
scribed in Sect. 2. The input data are the model spherical harmonic
coefficients, Cum = 1/ (1 +n® + m), where0 < m < n < N = 4096.
Plotted is the maximum absolute difference of Ay, for0 < k < N as
a function of m in a double logarithmic manner.

CPU Time of Transformation

Old

log; CPU time (sec)
-

/

7 8 9 10 11 12
log, N

Figure 2: Maximum degree dependence of CPU time to conduct
transformation from fnm,gnm) to (Agm» Bim)- Displayed are the
CPU times to execute the transformation from the given surface
spherical harmonic coefficients, (Cum, Snm), to the corresponding
Fourier series coefficients on the sphere, (Aym, Bxm)- The CPU times
are measured at a consumer PC with an Intel Core i7-4600U CPU
running at 2.10 GHz clock by allowing its 2 cores and 4 threads fully
employed. Compared are the computation using the old scheme
(Fukushima, 2018, §2.1) and that by the new method. Both of

them are roughly in proportional to N3, where N is the maximum
degree/order of the spherical harmonic coefficients to be trans-
formed. However, the proportional coefficients are significantly
different, say a factor of 20 or more when N > 210 = 1,024, such
that the new method is significantly faster.

DE GRUYTER

3 Numerical experiments

Let us examine the computational accuracy of the new
method. Refer to Fig. 1 illustrating a comparison of A,
obtained by the old method (Fukushima, 2018, §2.1)
and the new method when Cnm is modelled as Cpm =
1/ (1 +n?+ m). Notice that this is a toy model without
physical meaning although it has a simple analytic form
and mimics Kaula’s rule to some extent. At any rate, we
omit the result for B;,, since the situation is the same. Ob-
viously, the observed difference between the two methods
are negligibly small. This fact confirms the new method is
of a sufficient accuracy.

Next, we compare the computational speed of the new
method with the old one. Refer to Fig. 2 illustrating a
comparison of the CPU time of the coefficient transfor-
mation between the old method (Fukushima, 2018, §2.1)
and the new method. Obviously, Fig. 2 indicates that the
new method runs around 20 times faster than the previous
method of ours. What makes such a significant difference?

The answer is the difference in the complexity of
the innermost loop. Indeed, the main recurrence for-
mula of the previous method is the increasing-degree
fixed-order/wavenumber three term recursion of E,p
(Fukushima, 2017, Eq. (28)) written as

Enkm = _ankmEn—l,km - bnkmEn—Z,km’ (20)

where a,,, and b, are numerical coefficient defined as

Ankm = fm(2n 1) > (1)
(n- 1)\/(n2 - k?) (n? - m2)
_n [(n-1)2 - k2] [(n-1)? - m?]
Drkm = 1\/ (n2 - k2) (n2 - m2) - @

Compare these expressions of a,,, and b, with those of
anm and Bnm given in Eqs (10) and (11). In the former case,
kisincluded inside the square roots in a complicated man-
ner. Meanwhile, in the latter case, the coefficients anm and
Bnm are independent with k. Namely, the wavenumber k
appears as a simple multiplicative factor in the main recur-
rence relation, Eq (9). As a result, by setting the innermost
loop as that with k, we can minimize the computational
amount in the innermost loop. This results in a significant
difference in the total computational labor as clearly indi-
cated in Fig. 2.

Fast computation of Fourier coefficients of ALF —— 165

4 Conclusion

In order to improve the slowness of the previous method
of ours (Fukushima, 2018, §2.1) to compute p,,i, the
sine/cosine series coefficient of the 4 fully normalized
associated Legendre function (ALF), we developed a new
method to do the same computation. The key compo-
nent of the new method is a set of newly developed
recurrence formulae to obtain the diagonal coefficients,
Pnnk- They are increasing-order, fixed-degree, and mixed-
wavenumber two- to four-term formulae. Their expres-
sions are significantly different with each other depending
on the wavenumber. These results are extended to p,mi,
the coefficients for the Schmidt quasi-normalization of
ALF. Numerical experiments revealed that the new method
to compute p,,x Tuns more than 20 times faster than the
previous method (Fukushima, 2018, §2.1) and its computa-
tional speed is comparable with that of g, (Fukushima,
2018, §2.2), which does accelerate the harmonic analysis
in general. Thus, the new method will be useful in accel-
erating the harmonic synthesis of any function on the unit
sphere.

Acknowledgement: The author thanks the anonymous
referees for their valuable advices to improve the quality
of the present article.

A Derivation of recurrence formulae

Let us derive the recurrence formulae presented in Sec-
tion 2. For this purpose, we introduce the sine/cosine se-
ries expression of Pym(t), the unnormalized ALF, as

n

>

k=0, n—k:even

Pnm(cos 6) = tumxhm(k6), (23)
where t,,,;x is the unnormalized version of p,,,,x. Below, we
shall first obtain the recurrence formulae for ¢,,,,; and next
translate them into those of p ;- All the derived formulae
have been literally validated by using Mathematica com-

mand sequences (Wolfram, 2003).

