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Abstract: This article studies the Optimal Biased Krig-
ing (OBK) approach which is an alternative geostatistical
method that gives up the unbiasedness condition of Ordi-
nary Kriging (OK) to gain an improved Mean Squared Pre-
diction Error (MSPE). The system of equations for the opti-
mal linear biased Kriging predictor is derived and itsMSPE
is compared with that of Ordinary Kriging. Amajor imped-
iment in implementing this system of equations and per-
forming Kriging interpolation with massive datasets is the
inversion of the spatial coherency matrix. This problem is
investigated and a novel method, called “homeogram ta-
pering”, which exploits spatial sorting techniques to cre-
ate sparse matrices for e�cient matrix inversion, is de-
scribed. Finally, as an application, results from experi-
ments performed on a geoid undulation dataset from Ko-
rea are presented. A precise geoid is usually the indispens-
able basis for meaningful hydrological studies over wide
areas. These experiments use the theory presented here
along with a relatively new spatial coherency measure,
called the homeogram, also knownas the non-centered co-
variance function.

Keywords: geoid undulations, homeogram, homeogram
tapering, spatial data sorting, spatial statistics

1 Introduction
Geostatistical interpolation methods, for instance various
types of Kriging, are often used to generate a predicted sur-
face or map of attribute values at unsampled sites from
discrete measurements made at point locations within the
same area or region. Many criteria have been proposed

B. Scha�rin: School of Earth Sciences, Geodetic Science Division,
The Ohio State University, Columbus, OH 43210, USA
*Corresponding Author: T.-S. Bae: Dept. Geoinforma-
tion Engineering, Sejong University, Seoul, Korea, E-mail:
baezae@sejong.ac.kr
Y. Felus: Survey of Israel, Tel-Aviv, Israel

to evaluate the quality of an interpolation method; accu-
racy, degree of biasedness, and computational complex-
ity are among these criteria. Methods which give up the
unbiasedness to obtain an improved relative accuracy as
expressed by the Mean Squared Prediction Error MSPE,
are popular in various statistical and mathematical appli-
cations. These methods, often termed “shrinkage estima-
tors”, were developed to solve problems that contain near-
linear dependence (multicollinearity) among the predictor
variables (e.g,Montgomery and Friedman, 1993;Hoerl and
Kennard, 1970), to treat cases with non-normal data, and
to obtain an improvedMSPE (Scha�rin 1985, 2000a, 2008).
However, it has not been until fairly recently, through the
workof Scha�rin (1993) andGotwayandCressie (1993) that
shrinkage methods have been extended to the geostatisti-
cal analysis.

Gotway and Cressie (1993) constructed a large class
of predictors with a risk (de�ned as the mean of the to-
tal sum of all squared prediction errors - MSPE) that is
uniformly smaller than classical Ordinary Kriging (also
known as the Best homogeneously Linear Unbiased Pre-
diction - homBLUP). These various predictors were gener-
ated using di�erent estimators for this mean, integrated in
the Simple Kriging equations.

Scha�rin (1993) investigated homogeneous-isotropic
processes on the sphere; these processes cannot be both
Gaussian and ergodic. Thus, when considering a global
phenomenon such as (incremental) geoid undulations,
magnetic or gravity �elds, etc., one cannot use standard
geostatistical methods. For example, the covariance func-
tion estimate will always be biased on a sphere leading to
a biased predictor. To solve this problem, Scha�rin (1993)
proposed the Optimal Biased Kriging predictor (OBK, also
termed homBLIP - Best homogeneously LInear Prediction)
as a biased alternative to Ordinary Kriging (OK) with a
(slightly) reduced mean squared error. The following sec-
tion further develops the OBK predictor formulas (with a
full proof in the Appendix). In particular,
(i) the di�erent factors that a�ect this method are ana-
lyzed,
(ii) the computational aspects of this technique are inves-
tigated, and

https://doi.org/10.1515/jogs-2018-0016


Optimal biased Kriging | 155

(iii) a dataset of geoid undulations from Korea is used to
test this method.

