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Abstract: Predicting sea level rise is essential for current
climate discussions. Empirical models put in use to mon-
itor and analyze sea level variations observed at globally
distributed tide gauge stations during the last decade can
provide reliable predictions with high resolution. Mean-
while, prediction intervals, an alternative to confidence
intervals, are to be recognized and deployed in sea level
studies. Predictions together with their prediction inter-
vals, as demonstrated in this study, can quantify the un-
certainty of a single future observation from a population,
instead of the uncertainty of a conceivable average sea
level namely a confidence interval, and it is thereby, better
suited for coastal risk assessment to guide policy develop-
ment for mitigation and adaptation responses.
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Don’t cross a river if it is four feet deep on average.
Nassim Nicholas Taleb (2007).

1 Introduction
Aprojection is associatedwith thepossibility of something
happening given a certain set of plausible, but not nec-
essarily probable circumstances (Bray and Storch 2009).
A projection is a broad prediction where the extrapolated
values are subject to certain assumptions (Gabriele and
Freichter, 2011). In the context of sea level studies, projec-
tions are explanatory through their predicates, which in-
clude thermal expansion expected to contribute to more
than half of the long-term sea level rise, eustatic effects
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caused by the increasingly rapid loss of land ice overtime,
as the underlying causal relationships.

Projections are safe because they are imprecise: all
that is projected is the direction of the underlying ef-
fects. Also, projections are not easily testable by observa-
tions because of their large uncertainties they carry for-
ward (ibid). Their predictive powers are heavily depen-
dent on the performance of their predicates. The Inter-
Governmental Panel on Climate Change (IPCC), for in-
stance, projects global sea level to reach between half a
meter and a meter of sea-level rise by the end of the 21st
centurywith a rate greater than the global sea level rise ex-
perienced during the 20th century (IPCC, 2013) for an un-
mitigated future rise in emissions (RCP8.5) accompanied
by a broad brush of probabilities (Mastendra et al., 2010).

In contrast, sea level predictions¹ rely heavily on past
data such as sea levelmeasurements at tide gauge stations
as they are reconstructed in this studywith the aid of a har-
monic model (a trigonometric model) consisting predom-
inantly of a secular sea level trend, an acceleration, and
periodicities. Sea level predictions assume that sea level
variations observed at these stations in recent history, are
indicative of their near future kinematics. During the last
decade, a series of historically observed cyclic regularities
were shown to be caused by the external forcings of the sea
level of astronomical origin, suchas lunar gravity and their
compounding with random or periodic or episodic com-
ponents of natural sea level variations, such as wind, at-
mospheric pressure, sea surface temperature, etc. during
the 20th century (Iz, 2014, 2015, 2016). Because of their ex-
hibited regularities, observed sea level variations are pre-
dictable. Meanwhile, sea level trends that were observed
at tide gauges are the lumpsum proxies experienced by
the oceans induced by regional and global temperature
changes (thermosteric effects), land ice, and their inter-
actions, and further related to climate change variables
such as global natural and anthropogenicCO2emissions.
Their decomposition is inherently difficult to ensure reli-
able predictions in the long run without additional infor-
mation. Despite that, quantification and extension of sea

1 Forecast and predictions are used interchangeably in this study.
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level trends enable assessing the distance between a pre-
diction and projection and future observation of sea lev-
els, and thereby, serve as a reality check for the relevance
of projections and their underlying theories. A very low
predictability level for predictive models of sea level vari-
ations can lead to the development of new measures, al-
ternative theories, new collected data, and new empirical
approaches. An explanatorymodel that is close to abench-
mark predictive model may suggest that our understand-
ing of that phenomenon can only be increasedmarginally.
If such a model is very far from the predictive benchmark,
this outcomewould imply that there are substantial practi-
cal and theoretical gains to achieve from further scientific
development.