A.1 General and semi-diagonal terms

Once Bosch (2000, Egs (8) and (11)) presented a pair of
non-singular recurrence relations of the derivative of ALF
with respect to the colatitude as

5 (dPrnm(cos 6)

40) =(n+m)(n-m+ 1)Py pn-1(cos 6)

166 —— T.Fukushima

—Ppmi1(cos8), (1smsn-1) (24)

dP nn(COS 9)
daeo

These relations are not so popular. In fact, they are miss-
ing in the standard reference books on special functions
(Abramowitz and Stegun, 1964; Olver et al., 2010; Zwill-
inger and Moll, 2014). Also, they are not used in the stan-
dard recurrence formulations to compute the derivatives
of the fnALF (Fukushima, 2012b).

In any case, let us obtain a recurrence relation of ¢,,,,,,
by means of these recurrence formulae of Pym(cos 6). Not-
ing the differential formula of h (1) (Fukushima, 2017)
rewritten as

=nPy n-1(cosf), (n=1,2,...). (25)

dhm(y)
ay
we conduct the differentiation of Pnm(cos6) in terms of
them as

(26)

= D" (),

dan(COS 9)
dao

n

>

k=1, n-k:even

Substitute this expression of derivatives and the original
expression of the point values, Eq. (23), into the above re-
currence relations, Eqs (24) and (25), while noting the peri-
odicity relation of h (1) expressed as hp.1 () = hp-1 ().
Thanks to the complete orthogonality of h,(k6), by com-
paring the both sides of the rewritten relations term by
term, we obtain a pair of fixed-degree fixed-wavenumber
relations of t,,,,; as

= (_1)m_1 ktnmkhm—l(ke)- (27)

2Kk(-1)" i = (0 + m)(n = m + Dty g i

~thmerky lsmsn-1) (28)

K-D" tonk = Ntpnrpe M=1,2,..). (29

Apart from the normalization constant, Eq. (28) is the same
as Eq. (3.3) of Hofsommer and Potters (1960) although the
derivation is significantly different. Through preliminary
numerical experiments, we confirmed that the main re-
lation, Eq. (28), is stable when used as a backward re-
currence formula with respect to m. Therefore, we rewrite
these relations into a decreasing-order manner as

k(_l)n—l

tn,n—l,k = n trmk7 (n =1, 2’ s)- (30)
¢ _ 2k(_l)mtn,mﬂ,k + tn,m+2,k
nmk m-mm+m+1) ’
(m=n-2,n-3,...,0). (31

DE GRUYTER

A.2 Diagonal term

Before going further, let us write the diagonal term in a
simpler form as

(32)
This becomes the seed value for the decreasing-order re-
currence formulae, Eqs (30) and (31). In order to find a
formulation to prepare t,;, recall that the sectorial com-

ponent of the ALF is explicitly expressed (Heiskanen and
Moritz, 1967, Eq. (1-57)) as

Pnn(cos8) = 2n - 1)!! sin" @,

bk = tank-

(33)

if noting (-1)!! = 1. When n > 2, this expression is trans-
lated into a multiplicative recurrence relation in a leap-
frog manner as

Pun(cos 6) = 2rp (1 - cos 26) P,,_» n-2(cos 6),

(n=2,3,...), (34)
where ry is an auxiliary coefficient defined as
rm=Q2n-1)2n-3)/4, (35)

and we used a formula of the trigonometric functions,
sin? @ = (1 - cos 26)/2. Hereafter, we shall split the dis-
cussion depending on the value and the parity of n.

Let us begin with the case when n is even. Substitut-
ing the sine/cosine series expression of the ALF, Eq. (23),
into the rewritten formula, Eq. (34), we obtained a series
equation expressed as

n

b

k=0, n-k:even

tni C0s kO = 2ry (1 - cos 26) x

n-2
j=0, n—j:even
By utilizing the product-to-sum identity of the cosine func-
tions,

tn-2,jCc0sjl, (n=2,4,...). (36)

2cos26cosjl = cos(j + 2)6 + cos(j - 2)6, 37)

and comparing the coefficients of the cosine functions of
the same wavenumber in the both sides, we decompose
Eq. (36) as
Tn(2tn-2,0 = th-2,2) »
(k=0; n=4,6,...),
tn(=2tp-2,0 + 2tn-2,2 — th-2,4)»
(k=2;n=6,8,...),
Tn (~tnoa,k-2 + 2tnak ~ thoake2) »
(k=4,6,...,n-4; n=8,10,...),
tn(~th-2,n-4 + 2ty -2 n-2),
(k=n-2; n=6,8,...),

rn(=th-2,n-2),
(k=n; n=4,6,...).

(38)

DE GRUYTER

Similarly, when n is odd, we obtained another series equa-
tion expressed as

n

>

k=1, n-k:even

tax Sink6 = 2ry (1 - cos 26) x

n-2

>

j=1, n—j:even

th-p,jsinjf, (n=3,5,...). (39)
This time, by utilizing the product-to-sum identity of the
sine functions,

2 c0s 20sinj0 = sin(j + 2)0 + sin(j - 2)0, (40)

and comparing the coefficients of the sine functions of the
same wavenumber in the both sides, we resolve Eq. (39) as

rn (Btn-2,1 — th-2,3)»
(k=1; n=5,7,...),
n (=th-ak-2 + 2tna k= tnoz ke2) »
(k=3,5,...,n-4; n=7,9,...),
I'n (—tn—z,n—4 + 2tn—2,n—2) s
(k=n-2;n=5,7,...),
n (_tn—z,n—Z) s
(k=n; n=3,5,...).

