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Abstract: In geodesy, hypothesis testing is applied to a
wide area of applications e.g. outlier detection, defor-
mation analysis or, more generally, model optimisation.
Due to the possible far-reaching consequences of a deci-
sion, high statistical test power of such a hypothesis test
is needed. The Neyman–Pearson lemma states that un-
der strict assumptions the often-applied likelihood ratio
test has highest statistical test power and may thus fulfill
the requirement. The application, however, is made more
difficult as most of the decision problems are non-linear
and, thus, the probability density function of the param-
eters does not belong to the well-known set of statistical
test distributions. Moreover, the statistical test power may
change, if linear approximations of the likelihood ratio test
are applied.
The influence of the non-linearity on hypothesis testing
is investigated and exemplified by the planar coordinate
transformations. Whereas several mathematical equiva-
lent expressions are conceivable to evaluate the rotation
parameter of the transformation, the decisions and, thus,
the probabilities of type 1 and 2 decision errors of the re-
lated hypothesis testing are unequal to each other. Based
on Monte Carlo integration, the effective decision errors
are estimated and used as a basis of valuation for linear
and non-linear equivalents.
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1 Introduction
Hypothesis testing plays an important role in the frame-
work of parameter estimation. In the context of outlier de-
tection, hypothesis testing is used to detect and to iden-
tify implausible observations (e.g. Lehmann and Lösler
2016, Klein et al. 2017). In congruence analysis, hypoth-
esis testing is introduced to distinguish stable points or
areas from instable parts of an epochal observed network
(e.g. Velsink 2015, Lehmann and Lösler 2017). To find an
adequate number of model parameters, e.g. in the frame-
work of reverse engineering, hypothesis testing indicates
the benefit of a more complex model versus a simplified
model (e.g. Ahn 2005).

In geodesy, the likelihood ratio (LR) test is most of-
ten applied (Koch 1999, Teunissen 2000). It bases on the
Neyman–Pearson lemma, which demonstrates that under
various assumptions such a test has the highest statistical
test power (Neyman and Pearson 1933). In practice, most
of the decision problems are non-linear and the under-
lying likelihood function must be maximized iteratively,
e.g. by ordinary least-squares techniques with the risk of
finding only a local maximum. Moreover, the often-used
LR test in the linearized model deteriorates the decision
due to a potential loss of statistical test power. Finally,
the true probability density function of such a test does
not belong to well-known class of statistical test distribu-
tions, and therefore, critical values cannot be computed
with standard statistical functions. To derive the true prob-
ability density function as well as corresponding critical
values, a Monte Carlo integration can be carried out (see
e.g. Lehmann 2012).

Estimation in non-linear geodetic models has been
widely investigated. Teunissen (1985) found that two types
of non-linearity exist: The first is inherent in the problem
andmanifests itself in the non-linearity of themodel oper-
ator. The second is perhaps introduced by a parametriza-
tion, which can even make an inherently linear problem
non-linear. This is the case when the planar four parame-
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ter transformation is parameterized by rotation angle and
scale.

This investigation focuses on the influence of the non-
linearity on hypothesis testing exemplified by the planar
coordinate transformations. Here, several mathematical
equivalent expressions are conceivable to evaluate the ro-
tation parameter of the transformation by hypothesis test-
ing. Depending on the degree of non-linearity, the effec-
tive α can differ in comparison to its usually used χ2 equiv-
alent. The planar geodetic coordinate transformation is a
good example to study non-linear effects in geodetic mod-
els, because under standard assumptions on the covari-
ance matrix it admits an analytical solution (Teunissen
1985, 1986). Moreover, the planar coordinate transforma-
tions have a wide range of applications in geodesy.

The paper is organized as follows: After briefly in-
troducing the non-linear Gauss–Markov model, we focus
on the LR test as a general decision method. Then the
least squares solutions of planar coordinate transforma-
tions are introduced. As an example for hypothesis testing
in non-linearmodels, we set up a test problem for the rota-
tion angle and solve it by various different applications of
the LR test. Finally, we compare these different solutions
in terms of decision errors, for which the method of Monte
Carlo integration is used.

2 Hypothesis test in the non-linear
Gauss–Markov model

Throughout this paper, true values of quantitieswill be de-
noted by tilde and estimates by hat.

We start from the non-linear Gauss–Markov model
(GMM)

Y = A
(︀
X̃
)︀
+ e (2.1)

where Y is a n-vector of observations and X̃ is a u-vector
of unknown true model parameters. A is a known non-
linear operator mapping from the u-dimensional param-
eter space to the n-dimensional observation space. e is an
unknown random n-vector of normally distributed obser-
vation errors. The associated stochastic model reads:

e ∼ N(0, σ2P−1) (2.2)

P is a known positive definite n × n-matrix of weights
(weight matrix). σ2 is the a priori variance factor, which
may be either known or unknown. Estimates X̂, Ŷ of the
unknown true values of X̃, Ỹ = Y − e are desired.

In geodesy, a decision problem is generally posed as
a statistical hypothesis test. Opposing the special model

representedby theGMMEqs. (2.1), (2.2) augmentedbynon-
linear equality constraints

B
(︀
X̃
)︀
= b (2.3)

to a generalmodel represented by the GMMwithout equal-
ity constraints is equivalent to opposing the null hypothe-
sis

H0 : B
(︀
X̃
)︀
= b (2.4)

to the alternative hypothesis

HA : B
(︀
X̃
)︀
≠ b . (2.5)

The standard solution of the testing problem in classi-
cal statistics goes as follows (e.g. Tanizaki 2004 p. 49 ff):
1. A test statistic T(Y) is introduced, which is known to

assume extreme values if H0 does not hold true.
2. Under the condition thatH0 holds true, theprobability

distribution of T(Y) is derived, represented by a cumu-
lative distribution function (CDF) F(T|H0).