While uncertainties attributed to projections reflect
a range of scenarios based on potential outcomes with
broadly assigned probabilities, as introduced by the IPCC,
which are expected to improve as more information be-
comes available, statistically well-defined confidence in-
tervals go hand in hand with predictions. A confidence in-
terval of a prediction is a range that is likely to contain
the mean response given specified settings of the predic-
tors in the model. In the context of sea level variations,
just like the regular confidence intervals, confidence in-
terval of a prediction presents a range of values for the
predicted average sea level. This interval, however, does
not encapsulate the range or the distribution of individu-
ally observable sea levels but simply quantifies the range
of their average, i.e. population mean. This distinction is
important. For applications such as storm surge heights,
predicting sea level at a certain time horizon, assessing ex-
treme events, one needs a prediction interval for the likely
realization of a future observation, not a range of a con-
ceivable average sea level namely a confidence interval.
This range of random realization of a sea level observable
in the future is simply about one of the sampled mem-
bers of the predicted average sea level. Formally stated, a
prediction interval is a range that is likely to contain the
response value of a single new observation in the future
given specified settings of the predictors in themodel with
a given probability. Of course, a prediction does not have
to be in the future but can also apply to interpolated values
within an already observed time series.

Despite the well-established foundations of predic-
tions and prediction intervals in statistical literature, the
use of prediction intervals is not prevalent in sea level
studies. To fill this gap, this study aims to formulate and
demonstrate quantification of a range of random realiza-
tions, i.e. the prediction interval, of a future sea level that
may be subsequently observed, verified or rejected.

In the following sections, first, the mechanics of the
classical linear prediction with confidence intervals will
be summarized and extended to include prediction inter-
vals. Subsequently, the corresponding formularies will be
demonstrated numerically using Key West USA tide gauge
data; first, by establishing a predictive model, then by car-
rying out a series of predictions together with their confi-
dence and prediction intervals.

2 Prediction as an extension of
linear models, confidence, and
prediction intervals

This section is a brief synthesis of the discussions in
Bibby and Toutenburg (1977), Toutenburg (1982), and
Goldberger, (1962) regarding prediction and prediction in-
tervals.

Consider the following linear model,

y = Ax + ε, ε ∼ (0, Σy) (1)

In this expression, there are n observations and u un-
known model parameters respectively. The n × 1 vector
of observations is denoted by y, and A is the n × u,
n > u known design (coefficient) matrix of full rank, i.e.
rank(A) = u. The u ×1 vector of unknown parameters x is
assumed to be deterministic in nature. In the above statis-
tical model, the n × 1 vector of disturbances is denoted by
ε with the assumed E(ε) = 0, which is the first termwithin
parentheses, whereas the second term Σy = σ2W is the full
n × n dispersionmatrix of the disturbances (also known as
the variance/covariance matrix). The variance of the dis-
turbances in relation to a priori variance of unit weight is
represented by σ2, andW is a known n × n symmetric ma-
trix.

The estimatedunknownparameters x̂ are obtainedus-
ing the least squares solution to Eq. 1 as,

x̂ =
(︁
ATW−1A

)︁−1
ATW−1 y (2)

which is also known as the Best Uniformly Unbiased
Estimator (BLUUE), (Iz, 1992). The corresponding u × u
variance-covariance matrix of the estimated parameters,
Σx̂, is given by,

Σx̂ = σ
2
(︁
ATW−1A

)︁−1
(3)

Now, denoting the subscript star to reference pre-
dicted values, n* is the number of observations to be pre-
dicted. If these observations are generated by the same lin-
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ear model given by Eq. (1), they can be expressed as fol-
lows,

y*=A*x+ε*, ε* ∼ (0, Σy* ) (4)

In this expression, y* is the n* ×1 vector of yet to be in-
terpolated, extrapolated, predicted observations and A* is
the n* × u known design matrix. The statistical properties
of the disturbances are carried out over to the predictions
with ε*, which is the n* ×1 vector of disturbances. Further-
more, it is assumed that the disturbances are uncorrelated,
i.e. E(εεT* ) = 0 (alternative derivations are given in Touten-
burg, (1982) for the case of correlated disturbances). As be-
fore, the n* × n* dispersion matrix of the predicted distur-
bances is Σy* = σ2W*.