(41)

Notice a delicate difference for the cases k = 0, 1, and 2
between Eqs (38) and (41).

A.3 4 full normalization

In the previous subsections, we obtained the recurrence
relations of ¢,,,,;. Let us transform them to those of p,x
by a normalization. The ratio of p,,;;x and t,,, is nothing
but the 4 full normalization factor as

(n-m)!

n+m)!” (42)

nmk

Pk _ \/(2—5mo)(zn+1)

Since it is independent on the wavenumber k, the trans-
lation is automatic. In fact, we rewrite Eqs (30), (31), (38),
and (41) as

2(2 - bmo)

Pamic = K-1)" n-mm+m+1

) Pnym+1,k

(2-8mo)(n-m-1)(n+m+2)
+\/ 2n-m(n+m+1) n,m+2,ks (43)
Prn-1k = "(‘1)"_1\/2_776”1 Pk (44)

Fast computation of Fourier coefficients of ALF —— 167

1 /2n+1)(2n-1)

Pnno = g nn-1) (2Pn-2,n-2,0
~Pn-2,n-2,2) 5 (45)
1 2n+1)2n-1
Pnn1 = ¢ % (BPn-2,n-2,1
_pn—z,n—Z,B) ’ (46)
1 /2n+1)2n-1)
Pnn2 = 3 W(2Pn-2,n-2,0
+2Pn-2,n-2,2 = Pn-2,n-2,4) » (47)
1 /2n+1)2n-1)
Prnk = g/ % (‘Pn—2,n—2,k—2
+2Pn-2,n-2,k — Pn-2,n-2,k+2) » (48)
1 2n+1)2n-1
Pnn,n-2 = g % (_pn—z,n—z,n—4
+2pn—2,n—2,n—2) s (49)

-1 /2n+1)2n-1
Pnnn =) %Pn—z,n—z,n—z- (50)

These are the same as Eqs (9), (12), and (13)-(18), respec-
tively, if noting (i) the definitions of recursion coefficients,
Egs (10), (11), and (19), and (ii) the zero value formulae,
Egs (5)—(8). Thus, the derivation is completed.

B Case of Schmidt
quasi-normalization

In geomagnetism, another kind of the normalization
is popular: Schmidt quasi-normalization (Winch et al.,
2005). Let us denote by P« for the variation of p,, in
that normalization. Its definition is related to ¢, by fol-
lowing the definition of the Schmidt quasi-normalization
(Winch et al., 2005, Eq. (3.2)) as

Drmic n-m)!
SR = [(2-6m0) ———- 1
trmik \/(mo) (n +m)! 5D
Then, the ratio of p, ;i and P, is written as
DPnmk = V2n+ 1ﬁnmk- (52)

168 —— T.Fukushima

Table 2: Sample values of sine/cosine series coefficients of Schmidt
quasi-normalized ALF. Same as Table 1 but for i, the corre-
sponding coefficients of Schmidt quasi-normalized ALF.

k Prmk

0 1 +1.0

1 1 +1.0

1 1 +1.0

0 1/4 +0.25

2 3/4 +0.75

2 V3/2 +0.866025403784438646764
0 V3/4 +0.433012701892219323382
2 -v3/4 -0.433012701892219323382
1 3/8 +0.375

3 5/8 +0.625

1 v6/16 +0.153093108923948631137
3 5v6/16 +0.765465544619743155687
1 V15/8 +0.484122918275927110647
3 -V15/8 -0.484122918275927110647
1 3v10/16 +0.592927061281571124750
3

0

2

4

2

4

0

2

4

2

4

0

2

4

-v/10/16 -0.197642353760523708250
3/64 +0.046875
5/16 +0.3125
35/64 +0.546875
V10/16 +0.197642353760523708250
7v/10/32 +0.691748238161832978875
3v/5/32 +0.209631372890605284038
V5/8 +0.279508497187473712051
-7v/5/32 -0.489139870078078996090
V70/16 +0.522912516583797217486
-/70/32 -0.261456258291898608743
3v35/64 +0.277316239832794501995
-v35/16 -0.369754986443726002660
V35/64 +0.092438746610931500665

ARAEPADDDDEDEDNEDDDEDETDWWWWWWWWNNNNNRR O[S
AREA P WWNNNRROOOWWNNRROONNROOROOS

Substitution of this relation into the expressions of p,
given in the main text produces the recurrence formulae
of p nmk aS

ﬁnmk = k(_l)manmﬁn,mﬂ,k + ﬁnmﬁn,mﬂ,k’

(m=n-2,n-3,...,0), (53)
ﬁn,n—l,k = k(_l)nilan,n—lﬁnnk’
(n=1,2,...; 0<k<n; n-k:even). (54)
f’nnO = 's’n (zf)n—z,n—Z,O —ﬁn—z,n—z,z) ,
(n=6,8,10,...), (55)

DE GRUYTER

ﬁnnl = '?n (3I~7n—2,n—2,1 _ﬁn—z,n—2,3) ’

(n=5,7,9,...), (56)

Pnn2 = (=2Pn-2,n-2,0 + 2Pn-2,n-2,2 = Pn-2,n-2,4) »

(n=6,8,10,...), (57)
pnnk = 5/11 <_ﬁn—2,n—2,k—2 + Zﬁn—z,n—z,k
_ﬁn—z,n—z,k+2> ’
n=7,8,9,...;3<k<n-4; n-k:even), (58)
ﬁnn,n—z = ’?n (_ﬁn—z,n—z,n—4 + Zf)n—z,n—z,n—z) s
(n=5,6,7,...), (59)
ﬁnnn = _%nﬁnfz,n72,n72s (n = 5: 65 75 e); (60)

where anm and Bnm are already given in Egs (10) and (11)
while 7y, is defined as

n = 2n-1
n———r—.
8v/n(n-1)

Meanwhile, the starting values needed in the recursion is
listed in Table 2.