3. A probability of type 1 decision error α (significance
level) is suitably defined (say 0.01 or 0.05 or 0.10), see
Fig. 1.

4. For one-sided tests, a critical value c is derived by
c = F−1 (1 − α|H0), where F−1 denotes the inverse CDF
(also known as quantile function) of T|H0. (For two-
sided tests two critical values are needed, but this case
does not show up in this investigation.)

5. The empirical value of the test statistic T(Y) is com-
puted from the given observations Y. If T(Y) > c then
H0 must be rejected, otherwise we fail to reject H0.

In principle, we are free to choose a test statistic. Even
heuristic choices like

T (Y) :=
⃦⃦⃦
B
(︁
X̂
)︁
− b
⃦⃦⃦

(2.6)

with some suitable norm ‖ · ‖ are conceivable. Although
the statistical test power (probability of rejection of H0
when it is false) of sucha testmight benon-optimal or even
poor.

3 The likelihood ratio test
In geodesy, we most often apply the likelihood ratio

(LR) test (e.g. Tanizaki 2004 p. 54 ff). The test statistic of
the LR test reads

TLR (Y) :=
max

{︀
L
(︀
X, σ2|Y

)︀
: B (X) = b

}︀
max

{︀
L
(︀
X, σ2|Y

)︀}︀ (3.1)
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Figure 1: Probability density functions f of test statistic T under H0
and HA and decision errors α, β.

where L
(︀
X, σ2|Y

)︀
denotes the likelihood function of the

GMM to be maximized with no restriction (denominator)
and with the restriction B (X) = b (numerator). For the
GMM Eqs. (2.1), (2.2) the likelihood function reads

L
(︁
X, σ2|Y

)︁
=(︁

det
(︁
2πσ2P−1

)︁)︁−0.5
exp

(︂
− 1
2σ2 (Y −A (X))TP (Y −A (X))

)︂
(3.2)

It is well known that maximizing L
(︀
X, σ2|Y

)︀
is equiv-

alent to minimizing the least squares error functional (e.g.
Koch 1999 p. 161f, Lösler et al. 2017)

Ω(X) := (Y −A (X))TP (Y −A (X)) (3.3)

either with constraintsB (X) = b or without constraints. In
the first case, Ω is augmented by the Lagrange term

Ω
′
(X, k) = Ω (X) + 2kT

(︀
B (X) − b

)︀
(3.4)

where k is the vector of Lagrange multipliers, in geodesy
also known as correlates.

To simplify matters, we will restrict the derivation to
the case of a knownapriori variance factor σ2. In this case,
(3.1) can be expressed as

TLR (Y) =
exp

(︂
−min(Ω′ (X,k))

2σ2

)︂
exp

(︁
−min(Ω(X))

2σ2
)︁

= exp
(︃
−min(Ω

′
(X, k)) − min(Ω (X))

2σ2

)︃
(3.5)

Moreover, we may replace TLR(Y) by the fully equiva-
lent test statistic

T (Y) := −2 · log (TLR (Y)) =
min(Ω

′
(X, k)) − min(Ω (X))

σ2
(3.6)

If T (Y) > c with a properly chosen critical value c,
then H0 must be rejected, otherwise we fail to reject H0.

Note that all these derivations are fully valid even if A or
B are non-linear operators.

In the case thatA andB are both linear operators, we
obtain the expression (e.g. Lehmann and Neitzel 2013)

T (Y) = ŵTΣ−1ŵ ŵ (3.7)

where

ŵ := B
(︁
X̂
)︁
− b (3.8)

is the vector of estimated misclosures and Σŵ is the re-
lated covariance matrix. X̂ denotes the minimizer of Ω(X)
in Eq. (3.3), known as least squares estimate of X. Equa-
tion (3.7) can be seen as a special case of Eq. (2.6). If σ2 is
known and Eq. (2.2) holds true, the test statistic Eq. (3.7)
follows the distributions:

T (Y|H0) ∼ χ2 (m) (3.9a)

T (Y|HA) ∼ χ′2
(︁
m, Λ′

)︁
(3.9b)

with the non-centrality parameter

Λ
′
= w̃TΣ−1ŵ w̃ (3.10)

m denotes the number of independent constraints. The
vector of true misclosures w̃ = B

(︀
X̃
)︀
− b and hence also

Λ′ are naturally unknown.
All established tests in geodesy belong to the class of

LR tests. The rationale of these tests is provided by the
famous Neyman–Pearson lemma (Neyman and Pearson
1933), which demonstrates that under various assump-
tions such a test has the highest statistical test power
among all competitors. It is often applied even if we can-
not exactly or only approximately make these assump-
tions in practice, because we know that the power is still
larger than for rival tests (Teunisssen 2000, Kargoll 2012,
Lehmann and Voß-Böhme 2017).

In truly non-linear models, we generally encounter
three special problems:
1. The likelihood function Eq. (3.2) can only be maxi-

mized iteratively with the danger of finding only a lo-
cal maximum. (Global optimization methods, which
promise to find also the global maximum, are not yet
widely applied practically because of the considerable
computational workload for multidimensional prob-
lems.)

2. Test statistic Eq. (3.7) is only an approximation of the
true LR test statistic Eq. (3.6) because the likelihood
ratio is taken in the linearized GMM.