One of the well-known predictors of y* is given by its
least squares estimator (Toutenburg, 1982, pg. 135),

ŷ*=A* x̂ (5)

In this expression, ŷ*is the n* × 1 vector of predicted ob-
servations. Substituting Eq. (2) in Eq. (5) and taking into
account Eq. (1),

ŷ*=A* x̂ =A*
(︁
ATW−1A

)︁−1
ATW−1 y

= A*x +
(︁
ATW−1A

)︁−1
ATW−1 ε (6)

is obtained. Because x̂ is an unbiased estimate of x, i.e.
E(x̂) = x, and considering E(ε) = 0, the expected value of
the predicted ŷ* in the above equation reveals that,

E
(︀
ŷ*
)︀
=A*x = E (y*) ⇒ E(ŷ*) = E(y*) ⇒ bias := E(y* − ŷ*)
= 0 (7)

Therefore, the predictor ŷ* is an unbiased predictor of
y*. Using variance propagation, it can be shown that the
variance/covariancematrix of the predicted ŷ* denoted by
Σŷ* is given by,

Σŷ* : =E
{︁(︀
y* − E(y*)

)︀ (︀
y* − E(y*)

)︀T}︁
= σ2A*

(︁
ATW−1A

)︁−1
AT* (8)

The above variance-covariance matrix measures only
the spread of ŷ*, i.e. its mean square error, from its ex-
pected value A*x. In practice however, one needs informa-
tion about how much predicted values would differ from
their actual values, i.e. ŷ*−y*. To this end, the correspond-
ing statistic is given by its mean square error of prediction,
MSEP, which is defined as follows,

MSEP
(︀
ŷ*
)︀
= E

{︁(︀
ŷ*−y*

)︀ (︀
ŷ*−y*

)︀T}︁ (9)

to be contrasted with itsMSE,

MSE
(︀
ŷ*
)︀
=Σŷ* = E

{︁
(y*−E (y*)) (y*−E (y*))

T
}︁

(10)

The narrative of the introduction section regarding
the difference between confidence and prediction inter-
vals can now be formally demonstrated by comparing
MSEP

(︀
ŷ*
)︀

withMSE
(︀
ŷ*
)︀
, where the latter involves the

expected value of the predicted value, i.e. its theoretical
mean. Considering,

MSE(ŷ*) = Σŷ*=σ
2A*

(︁
ATW−1A

)︁−1
AT* (11)

it can be shown that (Toutenburg, 1982, pg. 138, eqs. 5.1.17
– 5.1.19) theMSEP of can be expressed as

MSEP
(︀
ŷ*
)︀
=Σŷ*+Σy*−C−C

T (12)

where,

C : = E
{︁(︀
ŷ*−A*x

)︀
(y*−A*x)

T
}︁

(13)

Because of the assumed E
(︁
εεT*

)︁
= 0, that is, future

disturbances are not correlated with the disturbances of
the observed quantities, it can be shown that C = 0, and
Eq. (12) reduces to,

MSEP
(︀
ŷ*
)︀
= Σŷ* + Σy* = σ

2A*
(︁
ATW−1A

)︁−1
AT* +σ

2W*

(14)
The least squares predictor given by eq. (2) and its pre-

diction error givenbyEq. (14) canalsobeobtainedas a spe-
cial case of a derivation by minimizing the target function
given by Eq. (9), (Goldberger, 1962).

Eq. (14) implicates that the difference is always posi-
tive definite,

MSEP(ŷ*) −MSE(ŷ*) > 0, (15)

Thereby, prediction intervals are always larger than the
confidence intervals.

If the disturbances follow a normal distribution, i.e.
ε ∼ N (0, Σy), then the corresponding confidence interval,
CI, and theprediction interval,PI , for eachpredicted value
are computed from

CI = ŷ* ± t1−α,DF rmse
(︀
ŷ*
)︀

(16)

PI = ŷ* ± t1−α,DF rmsep
(︀
ŷ*
)︀

(17)

In these expressions, t1−α,DF is the t-score, DF is the
degrees of freedom, and α is the significance level. The
standard error of the predicted observation is denoted by
its root mean square error, rmse, and root mean square
error of the prediction, rmsep. Student’s t-distribution,
which approximates the counterpart of the normal distri-
bution of the underlying population for small samples,
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can be replaced by the normal distribution when the num-
ber of observations is large.

