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Abstract: The geoid, but not the quasigeoid, is an equipo-
tential surface in the Earth’s gravity field that can serve
both as a geodetic datum and a reference surface in geo-
physics. It is also a natural zero-level surface, as it agrees
with the undisturbed mean sea level. Orthometric heights
are physical heights above the geoid, while normal heights
are geometric heights (of the telluroid) above the reference
ellipsoid. Normal heights and the quasigeoid can be deter-
mined without any information on the Earth’s topographic
density distribution, which is not the case for orthometric
heights and geoid.

We show from various derivations that the difference be-
tween the geoid and the quasigeoid heights, being of the
order of 5 m, can be expressed by the simple Bouguer grav-
ity anomaly as the only term that includes the topographic
density distribution. This implies that recent formulas, in-
cluding the refined Bouguer anomaly and a difference be-
tween topographic gravity potentials, do not necessarily
improve the result.

Intuitively one may assume that the quasigeoid, closely re-
lated with the Earth’s surface, is rougher than the geoid.
For numerical studies the topography is usually divided
into blocks of mean elevations, excluding the problem
with a non-star shaped Earth. In this case the smoothness
of both types of geoid models are affected by the slope of
the terrain, which shows that even at high resolutions with
ultra-small blocks the geoid model is likely as rough as the
quasigeoid model.

In case of the real Earth there are areas where the quasi-
geoid, but not the geoid, is ambiguous, and this prob-
lem increases with the numerical resolution of the re-
quested solution. These ambiguities affect also normal
and orthometric heights. However, this problem can be
solved by using the mean quasigeoid model defined by
using average topographic heights at any requested reso-
lution. An exact solution of the ambiguity for the normal
height/quasigeoid can be provided by GNSS-levelling.
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1 Introduction

The geoid is an important equipotential surface and ver-
tical reference surface in geodesy and geophysics. The
quasigeoid, introduced by M.S. Moldensky (Molodensky
et al. 1962) is not an equipotential surface, and it has
no special meaning in geophysics. The geoid serves as
the ideal reference surface for height systems in all coun-
tries that adopt orthometric heigths, while the rest of the
world uses the quasigeoid with normal height systems (or
normal-orthometric heights with more or less unknown
zero-levels). The great advantage of the quasigeoid to the
geoid is that it can be determined without knowledge
of the topographic density distribution. Foroughi et al.
(2017), in a comparison of geoid and quasigeoid heights
vs. GPS-levelling geoid/and quasigeoid heights used the
test area/data in Auvergne, France (Duquenne 2007), to
demonstrate that the uncertainty in topographic density
is practically harmless in geoid estimation. However, as
shown by Sjoberg (2018) GPS/levelling geoid heights can-
not be used to validate the density model used in a gravi-
metric geoid model.

As the quasigeoid is closely related with the Earth’s
geometric surface, Vanicek et al. (2012) raised the ques-
tion whether it can be practically determined according to
Molodensky’s proposed method by successive approxima-
tions. Sjoberg (2013) agreed that this computational tech-
nique will hardly be successful in a detailed modelling of
the quasigeoid, but he instead suggested employing the
extended Stokes’ formula, which is closely related with the
original Stokes’ formula, the basis in most geoid determi-
nations (e.g., Ellmann and Vanicek 2007). Nevertheless,
as the quasigeoid is related with the Earth’s irregular sur-
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face, one may still believe that it is much more irregular
than the geoid. This problem will be analysed by compar-
ing formulas for geoid and quasigeoid determination. Here
the KTH-method, also named Least Squares Modification
of Stokes formula with Additive corrections (LSMSA; e.g.
Sjoberg 2003a, b; Sjoberg and Bagherbandi 2017, Chap. 6)
will be used, as it in contrast to other methods (e.g., the
UNB technique; Ellmann and Vanicek 2007) explicitly pro-
vides the corrections needed for topographic height and
density. To simplify the discussion, the density is assumed
to be constant, and the geoid and quasigeoid are deter-
mined only from surface gravity data by Stokes-types for-
mulas. The minor effects of the Earth’s atmosphere and el-
lipsoidal shape (being almost the same for both types of
geoid modellings) are disregarded. The LSMSA technique
is based on analytical continuation of the surface gravity
anomaly to sea-level and surface level in geoid and quasi-
geoid determinations, respectively (see the references in
Sect. 2).