3. The probability density function (PDF) of T (Y) or
some equivalent of it does not belong to the well-
known set of statistical test distributions (t, χ2, F etc.)
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such that the critical valuesmust be computed numer-
ically.

In the next sections, we will illustrate some consequences
of these problems. In the conclusions, we will return to
these points.

4 The least squares solution of the
three-parameter transformation

Figure 2: Planar parameter transformation

In aplane consider twoCartesian reference frames x, y and
X, Y, which are related by translation and rotation, such
that an arbitrary point P has coordinates xP , yP , XP , YP
satisfying the non-linear transformation equations

XP = X0 + xP · cos ϵ − yP · sin ϵ
YP = Y0 + xP · sin ϵ + yP · cos ϵ

(4.1)

with transformation parameters X0, Y0, ϵ, see Fig. 2. Re-
lated equations can be formulated for the opposite trans-
formation direction.
We start from a set of N points having observed coordi-
nates

x1, y1, . . . , xN , yN , X1, Y1, . . . , XN , YN (4.2)

in both frames. Theproblem is to find thebest estimates for
X0, Y0, ϵ in the least squares sense, also knownas the least
squares solution of the three-parameter transformation.
In the following, we restrict ourselves to the case that
the coordinates of one system are non-stochastic (error-
free) fixed quantities. Without restriction of generality, the
error-free coordinates are denoted as x1, y1, . . . , xN , yN .
Moreover, we assume that for each pair of observations
Xi , Yi, both Xi and Yi have the same weight pi. This GMM

reads

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
X1
Y1
...
XN
YN

⎞⎟⎟⎟⎟⎟⎟⎠ , X̃ =

⎛⎜⎝ ϵ̃
X̃0
Ỹ0

⎞⎟⎠ ,

A
(︀
X̃
)︀
=

⎛⎜⎜⎜⎜⎜⎜⎝
X̃0 + x1 · cos ϵ̃ − y1 · sin ϵ̃
Ỹ0 + x1 · sin ϵ̃ + y1 · cosϵ̃

...
X̃0 + xN · cos ϵ̃ − yN · sin ϵ̃
Ỹ0 + xN · sin ϵ̃ + yN · cosϵ̃

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P =

⎛⎜⎜⎜⎜⎜⎜⎝
p1 0 · · · 0 0
0 p1 0 0
... . . . ...
0 0 pN 0
0 0 · · · 0 pN

⎞⎟⎟⎟⎟⎟⎟⎠ (4.3)

This setting is one of the rare cases, where an analytical
solution exists. For the sake of simplicity, we assume that
σ2 is chosen such that the weights fulfill Σpi = 1.

For the sake of compact notation, we introduce in ei-
ther coordinate system the following abbreviations:
1. the weighted barycentres are given by

X* :=
N∑︁
i=1

piXi , Y* :=
N∑︁
i=1

piYi ,

x* :=
N∑︁
i=1

pixi , y* :=
N∑︁
i=1

piyi (4.4)

2. the coordinates related to the barycentres as origins

∆Xi := Xi − X*, ∆Y i := Yi − Y*,
∆xi := xi − x*, ∆yi := yi − y* (4.5)

3. the moments of inertia related to the barycentres

h :=
N∑︁
i=1

pi
(︁
∆x2i + ∆y

2
i

)︁
= −x2* − y2* +

N∑︁
i=1

pi
(︁
x2i + y

2
i

)︁
(4.6a)

H :=
N∑︁
i=1

pi
(︁
∆X2i + ∆Y

2
i

)︁
= −X2* − Y2* +

N∑︁
i=1

pi
(︁
X2i + Y

2
i

)︁
(4.6b)

4. the auxiliary terms

c :=
N∑︁
i=1

pi (∆Xi∆xi + ∆Y i∆yi) =
N∑︁
i=1

pi (Xi∆xi + Yi∆yi)

(4.7a)



102 | R. Lehmann and M. Lösler

s :=
N∑︁
i=1

pi (∆Y i∆xi − ∆Xi∆yi) =
N∑︁
i=1

pi (Yi∆xi − Xi∆yi)

(4.7b)

In GMM Eq. (4.3) the non-linear least squares solution
for ϵ, X0, Y0 reads (see appendix 1)

ϵ̂ = arctan sc (4.8a)

X̂0 = X* − x* · cos ϵ̂ + y* · sin ϵ̂ = X* −
x* · c − y* · s√

c2 + s2
(4.8b)

Ŷ0 = Y* − x* · sin ϵ̂ − y* · cos ϵ̂ = Y* −
x* · s + y* · c√

c2 + s2
(4.8c)

Ω
(︁
X̂
)︁
= h + H − 2

√︀
c2 + s2 (4.8d)

These formulas do not directly contain the observa-
tions Y, but only the statistics c, s, X*, Y*. All other quanti-
ties are fixed. Therefore, the vector (c, s, X*, Y*)T is a suffi-
cient statistic of the problem. Moreover, it is normally dis-
tributed because of the linear relationship

Z :=

⎛⎜⎜⎜⎝
c
s
X*
Y*

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∆x1 ∆y1 · · · ∆yN
−∆y1 ∆x1 · · · ∆xN
1 0 · · · 0
0 1 · · · 1

⎞⎟⎟⎟⎠ PY (4.9)

The covariance matrix of Z can be derived by covariance
propagation

ΣZ =

⎛⎜⎜⎜⎝
∆x1 ∆y1 · · · ∆yN
−∆y1 ∆x1 · · · ∆xN
1 0 · · · 0
0 1 · · · 1

⎞⎟⎟⎟⎠

Pσ2P−1P

⎛⎜⎜⎜⎝
∆x1 ∆y1 · · · ∆yN
−∆y1 ∆x1 · · · ∆xN
1 0 · · · 0
0 1 · · · 1

⎞⎟⎟⎟⎠
T

= σ2

⎛⎜⎜⎜⎝
h 0 0 0
0 h 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ (4.10)