This paper is organized as follows: Section 2 presents
the OBK concepts, its formulas, and the non-centered co-
variance function (the homeogram) as measure of spa-
tial coherency. Section 3 describes a novel method to ef-
�ciently invert the spatial coherency matrix. Experiments
with the OBK in interpolating a geoid undulation dataset
from Korea are then provided in Section 4. Section 5 con-
cludes our �ndings and provides a brief outlook on further
research issues.

2 The Optimal Biased Kriging
For clarity of discussion, the de�nitions of the mathemat-
ical model for the spatial process under investigation will
be reviewed. In a vector form it reads:

y= x + e ,
τβ= x+e0,

and
[

e
e0

]
∼

([
0
0

]
,
[
σ2
e · In 0
0 Cx

])
(1)

where y := [y (s1) , · · · , y (sn)]T is the n × 1 vector of ob-
served process values (data) at sites s1, · · · , sn;
x := [x (s1) , · · · , x (sn)]T is the n × 1 random e�ects vector
of the actual process at sites s1, · · · , sn;
e := [e1, · · · , en]T is the n×1 vector of randomobservation
errors;
e0 := [e01, · · · , e0n]T is the n × 1 vector of random process
mis-centering errors;
β is the process mean value (usually unknown);
Cx is the n × n dispersion matrix of x with the elements
Cx(si , sj) derived from the respective covariance function;
σ2
e is the variance component for the observational noise

(assumed to be otherwise uncorrelated); and
τ := [1, 1, · · · , 1]T is the n × 1 "summation vector".

Note that the process x
(
s′
)

is a scalar-valued pro-
cess at an arbitrary site denoted by s′. This process is pre-
dicted throughOptimal BiasedKriging (or homBLIP) using
the non-centralized covariance function, also called the
homeogram, which is de�ned as:

ηx(s, s + h) = E{x(s) · x(s + h)} (2)

where ηx (s, s + h) describes the spatial coherency be-
tween points s and s′ = s+h; E is the expectation operator,
and h is the distance di�erence or lag vector. The home-
ogram was already recommended by Jeannée and de Fou-
quet (2000) and Journel (1988), as well as Scha�rin (1985),
for cases where the data have an unknown or positively
skewed distribution. The following derivation shows that
the homeogram can provide a simpli�ed system for OBK.

The homeogram vector between the unknown point at lo-
cation s′ and the sample data can be expressed as:

η(s′) = [ηx(s′, s1), · · · , ηx(s′, sn)]T , (3)

and the homeogram matrix between the sample data
points as:

H = [ηx(sij)] + σ2
eIn for i, j ∈ {1, · · · , n} (4)

The Optimal Biased Kriging prediction using the
homeogram function is given by (see Appendix for a com-
plete derivation):

˜̃x(s′) = η(s′)T ·H−1 · y (5)

with

MSPE{˜̃x(s′)} = ηx(s′, s′) − η(s′)T ·H−1 · η(s′) . (6)

In order to see the di�erence between the OBK and
OK equations, the OK solution will be expressed in terms
of the homeogram as given in Scha�rin (2001), where the
general equivalence between OK and least-squares collo-
cation (with constant trend) has also been established un-
der mild conditions. Denote:

K := (σ2
eIn + Cx) = H − τ · β2 · τT

as the n×n covariancematrix of the observed process y(si)
in the sample points, and

κ(s′) :=
[
Cx(s′, s1), · · · Cx(s′, sn)

]T
= η(s′) − τ · β2 (7a)

as the corresponding n × 1 vector of covariances between
the point at the new location s′ and the sample points ,
with β = E

{
x(s′)

}
= E

{
x(si = s′ + hi)

}
as the spatial pro-

cess mean. Then the Ordinary Kriging prediction, follow-
ing Cressie (1993, p. 123), may be given by:

x̃(s′) = β̂ + κ(s′)T · K−1 · (y − τ · β̂)

= ˜̃x(s′) + ν̄(s′) · (τT ·H−1 · y) (8a)

with

β̂ = (τT · K−1 · τ)−1 · (τT · K−1 · y)

= (τT ·H−1 · τ)−1 · (τT ·H−1 · y) (8b)

and

MSPE{x̃(s′)} = σ2
x − κ(s′)T · K−1 · κ(s′)