(61)

C Algorithms

C.1 Computation of sine/cosine series
coefficients

Let us consider an algorithm to prepare a set of the
sine/cosine series coefficients of the fnALF, p,, .k, for the
given domain of indices, 0 s m < n < Nand O < k < n. First
of all, we note the general zero value formula, p,, = O
when n-kis odd. In order to save the computer memory by
using this fact, we introduce a compact rewriting of p i
as

an}' = Pnm,un+2js (62)

where py = [1 - (—1)"} /2 is the parity factor. First, by us-
ing the index not k but j = [k/2]q00r, We explicitly evalu-
ate the initial values, namely P,,,; when 0 < m < n < 4
and O < j < [n/2]go0r- Next, depending on the parity of
degree, n, we split the sequence to compute the diagonal
and semi-diagonal terms into two parts. For this purpose,
we first introduce some auxiliary quantities as

2= [n/2]goors J = [N/2]gi00r- (63)

DE GRUYTER

Then, the computation of the diagonal and semi-diagonal
terms are conducted sequentially. In fact, they are written

for even degrees, namely whenn = 6,8, ..., 2],

PnnO =n (ZPn—Z,n—Z,O - Pn—2,n—2,1) s (64)

Pun1 = (-2Pp-2,n-2,0 + 2Pp-2,n-2,1
_Pn—Z,n—Z,Z) s (65)

Prmj =n (_Pn—z,n—z,j—l + 2Pn—z,n—z,j
_Pn—Z,n—Z,j+1) ’ (j= 2! 31-'-16_2)’ (66)
Pune-1 = (=Pn-z,n-2,0-2 + 2Pn_2,n-2,0-1) » (67)
Ppne = _'YYIPn—Z,n—Z,é—l’ (68)
Pn,n—l,j = —2janP,m]-, (] =0,1,..., 6) s (69)

where v, and a, are already introduced in the main text.
For odd degrees, namely whenn = 5,7,...,2] + 1, the
formulae are expressed as

Puno = (3Pn-2,n-2,0 = Pn-2,n-2,1) , (70)

Popj = n (=Pn-2,n-2,j-1 + 2Pn-2,n-2,j
~Pnon2ji1), (G=1,2,...,0-2), (71)
Pune-1 = (~Pn-2n-2,0-2 + 2Pn-2,n-2,0-1) » (72)
Pune = = vnPn_z n-2,0-1, (73)
Ppn-1,j=+(2j+ DanPpnj, (G=0,1,...,0). 74)

Finally, according as the value and parity of degree and
order, we again split the main recursion into several cases
in order to reduce the chance of conditional switch maxi-
mally: when both n and m are even and j = 0,

ano =ﬁnmPn,m+2,0y (m = n_zyn_4)---90)y (75)
when both n and m are even and j/ = 0,
anj = +2janmPn,m+1,j +ﬁnmpn,m+2,]’)
(m=n-2,n-3,...,0), (76)

when n is even, m is odd, and j/ = 0,

anj = _ZjanmPn,m+1,j +ﬁnmPn,m+2,j»

Fast computation of Fourier coefficients of ALF =—— 169

(m=n-2,n-3,...,0), (77)
when n is odd and m is even,
anj =+(2j + 1)anmPn,mﬂ,j +ﬁnmPn,m+2,j’
(m=n-2,n-3,...,0), (78)
and when both of n and m are odd,
Pumj = -(2j + 1)anmPn,m+1,j +ﬁnmPn,m+2,j’
(m=n-2,n-3,...,0), (79)

where Bnm is specified in the main text. In the above, we
excluded the case when n is even, m is odd, and j = O.
This is because P, = 0 in that case, which corresponds
to one of the zero value formulae.

C.2 Hints on parallel computation

Once the diagonal and semi-diagonal terms are prepared,
the main recursion can be conducted in parallel with re-
spect to n for its range, n = 2,3,...,N, and j for its
range, j = 0,1,...,J. This fact will significantly accel-
erate the actual computation by its vector/parallel execu-
tion. Of course, the vector length of the main recursion is
variable with respect to degree n, namely in proportion to
n — 1. However, the resulting unbalance of the computa-
tional load is effectively avoided by the technique of do-
loop folding (Fukushima, 2012c), namely by pairing the
loops of degree, n and N — n + 2, and assigning the pairs
to each computing unit. See also other examples of the ac-
celeration by folding (Fukushima, 2011).