Note that the variance of the disturbances, σ2 in the
above expression, is an a priori value given prior to the
least squares solution to Eq. 1. An F-test for the equal-
ity of the variances for the a posteriori value σ̂2 (the esti-
mated variance for the disturbances) needs to be carried
out to decide whether the a priori or a posteriori variance
is to be used in calculating prediction and confidence in-
tervals. Because the predictions are yet to be realized ob-
servations, a priori or a posteriori variance need to be used
consistently for the observed as well as predicted distur-
bances. In practice, normal distribution assumption about
the disturbances, in particular, the assumption that the
expected value of the disturbances being zero, may fail
because of the unmodeled systematic effects. Therefore,
proper scrutiny of the residuals is always needed.

The ongoing brief discussion and the formularies so
far canbequantified through the following example. In the
following section, first, a predictive model is established,
which will be subsequently used to carry out a series of
predictions with confidence and prediction intervals.

3 A predictive model for Key West
sea level variations

Iz (2014, 2015) developed a harmonic model consisting
of a secular trend, acceleration, and statistically signifi-
cant, globally prevalent, specific periodicities in sea level
variations that are due to the coupling of external forc-
ing of luni-solar origin, in tandem with other natural
or forced sea level variations and broadband internal
ocean–atmosphere interactions, including atmospheric
and thermosteric contributions producing signatures at
multi-decadal time scales (sub and super harmonics). The
model reads as,

ht =ht0 + ν (t − t0) +
a
2 (t − t0)

2 +
n∑︁
k=0

{︂
αk sin

[︂(︂
2π
Pk

)︂
(t − t0)

]︂
+𝛾k cos

[︂(︂
2π
Pk

)︂
(t − t0)

]︂}︂
+ εt (18)

In this model, the initial epoch of the measurements is
shifted to the middle of the series for shorter time offsets
to improve the numerical stability of the solutions where,
ht represents the monthly averaged tide gauge data at t =
tStart . . . tEnd, and ht0 is the unknown sea level reference
height defined at the middle epoch of the measurements.
The initial velocity is ν, and a is the acceleration or decel-
eration in sea level.

In addition, sea level changes at a given station exhibit
multi-decadal scale sea level variations caused by the in-
teraction of the tidal effects due to the regression of the
lunar node, which completes its cycle in P=18.613 yr. The
compounding of the nodal tidewith natural persistent pat-
terns of sea level changes induced by atmospheric pres-
sure variations, wind patterns, and broadband internal
ocean–atmosphere interactions produces sea level varia-
tions atmulti-decadal time scaleswith periods 2×P = 37.226
yr., 3×P = 55.839 yr., 5×P = 74.452 yr., . . . (subharmonics),
and its super harmonics with periods P/2 = 9.306 yr., P/3 =
6.204 yr. . . . (Iz, 2014, Keeling andWorf, 1997, and Munk et
al., 2002). Potential variations in total solar radiation with
a period of P = 11.1 yr. may also generate subharmonics
such as with a period, 2×P = 22.2 yr. In Eq. 18, the sum-
mation is carried over for all the above harmonics n, listed
in Table 1. These sub and super harmonics are statistically
significant in global sea level variations as shown by Iz
(2014).

A recent study by Iz (2015) detected and quantified
that some of the globally distributed tide gauge stations
were also affected by a multitude of periodic changes at
decadal scales including a statistically significant (p <
0.05) periodicity within the 12-14 yr. range. This effect is
also incorporated into the model given by Eq. 18.

Table 1: Periods (yr.) of the Luni-Solar compounders and decadal
cyclicity modeled in the harmonic model.

Nodal Nodal Nodal Solar Annual Chandler Decadal
74.5 18.6 3.7 11.1 1.00 1.2 12.4
55.8 9.3 3.1 22.2 0.50
37.2 6.2 2.6 0.25

4.7 2.3

The unknownparameters αkand𝛾k are to be estimated
and used to calculate the amplitudes and the phase angles
of the periodicities. At this point, it is important to empha-
size that the model given by eq. (18) is predictive because
of its kinematic nature with specific velocity, acceleration
and periodicities conceived using past sea level data.