Thus, c, s, X*, Y* are even independent random vari-
ables. For the expectations we obtain

E {c} =
N∑︁
i=1

pi (E {Xi} ∆xi + E {Yi} ∆yi)

=
N∑︁
i=1

pi
(︀(︀
X̃0 + xi · cos ϵ̃ − yi · sin ϵ̃

)︀
∆xi

+
(︀
Ỹ0 + xi · sin ϵ̃ + yi · cos ϵ̃

)︀
∆yi
)︀

=
N∑︁
i=1

pi ((∆xi · cos ϵ̃ − ∆yi · sin ϵ̃) ∆xi

+ (∆xi · sin ϵ̃ + ∆yi · cos ϵ̃) ∆yi) = h · cos ϵ̃ (4.11a)

E {s} =
N∑︁
i=1

pi (E {Yi} ∆xi − E {Xi} ∆yi) = h · sin ϵ̃ (4.11b)

E {X*} =
N∑︁
i=1

piE {Xi} =
N∑︁
i=1

pi
(︀
X̃0 + xi · cos ϵ̃ − yi · sin ϵ̃

)︀
= X̃0 + x* · cos ϵ̃ − y* · sin ϵ̃ (4.11c)

E {Y*} =
N∑︁
i=1

piE {Yi} =
N∑︁
i=1

pi
(︀
Ỹ0 + xi · sin ϵ̃ + yi · cos ϵ̃

)︀
= Ỹ0 + x* · sin ϵ̃ + y* · cos ϵ̃ (4.11d)

Starting from an initial guess for ϵ, X0, Y0, the solu-
tion Eq. (4.8) can also be obtained as the limit of a se-
quence of linearized GMM. Despite of the non-linearity of
the GMM, we obtain a unique solution for the parameter
estimation problem. Thus, there is no danger of finding
only a local minimum here.

5 The least squares solution of the
four-parameter transformation
In extension of Eq. (4.1) we introduce a scale parame-

ter µ such that the new observation equations read

XP = X0 + µ · (xP · cos ϵ − yP · sin ϵ)
YP = Y0 + µ · (xP · sin ϵ + yP · cos ϵ) (5.1)

By the substitution a := µ · cos ϵ, o := µ · sin ϵ we
obtain the linear representation

XP = X0 + xP · a − yP · o
YP = Y0 + xP · o + yP · a (5.2)

with the parameter vector

X̃ =

⎛⎜⎜⎜⎝
ã
õ
X̃0
Ỹ0

⎞⎟⎟⎟⎠ (5.3)
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The least squares solution of this linear GMM is simple and well known:

â = c
h , ô =

s
h (5.4a)

X̂0 = X* − x* · â + y* · ô (5.4b)

Ŷ0 = Y* − x* · ô − y* · â (5.4c)

Ω
(︁
X̂
)︁
= H − c

2 + s2
h (5.4d)

where h, H, c, s are as defined in Eqs. (4.6a,b), (4.7a,b). This solution permits an estimate of the rotation angle and scale
parameter:

ϵ̂ = arctan ôâ = arctan sc (5.5a)

µ̂ =
√︀
â2 + ô2 =

√
c2 + s2
h (5.5b)

See also appendix 3. Note that Eq. (5.5a) coincides with Eq. (4.8a).

6 LR hypothesis testing in the three-parameter transformation
As an example of a hypothesis test in a planar transformationmodel, we want to test a hypothesis for the rotation angle
ϵ̃ of the form

H0 : ϵ̃ = ϵ0 vs. HA : ϵ̃ ≠ ϵ0 (6.1)

which can be identified as a special case of Eqs. (2.4),(2.5) by

B
(︀
X̃
)︀
=

⎛⎜⎝ 1
0
0

⎞⎟⎠
T

X̃, b = ϵ0, ŵ = ϵ̂ − ϵ0 (6.2)

with m = 1. Obviously, B is a linear operator, but A is not. To apply test statistic Eq. (3.7), A(X) must be linearized by
Taylor expansion:

A (X) = A
(︁
X̂
)︁
+ A ·

(︁
X − X̂

)︁
+ o
(︁⃦⃦⃦
X − X̂

⃦⃦⃦ )︁
(6.3)

In the following, we investigate four different derivations of a test statistic for problem Eq. (6.1).
¬ Starting from an initial guess for ϵ, X0, Y0, a sequence of linear GMM is computed, until the iteration converges. In
the final step, the Jacobian matrix A assumes the form

A =

⎛⎜⎜⎜⎜⎜⎜⎝
−x1 · sin ϵ̂ − y1 · cos ϵ̂ 1 0
x1 · cos ϵ̂ − y1 · sin ϵ̂ 0 1

...
−xN · sin ϵ̂ − yN · cos ϵ̂
xN · cos ϵ̂ − yN · sin ϵ̂

...
1
0

...
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ (6.4)
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This gives an approximation of the covariance matrix of the estimated parameters (see appendix 4)

ΣX̂ = σ
2
(︁
ATPA

)︁−1
= σ2

⎛⎜⎝ Σpi
(︁
x2i + y

2
i

)︁
symm.