[1 − κ(s′)T · K−1 · τ]2

(τT · K−1 · τ) = (9a)

= MSPE{̃̃x(s′)} + [ν̄(s′)]2(τT ·H−1 · τ) ≥ MSPE{̃̃x(s′)},
(9b)
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where ν̄(s′) may be taken from the system[
H −τ
−τT 0

][
χ̄(s′)
ν̄(s′)

]
=
[
η(s′)
−1

]
(10a)

or computed directly via

ν̄(s′) = (τT ·H−1 · τ)−1[1 − τT ·H−1 · η(s′)]. (10b)

Obviously,

MSPE{̃̃x(s′)} = σ2
x−κ(s′)T ·K−1·κ(s′)+ [1 − κ(s′)T · K−1 · τ]

2

(β−2 + τT · K−1 · τ)
(11)

holds when using the covariance function.
It follows from Eq. (11), that if the number of elements

n is large, then τTK−1τ in the denominator of the equation
is very large relative to β−2, and the improvement may be
negligible. On the other hand, if themean is very small (for
example after applying a trend removing process like "me-
dian polish") there can be a noticeable improvement, and
the MSPE will be closer to that of Simple Kriging (SK):

MSPE{x̃SK(s′)} = σ2
x − κ(s′)T · K−1 · κ(s′) (12)

From the discussion above and Eqs. (5) and (6) it is
clear that Optimal Biased Kriging should be computed us-
ing the homeogrammatrix, thereby avoiding the unneces-
sary problem of computing any estimator of β which is not
even needed for OK in Eq. (8a). Implementation of Eqs. (5)
and (6) requires an inversion of the n × n homeogram ma-
trix (n being the number of given data points). This com-
plex operation could be amajor obstacle in trying to apply
this method to large datasets, consisting of more than a
few hundred points. In the next section, a method to alle-
viate the problem of working with large spatial coherency
matrices will be presented; wemay call it “homeogram ta-
pering”.

3 Inverting the spatial coherency
matrix using spatial sorting;
especially homeogram tapering

A major obstacle of spatial statistics methods is the high
computational complexity associated with the inversion
of the large spatial coherency matrices; cf. Eqs. (5)–(12).
This problem has led to many investigations of improved
algorithms and of the use of high performance comput-
ers. Li (1996) reported on ways of using parallel process-
ing for spatial statistics algorithms. Goovaerts (1997, pp.
178–179) suggested taking only a subset of the given data

points instead of the entire dataset. Gundlich et al. (2003)
employed sampling-basedMonte Carlomethods for the ef-
�cient computation of large covariance matrices.

Furrer et al. (2006) as well as Barry and Pace (1997)
exploit the sparseness of the covariance matrix K to e�-
ciently solve the Kriging equations. If an observation dis-
plays stochastic dependence with its nearest m − 1 neigh-
bors, only m non-zero entries exist per row of the spatial
covariance matrix K. Sparsity enhances computational ef-
�ciency. For example, multiplying an n × n matrix A1 by
an W2LOK matrix A2 requires O(n2 · n2) operations us-
ing dense matrices while, with the equivalent sparse ma-
trices, multiplication computation requires O(n2 · n · m)
operations. The enhancement is even more signi�cant for
matrix inversion. This operation can be built upon the
Cholesky factorization or, more generally, the LU factor-
ization (lower times upper triangular matrix) which, using
Gaussian elimination, requires O(n3) operations for dense
matrices. However, if the matrix is sparse and has a band
structure, with lower bandwidth p and upper width q, the
operation requires time; see Golub and van Loan (1996,
pp. 150-151). Unfortunately, the problem of constructing a
band-limited sparse matrix is known to be NP-complete;
see Skiena (1997, pp. 202-203). Thus, any solution to this
problem relies on so-called "brute-force" methods or ad-
hoc heuristics.