C.3 Application of X-number formulation

The recursive formulation described in the previous sub-
sections experiences the underflow in the computation of
the diagonal terms, Pp,;, as in the recursive computation
of the fmALF (Fukushima, 2012a). In order to avoid the
resulting precision degrade, we conduct the so-called X-
number formulation (Fukushima, 2012a) in the recursive
computation of Py,,;. Namely, we treat P,,,; as X-numbers
and regard &nm, Brnm, and yn as F-numbers.

170 —— T.Fukushima

C.4 Distributed summation of Fourier series
coefficients

Once p,mx are known, it is straightforward to transform
the given spherical harmonic coefficients, (Cnm, Snm), to
the corresponding Fourier series coefficients, (A, Bim)s
as described in the main text. However, a trick is required
in its efficient implementation: a distributed summation.
This is because p,mi is sequentially determined for de-
creasing orders, m = n, n -1, ..., 0 while the summation
must be conducted for increasing degrees, n = max(k, m),
..., N, where N is the maximum degree. For this pur-
pose, we adopt a following algorithm: to initialize all the
Fourier coefficients by assigning zero values, and to incre-
ment them for each computed value of p,,,i as

Ak, m) = A(k, m) + p(n, m, k) * C(n, m);

B(k, m) = B(k, m) + p(n, m, k) * S(n, m);

if m < n, k < n, and n - k is even. Actually, this process
is written as a triple do-loop as implemented in xfsh2f as
seen in Tables 8 and 9.

D Fortran programs

Here we gather a group of Fortran subroutines to execute
the new method presented in the main text. First of all, Ta-
ble 3 shows pinit, a primitive subroutine to return Pp,p;
when O < n < 4. Next come dpeven and dpodd listed in Ta-
bles 4 and 5, respectively. They return the double precision
(DP) X-number vectors representing P,,; and P, ,_1 j, the
diagonal and semi-diagonal transformation coefficients,
for even and odd degree/order n, respectively. In using
them, we assume that the DP X-number vector of the two-
step-previous values, P,_, ,_, j, is provided externally if
n = 2. This is the reason why, in xfsh2f, we separated
the diagonal computation into even and odd sequences of
n, which can be conducted in parallel. At any rate, apart
from the special value formulae for O < n < 4, the sequen-
tial calls of dpeven for n = 6,8, ... and those of dpodd
forn = 5,7,... provide a set of the diagonal and semi-
diagonal terms. Thirdly, Tables 6 and 7 illustrate gpeven
and gpodd. They return a vector of P, with respect to
j when n is even and odd, respectively. The programs re-
quire two previous vectors, Py, y.1,; and Py .5 ;. Finally,
we prepared Tables 8 and 9 listing xfsh2f, a Fortran sub-
routine to transform the 4 fully normalized spherical har-
monic coefficients, Cnm and Spm, into the corresponding
Fourier coefficients, Ay, and By,. Itinternally calls pinit,
dpeven, dpodd, gpeven, and gpodd.

DE GRUYTER

Table 3: Fortran subroutine to return Py,,; when n < 4. It returns
p(j) = Pumj as a vector with respect to j. This is a straightforward
implementation using Table 1.

subroutine pinit(n,m,p)
integer n,m;real*8 p(0:*)
if(n.eq.0) then
p(0)=1.d0
elseif(n.eq.1) then
p(0)=+1.7320508075688773d0
elseif(n.eq.2) then
if(m.eq.0) then
p(0)=+0.5590169943749474d0
p(1)=+1.6770509831248423d0
elseif(m.eq.1) then
p(0)=0.d0
p(1)=+1.9364916731037084d0
elseif(m.eq.2) then
p(0)=+0.9682458365518542d0
p(1)=-0.9682458365518542d0
endif
elseif(n.eq.3) then
if(m.eq.0) then
p(0)=+0.9921567416492215d0
p(1)=+1.6535945694153691d0
elseif(m.eq.1) then
p(0)=+0.4050462936504913d0
p(1)=+2.0252314682524563d0
elseif(m.eq.2) then
p(0)=+1.2808688457449498d0
p(1)=-1.2808688457449498d0
elseif(m.eq.3) then
p(0)=+1.5687375497513917d0
p(1)=-0.5229125165837972d0
endif
elseif(n.eq.4) then
if(m.eq.0) then
p(0)=+0.421875d0
p(1)=+0.9375d0
p(2)=+1.640625d0
elseif(m.eq.1) then
p(0)=0.d0
p(1)=+0.5929270612815711d0
p(2)=+2.0752447144854989d0
elseif(m.eq.2) then
p(0)=+0.6288941186718159d0
p(1)=+0.8385254915624211d0
p(2)=-1.4674196102342370d0
elseif(m.eq.3) then
p(0)=0.d0
p(1)=+1.5687375497513917d0
p(2)=-0.7843687748756958d0
elseif(m.eq.4) then
p(0)=+0.8319487194983835d0
p(1)=-1.1092649593311780d0
p(2)=+0.2773162398327945d0
endif
endif
return;end

DE GRUYTER

Table 4: Fortran subroutine to return P,,; and Py, ,_1,; when de-
greenisevenandn = 6. The returned values are (xp(j), ip(j))
and (xp1(j), ip1(j)), double precision X-number vectors represent-
ing Pppj and Py, 1 j, respectively. We assume the availability of
Py_3 n-2,j as (xpold(j), ipold(j)). The subroutine internally calls
xnorm and x1sum2 listed in Tables 7 and 8 of Fukushima (2012a),
respectively.