−x* · sin ϵ̂ − y* · cos ϵ̂ 1
x* · cos ϵ̂ − y* · sin ϵ̂ 0 1

⎞⎟⎠
−1

= σ
2

h

⎛⎜⎝ 1 symm.
x* · sin ϵ̂ + y* · cos ϵ̂ h + (x* · sin ϵ̂ + y* · cos ϵ̂)2

−x* · cos ϵ̂ + y* · sin ϵ̂ y2*−x
2
*

2 sin 2ϵ̂ − x*y* cos 2ϵ̂ h + (x* · cos ϵ̂ − y* · sin ϵ̂)2

⎞⎟⎠ (6.5a)

σ2ϵ̂ =
σ2
h (6.5b)

When we perform the LR test of Eq. (4.3) using the linear approximation of A, we come up with Eq. (3.7), which
reads here

T3.1 (Z) =
(︀
ϵ̂ − ϵ0

)︀TΣ−1ϵ̂ (︀ϵ̂ − ϵ0)︀ = (︂ ϵ̂ − ϵ0σϵ̂

)︂2
= h
σ2
(︁
arctan sc − ϵ0

)︁2
(6.6)

(‘’3.1” denotes here the 1st version of the three-parameter test statistic.)
­ A practically equivalent formulation of Eq. (6.1) is

H0 : tan ϵ̃ = tan ϵ0 vs. HA : tan ϵ̃ ≠ tan ϵ0 (6.7)

(disregarding the impractical non-issue that tan ϵ = tan (ϵ + π)).
Here,B (X) is also non-linear and must be linearized by Taylor expansion:

B (X) = B
(︁
X̂
)︁
+ BT ·

(︁
X − X̂

)︁
+ o
(︁⃦⃦⃦
X − X̂

⃦⃦⃦ )︁
(6.8)

In the final step of the iteration, the Jacobian matrix B assumes the form

B =

⎛⎜⎝ cos−2 ϵ̂
0
0

⎞⎟⎠ (6.9)

In this case, Eq. (3.7) reads

T3.2 (Z) =
(︀
tan ϵ̂ − tan ϵ0

)︀T(︁BTΣX̂B)︁−1 (︀tan ϵ̂ − tan ϵ0)︀
=
(︀
tan ϵ̂ − tan ϵ0

)︀2
σ2
h cos−4 ϵ̂

= h
σ2

(︂
sc − c2 tan ϵ0
c2 + s2

)︂2
(6.10)

This result is obviously different from Eq. (6.6). One could argue that Eq. (6.10) should be less reliable than Eq. (6.6)
because also B must now be linearized too. But this argument is not conclusive, because we could have obtained this
result also by substituting t := tan ϵ in the transformation equations and solving and testing for the new parameter
t instead of ϵ. In this case, B would be the same as in Eq. (6.2). The same line of reasoning would apply for other
trigonometric functions in Eq. (6.7).

The main reason why (6.6) and (6.10) are different is not the “non-issue” discussed above, but the fact that the
linearization errors by truncating the corresponding Taylor expansions are different. Proof: Use “cot” instead of “tan”
in (6.7). Although the same ϵ̃ = ϵ0 + kπ, k ∈ Z holds, we arrive at a different test statistic than in (6.10).
® Applying covariance propagation to Eq. (4.8a) and using the quotient rule and the chain rule, we obtain the expres-
sion:

σ2ϵ̂ =

⎛⎝ −s[︁
1 + s2

c2

]︁
c2

1[︁
1 + s2

c2

]︁
c

0 0

⎞⎠ ΣZ
⎛⎝ −s[︁

1 + s2
c2

]︁
c2

1[︁
1 + s2

c2

]︁
c

0 0

⎞⎠T

=
(︀
c2 + s2

)︀
σ2h[︁

1 + s2
c2

]︁2
c4

= σ2h
c2 + s2 (6.11)
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This is different from Eq. (6.5b), because the linearization is applied at a later stage. Therefore, we can assume that
this is a better approximation than Eq. (6.5b). Using this expression in Eq. (3.7) yields

T3.3 (Z) =
(︂
ϵ̂ − ϵ0
σϵ̂

)︂2
= c

2 + s2
σ2h

(︁
arctan sc − ϵ0

)︁2
(6.12)

But still this test statistic is a linear approximation via Eq. (3.7).
¯ To obtain a fully non-linear LR test statistic, we revert to Eq. (3.6):

T3.4 (Z) =
min(Ω

′
) − min(Ω)
σ2

= Ω(X̂0, Ŷ0, ϵ0) − Ω(X̂0, Ŷ0, ϵ̂)σ2

= 1
σ2 [(h + H − 2 (c · cos ϵ0 + s · sin ϵ0))

−
(︁
h + H − 2

√︀
c2 + s2

)︁]︁
= 2
σ2
(︁√︀

c2 + s2 − c · cos ϵ0 − s · sin ϵ0
)︁

(6.13)

where appendix 1 and Eq. (4.8d) have been used.
Note that this test statistic is as simple to compute as the three previous versions.

7 LR hypothesis testing in the four-parameter transformation
Wewant to test the samehypothesis Eq. (6.1), but now for the four-parameter transformation. In terms of the substitution
model parameters Eq. (5.5a), it can be formulated as

H0 : arctan
õ
ã = ϵ0 vs. HA : arctan

õ
ã ≠ ϵ0 (7.1)

This can be identified as a special case of Eqs. (2.4), (2.5) by

B
(︀
X̃
)︀
= arctan õã , b = ϵ0, ŵ = arctan ôâ − ϵ0 (7.2)

with m = 1.
In the following, we investigate four different derivations of a test statistic for problem Eq. (7.1).