Here, a novel approach is presented that takes advan-
tage of spatial sorting to create a stable and nearly band-
limited sparse covariance, resp. homeogram matrix, thus
making the computationmore e�cient. TheMorton order-
ing, also knownas the "PeanoKey”method,was chosenas
the spatial sorting technique. This method has the lowest
mean absolute-di�erence measures and the overall mini-
mumvalue of theMoran statistics. It is alsomonotonic and
quadrant-recursive; cf. Abel and Mark (1990). The Morton
ordering technique rearranges the data by using both the
X-coordinate and the Y-coordinate and by interleaving the
X-, Y- coordinate numbers. Higher resolution in the spatial
sortingmay be achieved by applying themethod using the
binary representation of the coordinates (see Fig. 1).

Morton Ordering can be performed using a Radix sort-
ing which has a worst case of O(n · log n) time but, with
a good implementation scheme, can run in an O(n) aver-
age time (Skiena, 1997). Morton ordering will not provide
a perfectly band-limited covariance matrix, due to the dis-
continuities in the spatial sorting (Fig. 2), and a slight im-
provement using for example one or two iterations of the
Cuthill-McKee ordering algorithmmay be needed; cf. Meu-
rant (1999), for instance.

In addition to creating a nearly band-limited matrix,
spatial sorting can be used to detect observations that
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Figure 1: Example for the Morton Order sorting algorithm.

Figure 2:Morton Ordering, spatial sorting as implemented on grid
data. This method is applied here to irregularly sampled data. Note
the jump between points 7 and 8.

are very close to each other (relative to the resolution),
or nearly duplicated. These observations should be re-
moved since the equation system will become unstable as
was shown by Davis andMorris (1997). Naturally, elimina-
tion of observations will negatively a�ect reliability as de-
scribed by Scha�rin (2000b).

So far, we have discussed the covariance function and
methods to turn it into aband-limited stablematrix.Unlike
the covariance function, the homeogram function will not
converge to zero at in�nity if the data exhibit a trend. To
create a sparse matrix in this case, the homeogrammatrix
can be decomposed via a rank-1 modi�cation as:

H = H̄ + (τ · αh · τT) (13)

where is a constant that represents the plateau value of the
homeogram such that H̄ becomes sparse while remaining
positive-de�nite, with zeros at values beyond the range,
i.e. at the plateau. Consequently, the inverse of H can be
computed using the well known formula:

H−1 = H̄−1 − H̄−1 · τ · (α−1
h + τTH̄−1τ)−1τTH̄−1 (14)

The adapted homeogram matrix and the covariance
matrix K will contain nm non-zero elements out of possi-

ble elements which is an m/n proportion of non-zero el-
ements. These two matrices can be converted into nearly
sparse matrices using Morton Ordering.

We shall call the above technique “homeogram taper-
ing”. Other tapering methods, mainly applied to the co-
variance function, have been discussed by Furrer et al.
(2006), Sang et al. (2011), Sang and Huang (2012), as well
as Vetter et al. (2014). We also refer to the literature review
by Ozanne et al. (2014) which covers a lot of ground on
“covariance tapering”, but nothing on “homeogram taper-
ing”.

4 Experimental results

4.1 The data: Geoid undulations from Korea

For the numerical test of the Optimal Biased Kriging based
on the spatial coherency functions, we selected the hybrid
geoid of Koreawhichwas generated from airborne and ter-
restrial gravimetric data along with the GPS/leveling ob-
servations. The test area is 2◦(2◦ with the spatial resolu-
tion of about 1.8 km, which includes various conditions
ranging from benign to mountainous rough terrain. The
Continuously Operating Reference Stations (CORS) of Ko-
rea provide both ellipsoidal and orthometric heights, thus
the CORS within the test area are grouped into two sets; a
total of 100 sampling points was used to generate the em-
pirical values of spatial coherence, and another 50 valida-
tion pointswere chosen to compare the estimated geoid af-
ter Kriging (Fig. 3). The GPS/leveling data were compared
with the geoid model at sampled points, resulting in a
mean value of −0.85 cm, and the root-mean-squared error
(RMSE) to be ±2.9 cm. Based on the statistics at sampling
points, the variance of the random observation error was
reasonably set to 100 cm2. In order to better estimate the
spatial coherency functions, the linear trend in the geoid
model was removed by �tting it to a planar model with the
geodetic latitude and longitude as parameter lines.