subroutine dpeven(n,xpold,xp,xp1,ipold,ip,ip1)
integer n,ipold(0:%),ip(0:*),ip1(0:*)
integer jx,jxm2,jxm1,n2,j,itemp,jm1,jp1
real*8 xpold(0:*),xp(0:*),xp1(0:*)
real*8 gamma,gammaz2,xtemp,alpha2
jx=n/2;jxm2=jx-2;jxm1=jx-1;n2=n*2
gamma=sqrt(dble(n2+1)*dble(n2-1)/ &
(dble(n)*dble(n-1)))*0.125d0
gamma2=gamma*2.d0
call xlsum2(gamma2,xpold(0),-gamma,xpold(1), &
xp(0),ipold(0),ipold(1),ip(0))
call xlsum2(-gamma2,xpold(0),gamma2,xpold(1), &
xtemp,ipold(0),ipold(1),itemp)
call xlsum2(1.d0,xtemp,-gamma,xpold(2),xp(1), &
itemp,ipold(2),ip(1))
do j=2,jxm2
jm1=j-1;jpl=j+1
call xlsum2(-gamma,xpold(jm1),gamma2, &
xpold(j),xtemp,ipold(jm1),ipold(j),itemp)
call xlsum2(1.d0,xtemp,—gamma,xpold(jp1), &
xp(j),itemp,ipold(jp1),ip(j))
enddo
call xlsum2(-gamma,xpold(jxm2),gamma2,xpold(jxm1), &
xp(jxm1),ipold(jxm2),ipold(jxm1),ip(jxm1))
xp(jx)=—gamma*xpold(jxm1);ip(jx)=ipold(jxm1)
call xnorm(xp(jx),ip(jx))
alpha2=sqrt(2.d0/dble(n))*2.d0
xp1(0)=0.d0;ip1(0)=0
do j=1,jx
xp1(j)=-dble(j)*alpha2*xp(j);ip1(j)=ip(j)
call xnorm(xp1(j),ip1(j))
enddo
return;end

Fast computation of Fourier coefficients of ALF == 171

Table 5: Fortran subroutine to return Pp,; and Py, p,_q,; when n is odd
and n > 5. Same as Table 4 but when nis odd and n > 5.

subroutine dpodd(n,xpold,xp,xp1,ipold,ip,ip1)

integer n,ipold(0:*),ip(0:%),ip1(0:*)

integer jx,jxm2,jxm1,n2,j,itemp,jm1,jp1

real*8 xpold(0:*),xp(0:*),xp1(0:*)

real*8 gamma,gammaz2,xtemp,alpha

jx=(n-1)/2;jxm2=jx-2;jxm1=jx—1;n2=n*2

gamma=sqrt(dble(n2+1)*dble(n2-1)/ &
(dble(n)*dble(n-1)))*0.125d0

gamma2=gamma*2.d0

call xlsum2(gamma*3.d0,xpold(0),-gamma,xpold(1), &
xp(0),ipold(0),ipold(1),ip(0))

do j=1,jxm2
jm1=j-1;jp1=j+1
call xlsum2(-gamma,xpold(jm1),gamma2, &

xpold(j),xtemp,ipold(jm1),ipold(j),itemp)
call xlsum2(1.d0,xtemp,-gamma,xpold(jp1), &
xp(j).itemp,ipold(jp1),ip(j))

enddo

call xlsum2(-gamma,xpold(jxm2),gamma2,xpold(jxm1), &
xp(jxm1),ipold(jxm2),ipold(jxm1),ip(jxm1))

xp(jx)=—gamma*xpold(jxm1);ip(jx)=ipold(jxm1)

call xnorm(xp(jx),ip(jx))

alpha=sqrt(2.d0/dble(n))

do j=0,jx
xp1(j)=dble(2*j+1)*alpha*xp(j);ip1(j)=ip(j)
call xnorm(xp1(j),ip1(j)

enddo

return;end

172 = T.Fukushima DE GRUYTER

Table 6: Fortran subroutine to return Py,; when n is even. The re- Table 8: Fortran subroutine to transform (Enm, §nm), the 4 fully
turned values are (xp0(j), 1p0(j)), a double precision X-number normalized spherical harmonic coefficients of a given function de-
vector representing Pyy,j. We assume that Pp,in.1,; and Pp,m.,; are fined on the spherical surface, to (Agn, Bim), the corresponding
externally provided as (xp1(j), ip1(j)) and (xp2(j), ip2(j)), respec- Fourier series coefficients of the function. In the program, (i) x2:
tively. The subroutine internally calls xnorm and x1sum2 provided in and xnorm are the Fortran function/subroutine to handle X-numbers
Tables 7 and 8 of Fukushima (2012a). (Fukushima, 2012a, tables 6 and 7), and (ii) pinit, dpeven, dpodd,
gpeven, and gpodd are the Fortran subroutines listed in Tables 3-7,

subroutine gpeven(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
integer jmax,n,m,ip2(0:*),ip1(0:*),ip0(0:*),m1,m2,modd
real*8 xp2(0:*),xp1(0:*),xp0(0:*),u,alpha2,beta
ml=m+1;m2=m+2;modd=m-int(m/2)*2
if(m.eq.0) then