¬ Acting on a, o, operatorB is non-linear, butA is linear here. Consequently,B (X) must be linearized as in Eq. (6.8):

B =

⎛⎝ −o[︁
1 + o2

a2

]︁
a2

1[︁
1 + o2

a2

]︁
a

0 0

⎞⎠T

= 1
o2 + a2

⎛⎜⎜⎜⎝
−o
a
0
0

⎞⎟⎟⎟⎠ (7.3)

In this case, Eq. (3.7) reads

T4.1 (Z) =
(︂
arctan ôâ − ϵ0

)︂T(︁
BTΣX̂B

)︁−1(︂
arctan ôâ − ϵ0

)︂
= c

2 + s2
σ2h

(︁
arctan sc − ϵ0

)︁2
(7.4)

where ΣX̂ is the well-known covariance matrix (e.g.Wolf 1966, Somogyi and Kalmár 1988)

ΣX̂ = σ
2

⎛⎜⎜⎜⎝
1/h 0
0 1/h

0 0
0 0

0 0
0 0

1 0
0 1

⎞⎟⎟⎟⎠ (7.5)
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It turns out that T4.1 (Z) ≡ T3.3 (Z). However, the corresponding models are different.
­ Alternatively, we can solve the non-linear four-parameter transformation with parameters µ, ϵ instead of a, o by iter-
ation. In the final step, the Jacobian matrix A assumes the form

A =

⎛⎜⎜⎜⎜⎜⎜⎝
−x1 · µ̂ · sin ϵ̂ − y1 · µ̂ · cos ϵ̂ x1 · cos ϵ̂ − y1 · sin ϵ̂
x1 · µ̂ · cos ϵ̂ − y1 · µ̂ · sin ϵ̂ x1 · sin ϵ̂ + y1 · cosϵ̂

...
...

1 0
0 1
...

...
−xN · µ̂ · sin ϵ̂ − yN · µ̂ · cos ϵ̂ xN · cos ϵ̂ − yN · sin ϵ̂
xN · µ̂ · cos ϵ̂ − yN · µ̂ · sin ϵ̂ xN · sin ϵ̂ + yN · cosϵ̂

1 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (7.6)

This gives the covariance matrix of the estimated parameters (see appendix 5)

ΣX̂ = σ
2
(︁
ATPA

)︁−1
= σ2

⎛⎜⎜⎜⎜⎝
µ̂2Σpi

(︁
x2i + y

2
i

)︁
0 Σpi

(︁
x2i + y

2
i

)︁ symm.

µ̂ ·
(︀
−x* · sin ϵ̂ − y* · cos ϵ̂

)︀
x* · cos ϵ̂ − y* · sin ϵ̂

µ̂ ·
(︀
x* · cos ϵ̂ − y* · sin ϵ̂

)︀
x* · sin ϵ̂ + y* · cos ϵ̂

1
0 1

⎞⎟⎟⎟⎟⎠
−1

= σ
2

h

⎛⎜⎜⎜⎜⎝
µ̂−2

0 1
symm.

µ̂−1 ·
(︀
x* · sin ϵ̂ + y* · cos ϵ̂

)︀
y* · sin ϵ̂ − x* · cos ϵ̂

µ̂−1 ·
(︀
y* · sin ϵ̂ − x* · cos ϵ̂

)︀
−x* · sin ϵ̂ − y* · cos ϵ̂

Σpi
(︁
x2i + y

2
i

)︁
0 Σpi

(︁
x2i + y

2
i

)︁
⎞⎟⎟⎟⎟⎠ (7.7a)

σ2ϵ̂ =
σ2
h · µ̂2 (7.7b)

The hypotheses are now formulated as in Eq. (6.1). Acting on µ, ϵ, operatorA is non-linear, butB is linear here and
corresponds to Eq. (6.2).

When we perform the LR test using the linear approximation ofA, we come up with Eq. (3.7), which reads here

T4.2 (Z) =
(︀
ϵ̂ − ϵ0

)︀TΣ−1ϵ̂ (︀ϵ̂ − ϵ0)︀ = (︂ ϵ̂ − ϵ0σϵ̂

)︂2
= c

2 + s2
h2 · hσ2

(︁
arctan sc − ϵ0

)︁2
(7.8)

It turns out that T4.2 (Z) ≡ T4.1 (Z) ≡ T3.3 (Z) .
® Let us now study the special case ϵ0 = 0. Here, the hypotheses can be written as

H0 : õ = 0 vs. HA : õ ≠ 0 (7.9)

In the four-parameter transformation, this can be identified as a special case of Eqs. (2.4), (2.5) by

B
(︀
X̃
)︀
=

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠
T

X̃, b = 0, ŵ = ô (7.10)

In this case, bothA andB are linear operators and Eq. (3.7) reads

T4.3 (Z) =
ô2

σ2ô
= hô

2

σ2 = s2
σ2h (7.11)

where Eq. (5.4) and Eq. (7.5) have been used.



Hypothesis testing in non-linear models exemplified by the planar coordinate transformations | 107

¯ To obtain a fully non-linear LR test statistic, we revert to
Eq. (3.6):

T4.4 (Z) =
min(Ω

′
) − min(Ω)
σ2

= Ω(X̂0, Ŷ0, ϵ0, µ̂) − Ω(X̂0, Ŷ0, ϵ̂, µ̂)σ2

= 1
σ2

(︂
H − (c · cos ϵ0 + s · sin ϵ0)2

h − H + c
2 + s2
h

)︂
= c

2 + s2 − (c · cos ϵ0 + s · sin ϵ0)
2

hσ2

= (c · sin ϵ0 − s · cos ϵ0)2
hσ2 (7.12)

where appendix 2 and Eq. (5.4d) have been used.