4.2 Fitting the homeogram and the
covariance function

Two spatial coherency functions were estimated in this
study, namely homeogram and covariance function. Since
the homeogram is the non-centralized covariance func-
tion, the empirical homeogram is shifted by the square of a
mean value. Therefore, we present the �tting results of the
homeogram to the analytical models. According to Cressie
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Figure 3: The geoid and the location of CORS for data sampling and
validation. The geoid shows the residuals after removing the linear
trend by �tting to a planar model (Bae, 2016).

Table 1: The quality of �t for the spatial coherency functions.

Exponential Wave
Homeogram 1.7889 × 10−7 6.3970 × 10−7

Covariance function 2.4630 × 10−7 4.7590 × 10−7

(1993), the exponential model, also known as ‘Gaussian
model’, is given by

ηy(h) =
{
c0 · e−a

2|h|2 + µ2 |h| ≠ 0,
σ2
y + µ2 = c0 + σ2

e |h| = 0,
(15)

and the wave model can be represented as

ηy(h) =
{
c0 − ch

[
1 − ah

|h| sin
(
|h|
ah

)]
|h| ≠ 0,

σ2
y + µ2 |h| = 0,

(16)

The empirical homeogram was �tted using least-squares
adjustment with the inverse distance weighting scheme
(Fig. 4), resulting in the quality-of-�t as taken from the
residuals and given in Table 1.

4.3 Comparing Ordinary Kriging (OK) with
Optimal Biased Kriging (OBK): Smallest
MSPE vs. best Kriging results

The MSPE of OBK was compared with that of OK for two
spatial coherency functions. The choice of the empirical
spatial coherency function seems to favor the homeogram
over the covariance function, though the di�erence be-
tween the OBK and the OK is minor in terms of the ex-
pected MSPE (Figure 5). The validation points in the lat-
ter part (No. 43-49) show a disordered estimation with a

Figure 4: Fitting an empirical homeogram to the analytical models.
(a) Exponential model and (b) wave model.

big number of MSPE. This can be attributed to the fact that
these stations are located in a highly rough terrain (south-
ern part of the test area).

As can be seen in Fig. 6, the type of Kriging predictor
does not appear to matter much. However, at the valida-
tion points in rough condition, the homeogram provides
relatively reliable Kriging results compared to those of the
covariance function.

The performance using the empirical covariance func-
tion compares well with the use of the empirical home-
ogram. For both homeogram and covariance function, the
empirical spatial coherency was better �tted to the expo-
nentialmodel than thewavemodel; thus the average value
of the Kriging results shows a smaller number for the ex-
ponential model.

Both Optimal Biased Kriging and Ordinary Kriging
lead to essentially the sameprediction results,whereas the
formal MSPE of OBK appears always smaller than that of
OK. In theory, the choice of the spatial coherency function
(homeogram, covariance function) should be irrelevant.



Optimal biased Kriging | 159

Table 2: Statistics of the Kriging results. The average Kriging results represent the di�erence between the interpolated value and the geoid
model; the mean squared deviation was calculated based on the Kriging results.

Predictor Homeogram Covariance function
Exponential Wave Exponential Wave

Avg. Kriging results [cm] OBK 0.6528 1.2792 0.5779 1.0189
OK 0.6536 1.2797 0.5788 1.0195

Mean squared deviation [cm] OBK 8.1174 10.7980 8.0586 10.7599
OK 8.1175 10.7980 8.0588 10.7599

Figure 5: The MSPE of Optimal Biased Kriging and Ordinary Kriging
at 50 validation points for the spatial coherency of homeogram and
covariance function.

Figure 6: The resulting estimates of the Kriging predictors for Opti-
mal Biased Kriging and Ordinary Kriging.

However, since these functions have to be determined em-
pirically, their choice matters indeed. It is interesting that
the better �t of the empirical functions does not always yield
better Kriging results. The wave model seems to be partic-
ularly a�ected by this phenomenon. Oftentimes, the for-

mal MSPE does not represent the actual predictive qual-
ity. More systematic studies are still necessary in this di-
rection.