2 Determination of the geoid

Using the KTH-method the geoid height is given by (cf.
Sjoberg and Bagherbandi 2017, Sect. 6.2.2)

N =(N)+dN, (1a)
where
Ty + T, R
N)y=-9""1, = Agdo 1b
(N)= =0+ Ag (1b)
and
dN = dNg,. +dNT ., (1c)

are the additive corrections for the downward continua-
tion (dwc) of the surface gravity anomaly (Ag) and the
combined direct and indirect topographic effects. More-
over, R is the Mean Earth Radius, o is normal gravity at the
reference ellipsoid, S () is Stokes’ kernel function with ar-
gument i being the geocentric distance between computa-
tion and integration points and ¢ is the unit sphere. Ty and
T} are the analytically continued zeroth- and first-degree
disturbing potential harmonics.
The dwc effect becomes (Sjoberg 2003a, b and Sjéberg
and Bagherbandi 2017, Sect.5.3.1)
dN, dwe =
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where superscript * denotes harmonic analytical continu-
ation (along the vertical) to geoid level in Aggr and to com-
putation point level of radius rp in Ag” (rp, Q). After a few
manipulations, including a Taylor expansion to first order
in the last term, this formula can be approximated to

2
+3g e HE (20
290\ 0H /,
R 0Ag
g P Q)<6H) doo-
where H is the orthometric height.
The combined topographic effect is the same as the

negative of the topographic bias (Sjoberg 2007 and 2009a,
b; Sj6berg and Bagherbandi 2017, Sects. 5.2.3-5.2.4):

_2aGp ZHP) bias(Tg)
H? —8 3
% ( PT3R 0 G)

for the constant topographic density p and gravitational
constant G. (For an arbitrary topographic density distribu-
tion, see Sjéberg 2007 and 2009b.)
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(2b)
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3 Determination of the quasigeoid
height

3.1 Gravimetric approach

The quasigeoid height (or height anomaly) at surface
point P is given by (Agren 2004, Sect. 9.5.1; Sjéberg and
Bagherbandi 2017, Sect. 6.3.2)

Tp _(To+Typ , 1p

{p= S 5 4ml\g (rp, Q)dog
R Hp, R , .
= mﬂg (rp, Q)dog + E(P =~ 4mOAg (rp, Q)dog
H
+32L¢p, @)
rp

where v is normal gravity at the telluroid, related to o
by

7~ 7(1 - 2H/R). )

The last step in Eq. (4) can also be decomposed into

{p = (¢p) + d{p, (6a)

where

(To+T1)p

R
(¢p) = I + TmAngQ’ (6b)
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and
R . H
alp = 7 (48°0p, Q) - 48(Q)) dog + 37 tp, - (60)

or, after using a Taylor expansion of Ag” to first order:

ddp =~

( P Q)(%Al_‘lg) dGQ+3%Hp. (6d)

3.2 GNSS-levelling approach

The normal height can be defined by the formula (Heiska-
nen and Moritz 1967, Sect. 4-5)

@

where C is the geopotential number (determined by pre-
cise levelling), and 7 is the mean value of normal gravity
() between the reference ellipsoid and the telluroid. As v
decreases smoothly with height, H" can easily be iterated
from an approximate value (e.g., Sjoberg and Bagherbandi
2017, Sect. 3.5.3).

Finally, the quasigeoid height follows from the geode-
tic height (h) determined by GNSS:

{=h-H" (8)

This shows that both normal height and height
anomaly/quasigeoid can be determined from GNSS and
levelling (alone).

Hence, the beauty of M. S. Molodensky’s introduc-
tion of normal height and quasigeoid is that these compo-
nents can be determined without any information about
the Earth’s density distribution.

4 The difference N - {

Taking the difference between Egs. (1a)-(1c), (2b) and (3)

on one hand and Egs. (6a), (6b) and (6d) on the other and

omitting some minor terms, one arrives at “the geoid-from-
quasigeoid correction” (GQC):

Agp Hp (aé\g>

GQC=N- Hp- *+ | =2, 9a

=50 e on ),y O

where we have introduced the simple Bouguer gravity

anomaly by
Agp = Ag - 2nGpH (9b)

and omitted some minor terms.
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Equation (9a) agrees with Sjoberg (1995), where the re-
sult was derived in two different ways, namely by exter-
nal and internal harmonic expansions of the topographic
potential and by using Stokes’ original and extended for-
mulas with Helmert gravity anomalies for the geoid and
quasigeoid heights, respectively.

The first term in Eq. (9a) is the traditional representa-
tion for the GQC (Heiskanen and Moritz 1967, pp. 327-328),
and the complete formula also agrees with the major terms
of the refined formula of Sjoberg and Bagherbandi (2017,
Eq. 7.31b), derived by employing analytical continuation of
the external disturbing potential.