8 Distributions
Due to the coincidence with T3.3, the test statistics
T4.1, T4.2 will not be further discussed.

Note that all derived test statistics Ti (Z) depend on
only two of the four elements of Z, i.e. c and s. This will
be highlighted by the notation Ti (c, s) used below:

T3.1 (c, s) =
h
σ2
(︁
arctan sc − ϵ0

)︁2
(8.1a)

T3.2 (c, s) =
h
σ2

(︂
sc − c2 tan ϵ0
c2 + s2

)︂2
(8.1b)

T3.3 (c, s) =
c2 + s2
σ2h

(︁
arctan sc − ϵ0

)︁2
(8.1c)

T3.4 (c, s) =
2
σ2
(︁√︀

c2 + s2 − c · cos ϵ0 − s · sin ϵ0
)︁
(8.1d)

T4.3 (c, s) =
s2
σ2h (8.1e)

T4.4 (c, s) = (c · sin ϵ0 − s · cos ϵ0)2
σ2h (8.1f)

In the linear or linearized GMM, we obtain from
Eq. (3.9) the followingdistributions of the LR test statistics:

Ti (c, s) |H0 ∼ χ2 (1) , i = 3.1, 3.2, 3.3, 4.3, 4.4 (8.2a)

Ti (c, s) |HA ∼ χ′2
(︂
1, hσ2 (ϵ̃ − ϵ0)

2)︂
, i = 3.1, 3.3 (8.2b)

T3.2 (c, s) |HA ∼ χ′2
(︂
1, hσ2 (tan ϵ̃ − tan ϵ0)

2cos4 ϵ̂
)︂
(8.2c)

T4.3 (c, s) |HA ∼ χ′2
(︂
1, s̃

2

σ2h

)︂
(8.2d)

T4.4 (c, s) |HA ∼ χ′2
(︂
1, (c̃ · sin ϵ0 − s̃ · cos ϵ0)

2

σ2h

)︂
(8.2e)

However, observing that test statistics Ti (c, s) ,
i = 3.1, 3.2, 3.3, 4.4 in Eq. (8.2a) are obtained by lin-
earization of A or B or both, these distributions can be
no more than approximations of the true distributions of
Ti (c, s) in the vicinity of ϵ̂. But oftentimes Ti (c, s) is eval-
uated far away from ϵ̂, especially if α is small. Test statistic
T3.4, T4.4 is defined in the fully non-linear model and test
statistic T4.3 is defined in the fully linearmodel. Therefore,
no such approximation is made here.
Remark: In Eq. (8.2b) it would not be correct to apply Eq.
(6.11) instead of Eq. (6.5b). Equation (6.5b) must be used
even in case i = 3.3, because Eq. (6.5b) is derived from ΣX̂
in Eq. (6.5a), as it is required by Eq. (3.9).
Simplifications:
¬ If we rotate the source system (x, y) by ϵ0 about the
barycentre (x*, y*) and solve the same transformation
problemwith the rotated coordinates, c, s are replaced by

c′ = c · cos ϵ0 + s · sin ϵ0
s′ = −c · sin ϵ0 + s · cos ϵ0 (8.3)

Note that the vector (c′, s′)T is the result of the rota-
tion of (c, s)T by angle −ϵ0 about the origin (0,0) and has
therefore the same covariance matrix

Σc′ ,s′ = σ2
(︃
h 0
0 h

)︃
(8.4)

The transformation problems with the rotated coordi-
nates have the solution

cos ϵ̂′ = c′√
c′2 + s′2

= c · cos ϵ0 + s · sin ϵ0√
c2 + s2

= cos ϵ̂ · cos ϵ0 + sin ϵ̂ · sin ϵ0 = cos
(︀
ϵ̂ − ϵ0

)︀
(8.5)

Now, testing Eq. (6.1) is obviously identical to testing

H0 : ϵ̃′ = 0 vs. HA : ϵ̃′ ≠ 0 (8.6)

with the rotated coordinate system, i.e. with c′, s′. This ob-
viously results in the same test statistics T3.1, T3.3. Less
obvious, the same applies to T3.4 and T4.4 by virtue of

T3.4
(︁
c
′
, s′
)︁
= 2
σ2
(︁√︀

c′2 + s′2 − c′
)︁
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= 2
σ2
(︁√︀

c2 + s2 − c · cos ϵ0 − s · sin ϵ0
)︁

= T3.4 (c, s) (8.7a)

T4.4
(︁
c′, s′

)︁
= s

′2

hσ2 = (−c · sin ϵ0 + s · cos ϵ0)2
hσ2

= T4.4 (c, s) (8.7b)

For T4.3 no rotation is necessary, because it only ap-
plies to the special case ϵ0 = 0. Moreover, note that for
ϵ0 = 0 we find a coincidence of T4.3 and T4.4. This shows
that T4.4 follows the χ2-distribution Eq. (8.2a,d,e). Hence,
we will further discuss only T4.4.

However, the situation for T3.2 is different. Here, a dif-
ferent result is obtained. Note that the solution in terms of
the parameter t := tan ϵ is not rotational invariant. This
becomes obvious in the case of ϵ̃ = ±π/2, where t̃ not even
exists.