5 Discussion and outlook
Our case study had three unique goals asmentioned in the
Introduction.

The results of the Optimal Biased Kriging prediction
experiments were quite unexpected as the di�erences be-
tween the Mean Squared Prediction Error from Ordinary
Kriging and the Optimal Biased Kriging were relatively
minute. Comparing Eqs. (6) and (9a-b), this is rather sur-
prising at �rst glance. However, as was mentioned be-
fore, with more points in the dataset, τTK−1τ becomes a
relatively large element in the denominator of the MSPE
Eq. (9a) and therefore the improvement through the addi-
tion of β−2 will be subdued. These results complement the
study byGotway andCressie (1993), who computed the rel-
ative risks of the James-Stein estimator and the Best Lin-
ear Uniformly Unbiased Estimate (BLUUE) as a function
of the norm of the bias vector τβ, i.e. β

√
n, on simulated

data. The greatest reduction in risk occurs for β near zero,
and this reduced relative risk was just 99.89% of the orig-
inal. As β increases, the improvement in the relative risk
becomesmore and more negligible.

Moreover, in contrast to what is expected from biased
Kriging, namely that the results are allowed to be biased,
the results of this study exhibit almost no bias in both the
detrended and the original data with a trend. The key is-
sue in the understanding of this phenomenon is the home-
ogram. Unlike the covariance function, the homeogram
carries information about the mean through the plateau
parameter. The use of the homeogram function as part of
the Kriging equation system is a relatively new topic. Fur-
ther research has been done to investigate the character-
istics of the homeogram function and will be published
elsewhere; nevertheless it appears that OBK has already
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shown its potential to become a serious competitor to Or-
dinary Kriging in many practical situations.

Measurements of CPU time, during the experiments,
have shown that Kriging computation using sparse ma-
trix techniques is very e�cient and increases the speed
of the interpolation algorithm by almost threefold. Sorting
the data with the Morton Order technique creates a band-
limited matrix, which is not yet optimal due to the spatial
jump (see Fig. 2). However, given the nearly ordered ma-
trix, an additional improvement by using, for example, the
Cuthill-McKee ordering (Meurant, 1999) is much faster and
the overall computational speed is improvedby anaverage
of 15%, compared with the same process without sorting;
further details on the empirical CPU timing experiments
are given in Felus (2001). These results support the analyt-
ical complexity analysis of the algorithm as described in
a previous section. Spatial statistics can greatly bene�t by
using GIS methods; for example, spatial coherency func-
tion computation, an time process, can be signi�cantly en-
hanced by using spatial sorting to classify data point into
distance lags, thus reducing the algorithm time. Further re-
search is needed toward exploiting this potential.

Acknowledgement: This research was supported by a
grant (18RDRP-B076564-05) from Regional Development
Research Program funded by Ministry of Land, Infrastruc-
ture and Transport of Korean government.

A Appendix. Optimal Biased
Kriging (OBK)

Starting from the mathematical model of Eq. (1) and us-
ing the standard assumption of no correlation between
the measurement error vector e, the spatial process ran-
dom variation vector e0, and the spatial process x itself,
namely: C {e, e0} = 0 ⇒ C {x, e} = 0, the following
conditions should be satis�ed for the OBK prediction ˜̃x(s′)
of x(s′):

(1) Homogeneously linear:

˜̃x(s′) = L · y (A.1)

where L is an unknown row vector of size 1 × n.

(2) Best or minimum MSPE (i.e., minimum mean
squared prediction error):

MSPE{˜̃x(s′)} = E{[˜̃x(s′) − x(s′)]2}

= D{˜̃x(s′) − x(s′)} + (E{˜̃x(s′) − x(s′)})2

= D{L · y − x(s′)} + (E{L · y − x(s′)})2

= D{L · (x + e) − x(s′)} + β2 · (L · τ − 1)2

= L · (σ2
eIn) · LT + L · Cx · LT − κ(s′)T · LT

− L · κ(s′) + Cx(s′, s′) + β2 · (L · τ − 1)2

= Φ(LT) (A.2)

where D denotes the dispersion (or variance-covariance)
matrix. Here, we assumed that the covariance function is
isotropic and homogeneous/stationary, which means that

C(x, x(s′)) = C(x(s′), x)T = [C(x(si), x(s′))] = κ(s′),

i ∈ {1, · · · , n};

C(x(s′), x(s′)) = Cx(s′, s′) = Cx(0) = σ2
x ;

and from Eq. (1):

C(e, e) = D{e} = σ2
eIn;

C(x, x) = D{x} = Cx .