u=sqrt(0.5d0/(dble(n)*dble(n+1)))
else

u=sqrt(1.do/(dble(n-m)*dble(n+m1)))
endif
alpha2=4.d0*u;beta=sqrt(dble(n-m1)*dble(n+m2))*u
xp0(0)=beta*xp2(0);ip0(0)=ip2(0)
call xnorm(xp0(0),ip0(0))
if(modd.eq.0) then

do j=1,jmax

call xlsum2(dble(j)*alpha2,xp1(j),beta, &
xp2(j),xp0(7),ip1(},ip2(},ip0()))

enddo
else

do j=1,jmax

call xlsum2(-dble(j)*alpha2,xp1(j),beta, &
xp2(j),xp0({),ip1(7,ip2(}),ip0())

enddo
endif
return;end

Table 7: Fortran subroutine to return P,,; when n is odd. Same as
Table 6 but when n is odd.

subroutine gpodd(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
integer jmax,n,m,ip2(0:*),ip1(0:*),ip0(0:*),m1,m2,modd
real*8 xp2(0:*),xp1(0:*),xp0(0:*),u,alpha,beta
mil=m+1;m2=m+2;modd=m-int(m/2)*2
if(m.eq.0) then

u=sqrt(0.5d0/(dble(n)*dble(n+1)))
else

u=sqrt(1.do/(dble(n-m)*dble(n+m1)))
endif
alpha=2.d0*u;beta=sqrt(dble(n—-m1)*dble(n+m2))*u
if(modd.eq.0) then

do j=0,jmax

call xlsum2(dble(2*j+1)*alpha,xp1(j),beta, &
xp2(j),xp0(j),ip1(}),ip2(}),ip0(})

enddo
else

do j=0,jmax

call xlsum2(-dble(2*j+1)*alpha,xp1(j),beta, &
xp2(j),xp0(j),ip1(}),ip2(}),ip0(}))

enddo
endif
return;end

respectively (continuing).

subroutine xfsh2f(nmax,c,s,a,b)
integer nmax,m,k,n,jmax,n1,NX;parameter (NX=2200)
real*8 c(0:NX,0:NX),s(0:NX,0:NX)
real*8 a(0:NX,0:NX),b(0:NX,0:NX)
integer ipold(0:NX),ip(0:NX),ip0(0:NX)
integer ip1(0:NX),ip2(0:NX)
real*8 xpold(0:NX),xp(0:NX),xp0(0:NX)
real*8 xp1(0:NX),xp2(0:NX),pj,x2f
do m=0,nmax
do k=0,nmax
a(k,m)=0.d0;b(k,m)=0.d0
enddo
enddo
do n=0,4,2
jmax=int(n/2)
do m=0,n
call pinit(n,m,xp)
do j=0,jmax
k=2%*j;a(k,m)=a(k,m)+xp(j)*c(n,m)
b(k,m)=b(k,m)+xp(j)*s(n,m)
enddo
enddo
enddo
do j=0,jmax
ip()=0
enddo
do n=6,nmax,2
do j=0,jmax
xpold(j)=xp(j);ipold(j)=ip())
enddo
jmax=int(n/2);n1=n-1
call dpeven(n,xpold,xp,xp1,ipold,ip,ip1)
do j=0,jmax
k=2*;pj=x2f(xp(j),ip(})
a(k,n)=a(k,n)+pj*c(n,n)
b(k,n)=b(k,n)+pj*s(n,n)
pi=x2f(xp1(j),ip1()
a(k,n1)=a(k,n1)+pj*c(n,n1)
b(k,n1)=b(k,n1)+pj*s(n,n1)
xp2(i)=xp((;ip2(j)=ip(j)
enddo
do m=n-2,0,-1
call gpeven(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
do j=0,jmax
k=2*};pj=x2f(xp0(j),ip0(j))
a(k,m)=a(k,m)+pj*c(n,m)
b(k,m)=b(k,m)+pj*s(n,m)
xp2(D=xp1(j);ip2()=ip1())
xp1()=xp0();ip1(})=ip0())
enddo
enddo
enddo

DE GRUYTER

Table 9: Fortran subroutine to transform (fnm, §nm) to (Asm» Bim)
(continued).

don=1,3,2
jmax=int((n-1)/2)
do m=0,n
call pinit(n,m,xp)
do j=0,jmax
k=2*j+1;a(k,m)=a(k,m)+xp(j)*c(n,m)
b(k,m)=b(k,m)+xp(j)*s(n,m)
enddo
enddo
enddo
do j=0,jmax
ip(j)=0
enddo
do n=5,nmax,2
do j=0,jmax
xpold(j)=xp(j);ipold(j)=ip(j)
enddo
jmax=int((n-1)/2);n1=n-1
call dpodd(n,xpold,xp,xp1,ipold,ip,ip1)
do j=0,jmax
k=2*j+1;pj=x2f(xp(}),ip(})
a(k,n)=a(k,n)+pj*c(n,n)
b(k,n)=b(k,n)+pj*s(n,n)
pi=x2f(xp1(}),ip1(j))
a(k,n1)=a(k,n1)+pj*c(n,n1)
b(k,n1)=b(k,n1)+pj*s(n,n1)
xp2())=xp({);ip2()=ip())
enddo
do m=n-2,0,-1
call gpodd(jmax,n,m,xp2,xp1,xp0,ip2,ip1,ip0)
do j=0,jmax
k=2*j+1;pj=x2f(xp0(j),ip0(}))
a(k,m)=a(k,m)+pj*c(n,m)
b(k,m)=b(k,m)+pj*s(n,m)
xp2(j)=xp1(});ip2()=ip1())
xp1(j)=xp0(};ip1())=ip0(j)
enddo
enddo
enddo
return;end

References

Abramowitz M. and Stegun I. A. (eds), 1964, Handbook of mathe-
matical functions with formulae, graphs, and mathematical tables.
NBS Appl. Math. Ser. 55, NBS, Washington DC.