The random variable εt represents the lump-sum ef-
fect of the random instrument errors and unmodeled ef-
fects in sea level changes, i.e., disturbances, which are
assumed to be homogeneous and identically distributed
with zero expected values. Note that, in general, distur-
bances of monthly tide gauge data for globally distributed
tide gauge stations were demonstrated to be positively
autocorrelated (Iz et al., 2012). First order autoregres-
sive random errors (disturbances) alter solution statistics
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markedly if they are not properly accounted for in linear
models. However, the first order autocorrelation of the dis-
turbances is negligibly small (ρ = 0.1) for the yearly Key
West tide gauge data used in this study because of the av-
eraging of monthly data. Note also that annual and sub
annual periodicities cannot be estimated using yearly av-
eraged sea level data but are included in the list to be used
in subsequent solutions involving monthly averaged tide
gauge data.

4 Key West tide gauge station data
Key West, USA monthly and yearly tide gauge measure-
ments will be used to predict sea level rise at this station
during the 21st century and their corresponding confidence
andprediction intervals. Graphical exhibits of themonthly
and yearly tide gauge spanning 96 years (1913-2009) are
shown in Figure 1 and Figure 2 respectively. All Revised
Local Reference (RLR) tide gauge data are referenced to
a common datum. The series were downloaded from the
Permanent Service for Mean Sea Level (PSMSL) repository,
whichmaintains a tide gauge database from over 1800 sta-
tions since 1933 (PSMSL, 2016). No corrections were ap-
plied for the Glacial Isostatic Adjustment (GIA); hence, all
the inferences will refer to relative sea level changes.

Figure 1:Monthly averaged sea level measurements at Key West,
USA tide gauge station (PSMSL, 2016).

Figure 2: Yearly averaged sea level measurements at Key West, USA
tide gauge station (PSMSL, 2016).

5 Adjusted and predicted sea level
rise using short span yearly tide
gauge records

A preliminary solution to the model (Eq. 18) was carried
out maintaining only the intercept and the trend param-
eters using only the recent 25 years of the yearly Key
West tide gauge data (the rectangular area shown in Fig-
ure 3). This solution will be used as a baseline to assess
subsequent more elaborate model solutions with longer
data span and high resolution. The short tide gauge data
span enables comparisons with satellite altimetry solu-
tions; hence the limitations are informative.

The trend estimate from this model represents the
lump-sum effect of steric, eustatic, halosteric, and vari-
ous local and/or isostatic origin vertical movements ex-
perienced by the tide gauge measurements. The rate
of sea level rise during this period is estimated to be
2.20±0.68 mm/yr. The uncertainty of the trend estimate is
large, and themodel explains only 28.9% of the variability
in the yearly sea level data during this period at this tide
gauge station with an estimated standard error of 24.8 mm
for the residuals.

The corresponding confidence and prediction inter-
vals for a significance level of α = 0.05 during this pe-
riod were extended until year 2100 using the relation-
ships given in the previous section. It was assumed that
ε ∼

(︀
0, σ2I

)︀
, and E

(︁
εεT*

)︁
= 0 where I is an identity ma-

trix whose dimensions are defined by the length of the
observed (25 yrs.) and predicted (90 yrs.) and σ2 = 1.
As shown in Figure 3, both interval limits diverge rapidly
mainly because of the large uncertainty in the estimated
trend inferred from a short tide gauge data series (25 tide
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gauge yearly averages with 23 degrees of freedom). These
statistics will improve markedly in the subsequent solu-
tions with longer series together with the use of modelled
periodicities in sea level variations as shown in the follow-
ing section. Meanwhile, a byproduct of this exercise is a
demonstration of potentially large uncertainties caused by
short time series, such as those from satellite altimetry, in
long term predictions due to the unmodeled periodicities
in sea level variations in recent practice (e.g. Nerem et al.,
2018).

Figure 3:Model solution using only 25 year (1985-2009) yearly Key
West tide gauge adjusted observations and their confidence and
prediction intervals are are shown within the rectangle (α = 0.05).
Reference epoch for the solution is 1997. Yearly sea level predic-
tions were extended until year 2100.