Now, Φ(LT) is the target function that needs to be mini-
mized. Euler-Lagrange necessary conditions (�rst partial
derivatives set to zero) are used for this minimization:

∂Φ(LT)
2 · ∂LT = [σ2

e · In + (Cx + τ · β2 · τT)] · LT

− [κ(s′) + τ · β2] = 0 (A.3)

which, after rearranging Eq. (A.3), results in:

LT = (σ2
eIn + Cx + τ · β2 · τT)−1 · (κ(s′) + τ · β2), (A.4)

and consequently in:

˜̃x(s′) = L · y = (κ(s′) + τ · β2)T · (σ2
eIn + Cx + τ · β2 · τT) · y.

(A.5)

Using the de�nition of the homeogram and the notations
from Eqs. (7a) and (7b), one can directly obtain:

˜̃x(s′) = η(s′)T ·H−1 · y (A.6)

with L = η(s′)T ·H−1.
It is easy to check that the su�cient condition is sat-

is�ed and the matrix of second derivatives is positive-
de�nite:

∂2Φ(LT)
2 · ∂L · ∂LT = σ2

eIn + Cx + τ · β2 · τ2 = H > 0. (A.7)



Optimal biased Kriging | 161

TheMSPE of this prediction is computed fromEq. (A.2) as:

MSPE{˜̃x(s′)} = L · (σ2
eIn + Cx + τ · β2 · τT) · LT

− L · [κ(s′) + τ · β2] − [κ(s′)T + β2 · τ2] · LT + σ2
x + β2

= η(s′)T ·H−1 · (σ2
eIn + Cx + τ · β2 · τT) ·H−1 · η(s′)

+ {σ2
x + β2} − η(s′)T ·H−1 · [κ(s′) + τ · β2]

− [κ(s′)T + β2τT ] ·H · η(s′)

= η(s′)T ·H−1 · η(s′) + ηx(s′, s′) − η(s′)T ·H−1 · η(s′)

− η(s′)TH−1 · η(s′),

and �nally as:

MSPE{˜̃x(x′)} = ηx(s′, s′) − η(s′)T ·H−1 · η(s′) (A.8)

References
Abel, J.D., Mark, M.D., 1990. A comparative analysis of some two-

dimensional orderings. International Journal of Geographical In-
formation Systems 4 (1), 21-31.

Bae, T.S., 2016. Estimation of spatial coherency functions for Kriging
of spatial data (in Korean). Journal of the Korean Society of Survey-
ing, Geodesy, Photogrammetry and Cartography 34 (1), 91-98.

Barry, P.R., Pace, R.K., 1997. Kriging with large data sets using sparse
matrix techniques. Communications in Statistics: Simulation and
Computation 26 (2), 619-629.

Cressie, N.A.C., 1993. Statistics for Spatial Data, second ed. Wiley,
New York.

Davis, J.G., Morris, D.M., 1997. Six factors which a�ect the condition
number of matrices associated with Kriging, Mathematical Geol-
ogy 29 (5), 669-683.

Felus, Y., 2001. New methods for spatial statistics in geographic in-
formation systems. PhD dissertation, Dept. of Civil & Environ. En-
gineering and Geodetic Sci., The Ohio State University, Columbus,
Ohio, 176p.

Furrer, R., Genton, M.G., Nychka, D., 2006. Covariance tapering for
interpolation of large spatial datasets, Journal of Computational
and Graphical Statistics 15 (3), 502–523.

Golub, H.G., van Loan, F.C., 1996. Matrix Computations, third ed. The
Johns Hopkins University Press, Baltimore, MD.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation.
Oxford University Press, New York.

Gotway, C.A., Cressie, N.A.C., 1993. Improvedmultivariate prediction
under a general linear model. Journal of Multivariate Analysis 45
(1), 56-72.