4.1 Other solutions to the GQC

Flury and Rummel (2009) suggested replacing the simple
Bouguer anomaly by the refined one (Ag??) as the basic
contribution to the GQC, and they also refined the solution
by the difference (VgT - Vg) /3, 7 being the mean value
of normal gravity at the reference ellipsoid and telluroid,
between topographic potentials at the surface point P and
the geoid along the plumb-line through P, yielding the ex-
pression:

gBO VT VP
’Y .

GQC =~ (10)

Sjoberg (2010) showed that a minor term is missing in
this equation. See also Sjoberg (2012).

The practical problem with Eq. (10) is to estimate the
topographic potential difference. We will return to this is-
sue later.

Another approach is as follows:

Proposition 1: For a constant topographic density p at the
computation point

Agp ., (-Hp)¥*t [ ok8g 4nGp Hp
Gac= Yo o 1P Y0 Z (k+1)! \ oHK 3% R
(11)

Proof. The GQC can be found by Stokes’ original and ex-
tended functions S () and S(rp, ¥) as

Ts Tp_
Gae=f -0 = / [SG)) - SCrp, ¥)lAgido
- Yesly) , Tev=m, )
Y0 Yo

where the bias term, given in Eq. (3), accounts for the bias
in analytical continuation of the disturbing potential to the
geoid. As Stokes’ function can be developed into a Taylor
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series of its extended function:

(- H) akS(R+H ¥
S@) = Z e (13)
k=0
and also by considering
__or , _ Ty-10
g = a—H,Ag—égw (14)

as well as Egs. (7b) and (10), one finally arrives at the
proposition, where the last term hardly exceeds one
centimetre in the highest mountains. See also Sjoberg
(2015a). O

Corollary 1: For a general topographic density distribution
p (r) along the vertical at the computation point the last
term in Eq. (11) should be substituted by

R+Hp )
-4nG / p(n (% - r) dr +2nGpH3.
R

Cf. Sjoberg (2007, Corollary 2) for this solution.

Note that the topographic bias does not include a ter-
rain correction, because the topographic bias is not depen-
dent on the mass distribution of the terrain. Actually, the
terrain correction is already accounted for in the analyt-
ical continuation. However, for an accurate solution the
bias should be corrected for a variable density distribution
along the vertical (see Sjoberg 2007 and 2009 a, b).

The GQC can also be determined directly by compar-
ing the quasigeoid and geoid heights determined by the
external and internal Earth Gravitational Models at to-
pographic and sea levels, respectively. The internal dis-
turbing potential can either be determined by a remove-
compute-restore technique or by analytical continuation
(Sjoberg 2015b, Foroughi and Tenzer 2017). A numerical
comparison can be found in the latter article.

5 Discussions

Formally, in view of that the topographic density distribu-
tion is not well known, the problem of determining the
geoid is a gravimetric inverse problem. By assuming that
the topography and its density distribution are known, the
problem can be altered to solving a (free) boundary value
problem. This approach is standard in one way or another
in physical geodesy. One solution is shown in Egs. (1a-c),
(2a) and (3).

In contrast, the problem of determining the quasi-
geoid is a forward problem that does not rely on an esti-
mated topographic density distribution model. Hence, if
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the Earth’s surface is known, e.g. expressed by its laterally
variable geocentric radius, the height anomaly can be de-
termined by Tp/~. As can be seen from Egs. (6a) — (6d),
this solution does not need knowledge of the topographic
density, leading to a simpler solution vs. that for the geoid.

When comparing the above solutions for N and { one
can see that both types of models are dependent on the
(mean) topographic height variations. For the theoretician
(but also for the practically minded surveyor requesting a
very high resolution of the surface) it could be of interest
to investigate which of the two surfaces is smoothest. In-
tuitively one would expect that the deflections of the verti-
cal are smoother at the geoid than at the telluroid. On the
other hand, all terms of the GQC of Eq. (9a) belong to the
geoid formula, so the answer to this question is not obvi-
ous. To get some further insight to the problem we consider
two points (denoted with subscripts 1 and 2) at the Earth’s
surface separated by a small lateral distance s and heights
H, and H,. Then the differential difference between the
height anomalies can be deduced from Eq. (4) by

T,(s,AH) =T, - 6g14H + oT

5| 5= T, - 6814AH - 10,5,

1
(15)

where AH = H, - Hy, 6g and 0 are the gravity disturbance
and deflection of the vertical in the direction s. Then Eq. (4)
yields

T, Ty T,-Ty Toyi-m
Al=0-0=—-—>= + —=
( (2 (1 V2 st st " m
=—61$— 5g1AH Tz 67 ~_915_Ag1AH.
7 vam1 0H |, 7
(16)

From Eq. (9a), approximated to first order of the po-
tential, one obtains for the corresponding geoid difference
AgpoHy - Agp Ha

Y0
—2nGp (H% - H%) (17)

AN=N2—N1=C2—(1+
AgrH;

-Ag1Hy
Yo

=0O-(1+
Considering Eq. (16) one finally obtains

(AgZ _Agl)HZ _ 4ﬂGpHAH,
70 Yo

AN = —613 + (18)

where H = (H, + H,) /2.