6 Adjusted and predicted sea level
rise using a harmonic model and
long-span yearly tide gauge data

Another solution was carried out using all the available
96 years of tide gauge data and the full model with veloc-
ity, acceleration, and periodicities (Eq. 18). Table 2 shows
thefinal solution constructed keeping only the statistically
significant parameters for α < 0.05. Although the yearly
averaged data effectively removed the high frequency vari-
ations and reduced the amplitude of the low frequency pe-
riodicities, full series revealed that there are statistically
significant periodicities listed in Table 2with their error es-
timates that cannot be detected using shorter series. Also,
even though the trend estimate is practically the samewith
the trend estimated using shorter series in the previous

Table 2: Solution statistics: the estimated variance of the distur-
bances σ̂2 = 20.532mm2, Adj R2 = 90.82%. Trend and estimated
coeflcients that are listed below are in mm/yr and mm respectively.
SE refers to the standard error/deviation of the estimated parame-
ters. Only the model parameters that are statsitically significant at
α = 0.05 are listed in the table.

Parameter Estimate SE
Constant 7110.86 2.12
Trend 2.20 0.81
Sin 56 yr -6.84 3.04
Sin 37 yr -8.69 2.95
Cos 37 yr -9.51 3.05
Sin 12.4 yr -6.28 2.93
Cos 12.4 yr 7.29 2.98
Cos 6 yr 10.26 2.97

section, the Adj R2 value² of the residuals shows that the
harmonic model explains 90.82% of the yearly sea level
variation at this tide gauge station compared to the Adj
R2 value of 28.86% of the trend only model. Improved Adj
R2 values are necessary for improved predictive power of a
model. In addition, the newmodel solution is not an over-
parameterized fit because not only the Adj R2penalizes the
solution for adding new parameters, but it also provides a
solution with a larger degree of freedom (88).

Figure 4 shows that the residuals exhibit a normal-like
distribution and are free from unmodeled systematic ef-
fects. Additional solution statistics, such as the F test and
the predicted R2 values are indicative of a model with high
predictive power.

Figure 4: Residual histogram and the residuals vs. adjusted (fitted)
yearly sea levels.

This model was used to predict yearly sea levels to-
gether with the corresponding confidence and prediction
intervals for the period 2010-2100 using the formularies

2 The adjusted R-squared abbreviated by , is the percent of variation
in the observations explained by the model.
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discussed in the previous section. Again, it was assumed
that ε ∼

(︀
0, σ2I

)︀
, ε* ∼

(︀
0, σ2I

)︀
, E

(︁
εεT*

)︁
= 0 and σ2 = 1.

The predicted results evaluated at 5 % significance level
are displayed in Figure 5. This is a well behaving model as
evidenced by slowly diverging prediction and confidence
intervals as compared to the trend only model solution.

Although the yearly predictions are useful for sea level
studies as consilience values for satellite altimetry find-
ings, their resolutions are not enough for addressing more
practical problems such as coastal risk assessment, mit-
igation, and adaptation responses. The next section dis-
cusses another solution using high resolution monthly
tide gauge data with markedly increased degree of free-
dom compared to the solution using yearly averages.

Figure 5: Adjusted (fitted) and predicted yearly sea levels with 95%
confidence and prediction intervals. Reference epoch for the solu-
tion is 1961.

7 Adjusted and predicted sea level
rise using a harmonic model and
monthly tide gauge records

Following the same steps as before, another model was
entertained this time using monthly Key West tide gauge
records (Figure 1). This is a high-resolution predictive
model inclusive of annual and semi-annual periodicities
in sea level variations in addition to statistically significant
interannual periodicities at α = 0.05 significance level,
which were undetectable in the previous model because
of the smoothing effect and smaller degrees of freedom of
the yearly averaged tide gauge records (Table 3).

Annual and seasonal changes in tide gauge data are
predominant in monthly data and induced mainly by the

Table 3: Solution statistics: the standar error of the disturbances,
σ̂ = 44.45 mm and Adj R2 = 80.77. Trend and estimated coef-
ficients listed below are in mm/yr and mm respectively. Only the
model parameteres that are statistically significant (α = 0.05),
are used and listed in the final solution. Shaded parameters are
rejected using first order autocorrelated disturbances instead of
uncorrolated homogeneous disturbances.