Gundlich, B., Koch, K.R., Kusche, J., 2003. Gibbs sampler for comput-
ing and propagating large covariance matrices. J. Geodesy 77 (9),
514–528.

Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics 12 (1), 55-67.

Jeannée, N., de Fouquet, C., 2000. Characterization of soil pollutions
from former coal processing sites. In: Kleingeld, W.J., Krige, J.D.
(Eds.), Geostatistics Congress 2000: Vol. 2. Cape Town, South
Africa, pp. 526-537.

Journel, A.G., 1988. New distance measures: The route toward truly
non-Gaussian geostatistics. Mathematical Geology 20 (4), 459–
475.

Li, B., 1996. Implementing spatial statistics onparallel computers. In:
Arlinghaus, S.L., Gri�th, D.A. (Eds.), Practical Handbookof Spatial
Statistics. CRC Press, Boca Raton/FL, USA, pp. 107-149.

Meurant, G., 1999. Computer Solution of Large Linear Systems. Else-
vier, Amsterdam, The Netherlands.

Montgomery, D.C., Friedman, D.J., 1993. Prediction using regression
models withmulticollinear predictor variables. IIE Transactions 25
(3), 73-85.

Ozanne,M., Schneider, G.,White, S., Yin,M., Craigmile, P., Herbei, R.,
Notz, W., 2014. A covariance tapering literature review. The Ohio
State University, Columbus/OH, USA, 38p.

Pace, R.K., Barry, P.R., 1997. Quick computation of spatial autoregres-
sive estimators. Geographical Analysis 29 (3), 232-247.

Sang, H., Huang, J.Z., 2012. A full-scale approximation of covariance
functions for large spatial data sets. J. Roy. Statist. Soc. B-74 (1),
111-132.

Sang, H., Jun, M., Huang, J.Z., 2011. Covariance approximation for
large multivariate spatial data sets with an application to multiple
climate model errors. Ann. Appl. Statist. 5 (4), 2519-2548.

Scha�rin, B., 1985. The geodetic datumwith stochastic prior informa-
tion (in German). Publication of the German Geodetic Commission
C-313, Munich, Germany.

Scha�rin, B., 1993. Biased Kriging on the sphere? In: Soares, A. (Ed.),
Geostatistics Troia 92, Vol. I. Kluwer, Dordrecht, The Netherlands,
pp. 121-131.

Scha�rin, B., 2000a.Minimummean square error adjustment, Part 1:
The empirical BLE and the repro-BLE for direct observations. Jour-
nal of the Geodetic Society of Japan 46 (1), 21-30.

Scha�rin, B., 2000b. On the reliability of data obtained by Kriging. In:
Jan Beek, K., Molenaar, M. (Eds.), International Archives of Pho-
togrammetry and Remote Sensing, Vol. XXXIII, Part B4. Amster-
dam, The Netherlands, pp. 893-900.

Scha�rin, B., 2001. Equivalent systems for various forms of Krig-
ing, including least-squares collocation. Zeitschrift für Vermes-
sungswesen 126 (2), 87-93.

Scha�rin, B., 2008. Minimum mean squared error (MSE) adjust-
ment and the optimal Tykhonov–Phillips regularization parameter
via reproducing best invariant quadratic uniformly unbiased esti-
mates (repro-BIQUUE). J. Geodesy 82 (2), 113-121.

Skiena, S.S., 1997. The Algorithm Design Manual. Springer-Verlag,
New York.

Vetter, P., Schmid, W., Schwarze, R., 2014. E�cient approximation of
the spatial covariance function for large data sets - Analysis of at-
mospheric CO2 concentrations. J. Environ. Statist. 6 (3), 1-36.


	1 Introduction
	2 The Optimal Biased Kriging 
	3 Inverting the spatial coherency matrix using spatial sorting; especially homeogram tapering
	4 Experimental results 
	4.1 The data: Geoid undulations from Korea
	4.2 Fitting the homeogram and the covariance function
	4.3 Comparing Ordinary Kriging (OK) with Optimal Biased Kriging (OBK): Smallest MSPE vs. best Kriging results

	5 Discussion and outlook
	A Appendix. Optimal Biased Kriging (OBK)