As 0 is the deflection of the vertical, it does not change
much with the slope of the terrain. Hence, as the resolu-
tion of the solution increases (and s decreases), the first
term in Egs. (16) and (18) go towards zero with s. However,
the last terms in each of the models are both related with
the slope/roughness of the terrain. Obviously, one cannot
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generally state that one of the surfaces is smoother than
the other at high resolution, at least not without further
studies.

Foroughi and Tenzer (2017, Fig. 18) calculated the per-
formances of the quasigeoid and geoid in the Himalayas,
showing the details along a meridional profile near 88°E
from latitude 25° N (at lower Ganges river close to sea
level), passing the extreme elevations of more than 8 km
around Mt. Everest, to 40 N (with topographic heights of
less than 1km). They concluded that the geoid geometry is
modified at least 10 % less than the quasigeoid. However,
their conclusion is based on the dominating very long-
wavelength variation of the (quasi)geoid surfaces over the
profile as part of the Earth’s largest geoid low caused by
the huge lower mantle density low south of India. In ad-
dition, as these geoid and quasigeoid extremes are nega-
tive, actually the geoid is more deformed than the quasi-
geoid. Generally, in accord with Newton’s law, thegeoid is
more sensitive to density structures below the crust than
the quasigeoid (except for the limited regions with nega-
tive topographic heights).

If one, on the other hand, studies the short-
wavelength variations of the two surfaces, which are re-
lated with smoothness, one can actually see from their
Fig. 18 that the quasigeoid plot is smoother. However,
one should bear in mind that this calculation is a single
numerical result that cannot be used for drawing firm
conclusion.

As stated earlier, this study is based on a star-shaped
Earth model, which does not fully agree with reality as
there are exceptional topographic areas with more than
one point of intersection between the plumb-line and the
surface, making the quasigeoid solution ambiguous. In
this case a unique quasigeoid height can still be defined
by the mean elevation even if the block size approaches
zero. The geoid solution is still unique when replacing the
combine topographic effect of Eq. (3) with the correspond-
ing general formula that allows for a variable topographic
density as described in Sjoberg (2007).

6 Conclusions

There is no doubt that the geoid but not the quasigeoid can
serve both as a geodetic datum and a reference surface in
geophysics. The geoid is also a natural surface in the sense
thatitis an equipotential surface in the Earth’s gravity field
that agrees with the undisturbed mean sea level.

One advantage of M. S. Molodensky’s genius introduc-
tion of normal height and quasigeoid is that the former
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can always be determined from precise levelling, having
its zero-level at the reference ellipsoid, and the latter by
GNSS-levelling, both without any information about the
Earth’s density distribution, even if they are ambiguous.
In contrast, the geoid datum is related with orthometric
heights, which depend on topographic density and need a
fixed geoid model as the zero-level, while the zero-level for
the normal height is the well-defined surface of the refer-
ence ellipsoid.

For a star-shaped earth model we could not state that
one of the two surfaces (geoid or quasigeoid) is smoother
than the other at high resolution, as not only the quasi-
geoid but both surfaces vary with the slope of the topogra-
phy. However, generally the geoid is more correlated with
density variations in the Earth’s interior than the quasi-
geoid.

In case of the real non-star shaped Earth the geoid
is still unique, while the quasigeoid will be ambiguous
in some limited areas. Although this problem might be
rather academic and limited to a very high numerical reso-
lution of the quasigeoid model, a unique model (the mean
quasigeoid model) can still be defined by using mean to-
pographic heights in ambiguous areas.

We have shown that recent formulas for estimating the
GQC, using both the refined Bouguer gravity anomaly and
a difference between topographic potentials at the geoid
and surface, do not lead to improvements, but using the
simple Bouguer anomaly (possibly corrected for variations
of density along the vertical down to sea level) by the first
term in Eq. (17), possibly refined by terms including ver-
tical gradients of increasing order of the free-air gravity
anomaly, should be preferred from a practical point of
view. More convenient for regional and global studies GQC
maps can be determined from the disturbing potential dif-
ference at the Earth’s surface and sea level evaluated by
an Earth Gravitational Model and a topographic potential
model.
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