Parameter Estimate St Error
Constant 7112.73 1.39
Trend 2.19 0.05
C75 -13.04 3.15
S56 -7.92 1.9
C56 19.17 3.57
S37 -9.55 1.84
C37 -17.98 2.48
C22 -5.27 2.02
S12.4 -5.84 1.84
C12.4 8.17 1.89
S9 5.4 1.86
C9 -5.07 1.88
S6 -5.24 1.84
C6 10.17 1.86
S4 4.1 1.85
Sann 79.8 1.84
Cann 10.22 1.84
Ssemi -25.1 1.84
Csemi -30.21 1.84

atmospheric pressure (the inverted barometer effect) not
only in Key West station but also at other globally dis-
tributed tide gauge stations (Iz, 2017, 2018). Prediction in-
tervals are accordingly large as shown in Figure 6 (confi-
dence intervals were not included in the figure for clarity).
In this solution, the trend estimate remained invariant, but
its standard error improved markedly (from 0.81 down to
0.05) despite the larger σ̂2(44.45 vs. 20.53) and smaller Adj
R2 values (80.77% vs. 90.82%). Improvements in the stan-
dard errors of trends are central in detecting the impact
of climate change on sea level with statistical significance
andmust always be kept in mind using shorter time series
such as those from satellite altimetry.

The solution and the predictions using monthly data
are informative for a comparison with the yearly predic-
tions in this study, yet the earlier assumptions regarding
thedisturbances are no longer valid formonthly tide gauge
data. The disturbances of the KeyWest station’s tide gauge
exhibit a first order autoregressive process AR(1) because
of the higher monthly resolution of the records, (Iz, 2014).
Therefore, the disturbances stated in eq (18) are to be re-
placed by,

εt = ρ εt−1 + ut 0 ≤ ρ < 1 (19)
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Figure 6: Adjusted (fitted) and predicted monthly sea levels. Confi-
dence intervals were not included for clarity.

where ut is the white noise, ut ∼
(︀
0, σ2u

)︀
. Although the

first order autocorrelation, ρ, is relatively small for Key
West tide gauge station disturbances (ρ = 0.4), it is still
important in assessing the statistical significance of the
model parameters for other tide gauge stations. For evi-
dence, the parameters highlighted in bold in Table 3 were
obtained from another solution, which accounted for the
first order autocorrelationusingHildreth-Luprocedure (Iz,
2014). The effect of the first order autoregressive distur-
bances is to overestimate some of the model parameters
which is evident by the larger number of parameters ob-
tained using a statistical model with uncorrelated homo-
geneous disturbances. The results indicate that some of
the borderline periodicities were rejected when autocorre-
lations are accounted for.

Despite this deficiency, the results are still informa-
tive revealing complexities ignored in projections and pre-
dictions using yearly tide gauge data. The formularies dis-
cussed in this study can also accommodate first order au-
tocorrelations among monthly tide gauge records by mod-
eling the variance/covariance matrix as demonstrated in
Iz and Chen, (1999).

The formularies for the calculation of the prediction
intervals also assume that , i.e. future disturbances are not
correlated with the disturbances of the observed quanti-
ties, which is not the case here because of the AR(1) pro-
cess. The formularies stated in Section (3) can bemodified
to accommodate for the correlations between the observed
and predicted disturbances.

8 Conclusion
Empirical models, such as eq. (18) used in this study,

to analyze sea level variations observed at globally dis-
tributed tide gauge stations during the last decade are now
capable of generating precise and accurate sea level rise
predictions. The utility of the explanatory climate mod-
els to project sea-level rise over the course of the 21st cen-
tury must rely heavily on such predictive models not only
for evaluating their performance in explaining the source
of climate change but also for checking their resolutions.
As discussed before, quantification and extension of sea
level trends into the future enable assessing the distance
between prediction and projection and thereby serve as
a reality check for the relevance of the underlying theo-
ries. A very low predictability level for predictive models
of sea level variations would lead to the development of
new measures, alternative theories, new collected data,
andnewempirical approaches.An explanatorymodel that
is close to a benchmark predictive model may suggest that
our understanding of that phenomenon can only be in-
creasedmarginally. If such amodel is very far from the pre-
dictive benchmark, this outcome would imply that there
are substantial practical and theoretical gains to achieve
from further scientific development.

Moreover, empirical harmonic models accompanied
by their prediction intervals can predict and assess short
and long-term sea level changes in fine details. Prediction
intervals, as demonstrated in this study, quantify the un-
certainty of a single future observation from a population
instead of the uncertainty of their expected values (con-
fidence intervals), and thereby better serve the needs of
coastal risk assessment, policy development, mitigation
and adaptation responses.
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