Bosch W., 2000, On the computation of derivatives of Legendre func-
tions. Phys. Chem. Earth, A, 25:655-659.

Colombo 0.L., 1981, Numerical methods for harmonic analysis on the
sphere. Rep 310, Dept. Geod. Sci., Ohio State Univ., Columbus.
de Pater I. and Lissauer).)., 2010, Planetary Sciences, 2nd ed. Cam-

bridge Univ. Press, London.

Egersdorfer R. and Egersdorfer L., 1936, Formeln und Tabellen der zu-
geordneten Kugelfunktionen 1. Art von n = 1 bis n = 20. Reichs.

Fast computation of Fourier coefficients of ALF == 173

fiir Wett. Wiss., 1:18-47.

Fukushima T., 2011, Efficient parallel computation of all-pairs N-body
acceleration by do loop folding. Astron. J., 142:18-22.

Fukushima T., 2012a, Numerical computation of spherical harmonics
of arbitrary degree and order by extending exponent of floating
point numbers.). Geod., 86:271-285.

Fukushima T., 2012b, Numerical computation of spherical harmon-
ics of arbitrary degree and order by extending exponent of float-
ing point numbers: Il first-, second-, and third-order derivatives.).
Geod., 86:1019-1028.

Fukushima T., 2012c, Parallel computation of satellite orbit accelera-
tion. Comp. Geosci., 49:1-9.

Fukushima T., 2013, Recursive computation of oblate spheroidal har-
monics of the second kind and their first-, second-, and third-order
derivatives. J. Geod., 87:303-309.

Fukushima T., 2014, Prolate spheroidal harmonic expansion of gravi-
tational field. Astron. J., 147:152-160.

Fukushima T., 2016, Numerical computation of point values, deriva-
tives, and integrals of associated Legendre function of the first
kind and point values and derivatives of oblate spheroidal har-
monics of the second kind of high degree and order. Proc. IAG
Symp., 143:192-197.

Fukushima T., 2017, Rectangular rotation of spherical harmonic ex-
pansion of arbitrary high degree and order.). Geod., 91:995-1011.

Fukushima T., 2018, Transformation between surface spherical har-
monic expansion of arbitrary high degree and order and double
Fourier series on sphere. J. Geod., 92:123-130.

Gruber C. and Abrykosov 0., 2016, On computation and use of Fourier
coefficients for associated Legendre functions.). Geod., 90:525—
535.

Heiskanen W.A. and Moritz H., 1967, Physical Geodesy. Freeman, San
Francisco.

Hofsommer D.). and Potters M.L., 1960, Table of Fourier coefficients
of associated Legendre functions. Proc. KNAW ser. A Math. Sci.,
63:460-466.

Olver F. W. J., Lozier D. W., Boisvert R. F., and Clark C. W. (eds), 2010,
NISTHandbook of Mathematical Functions. Cambridge Univ Press,
Cambridge.

Rexer M. and Hirt C., 2015a, Ultra-high degree surface spherical har-
monic analysis using the Gauss-Legendre and the Driscoll/Healy
quadrature theorem and application to planetary topography
models of Earth, Mars and Moon. Surv. Geophys., 36:803-830.

Rexer M. and Hirt C., 2015b, Spectral analysis of the Earth’s topo-
graphic potential via 2D-DFT: a new data-based degree variance
model to degree 90,000.). Geod., 89:887-909.

Sneeuw N.J. and Bun R., 1996, Global spherical harmonic computa-
tion by two-dimensional Fourier methods.). Geod., 70:224-232.

Stacey F.D. and Davis P.M., 2008, Physics of the Earth, 4th ed. Cam-
bridge Univ. Press, Cambridge.

Winch D.E., lvers D.J., Turner J.P.R., and Stening R.J., 2005, Geo-
magnetism and Schmidt quasi-normalization. Geophys. J. Int.,
160:487-504.

Wolfram S., 2003, The Mathematica Book, 5th ed. Wolfram Research
Inc./Cambridge Univ. Press, Cambridge.

Zwillinger D. and Moll V. (eds), 2014, (Gradshteyn and Ryzhik) Table
of integrals, series, and products, 8th ed. Acad Press, Amsterdam.

	1 Introduction
	2 Method
	3 Numerical experiments
	4 Conclusion
	A Derivation of recurrence formulae
	A.1 General and semi-diagonal terms
	A.2 Diagonal term
	A.3 4 full normalization

	B Case of Schmidt quasi-normalization
	C Algorithms
	C.1 Computation of sine/cosine series coefficients
	C.2 Hints on parallel computation
	C.3 Application of X-number formulation
	C.4 Distributed summation of Fourier series coefficients

	D Fortran programs