Disregarding this non-issue, we will continue with
ϵ0 = 0, noting that almost no restriction of generality is
made.
­ If we scale both coordinate systems by the factor σ−1 and
solve the transformation problem with the scaled coordi-
nates, c′ , s′ , h, are replaced by

c′′ = c′
σ2 , s′′ = s′

σ2 , h′′ = h
σ2 , σ′′

2 = σ
2

σ2 = 1 (8.8)

The weights do not change, such that Σpi = 1 is re-
tained. Note that the new vector (c′′, s′′)T has the covari-
ance matrix

Σc′′ ,s′′ = σ−2
(︃
h 0
0 h

)︃
=
(︃
h′′ 0
0 h′′

)︃
(8.9)

The new solution is ϵ̂′′ = ϵ̂′.
Now testing Eq. (8.6) with the scaled coordinates, i.e.

with c′′, s′′, obviously results in

T3.1
(︁
c′′, s′′

)︁
= h′′

(︂
arctan s

′′

c′′

)︂2
= T3.1

(︁
c′, s′

)︁
(8.10a)

T3.2
(︁
c′′, s′′

)︁
= h′′

(︂
s′′c′′

c′′2 + s′′2
)︂2

= T3.2
(︁
c′, s′

)︁
(8.10b)

T3.3
(︁
c′′, s′′

)︁
= c

′′2 + s′′2
h′′

(︂
arctan s

′′

c′′

)︂2
= T3.3

(︁
c′, s′

)︁
(8.10c)

T3.4
(︁
c′′, s′′

)︁
= 2
(︁√︀

c′′2 + s′′2 − c′′
)︁
= T3.4

(︁
c′, s′

)︁
(8.10d)

T4.4
(︁
c′′, s′′

)︁
= s

′′2

h′′
= T4.4

(︁
c′, s′

)︁
(8.10e)

Thus, all test statistics are scale invariant, too.
A special problem exists for T3,2, which can bewritten

as

T3.2
(︁
c′′, s′′

)︁
= h

′′

4 sin 22ϵ̂
′′
≤ h

′′

4 (8.11)

The fact that the χ2 density function is non-zero on the
whole positive real line again proves that T3.2 has not the
χ2 distribution.

Henceforth, we drop double-primes, such that

ϵ0 := 0, σ2 := 1 (8.12)

is assumed with almost no loss of generality. (Remember
that “almost” here concerns only T3.2, which is not rota-
tion invariant.)

The question, which test statistic is best, must be an-
swered by the resulting probabilities of decision error.
1. The probability of type 1 decision error α is usually se-

lected by the user. But if the 1 − α-quantile of χ2(1) is
used for T3.1, T3.2, T3.3, the effective α can be differ-
ent.

2. The probability of type 2 decision error β should be
small.

Both probabilities α and β are linked via the critical value
c, see Fig. 1.

9 Probability of type 1 decision
error

The idea is to compare the 1 − α-quantiles of χ2(1) with
the quantiles of the true distribution of Ti|H0 obtained
by Monte Carlo integration. This method has been suc-
cessfully used e.g. by Lehmann (2012) for the computation
of critical values of normalized and studentized residuals
employed in geodetic outlier detection. In principle, it re-
places
• random variates by computer generated pseudo ran-

dom numbers,
• probability distributions by histograms and
• statistical expectations by arithmetic means

computed from a large number of Monte Carlo experi-
ments, i.e. computationswithpseudo randomnumbers in-
stead of noisy observations.
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In the case that H0 is true, we have ϵ̃ = 0, such that
from Eq. (4.11) follows

E{c|H0} = h, E{s|H0} = 0. (9.1)

According to Eqs. (4.10), (8.12) we need to generate the
following pseudo random numbers:

c|H0 ∼ N (h, h) , s|H0 ∼ N(0, h) (9.2)

WeuseM = 108Monte Carlo samples, which turns out
to be sufficiently high, because the results only insignifi-
cantly change, when the computations are repeated with
different pseudo random numbers.

We use three stages of non-linearity, expressed by the
signal/noise ratio: h = 1000 means that the signal is 1000
times larger than the noise (σ = 1), which causes only
weak non-linear effects. Analogous, h = 100 and h = 10
cause medium and strong non-linear effects, respectively.

In Table 1, the 1 − α-quantiles of χ2(1) and the quan-
tiles of the true distribution of Ti|H0, i = 3.1, 3.2, 3.3 are
compared. For T4.3 ≡ T4.4 we can directly use the quan-
tiles of χ2(1). As expected, the largest differences occur for
h = 10 and T3.2. Using the χ2-quantile as a critical value
can be both, an advantage and a disadvantage in terms of
α. Consider h = 10 and a desired α = 0.01 in T3.1, we erro-
neously select 6.63 as a critical value, instead of 8.92. The
true α for T3.1 is not 0.01, but even larger than 0.02. By
interpolation of the derived quantiles in Table 1, we obtain
an effective α = 0.021. In contrast to that, we find from
Eq. (8.11) that |T3.2| < 2.5 always holds, such that 6.63 is
never exceeded, which corresponds to an effective α = 0.

The true quantiles of T3.4 are given in Table 2, but
should not be compared to the χ2-quantiles, because they
are obtained in the non-linear model. It is perhaps un-
expected that T3.4 follows the χ2 distribution even better
than other test statistics, as can be seen froma comparison
of Table 1 and 2.

10 Probability of type 2 decision
error

Theaimof this investigation is tofindout,which test statis-
tic has the highest statistical test power, i.e. the best abil-
ity to reject a false H0. For comparison, we plot the power
function of Ti|HA , i = 3.1, . . . , 4.4, denoted as

1 − βi (|ϵ̃| ) (10.1)

Due to the symmetry of βi, all plots are produced
only for positive ϵ̃. Whenever Eq. (8.2b,c) hold only ap-
proximately, we again use Monte Carlo integration to

compute the true distribution of Ti|HA. According to
Eqs. (4.10), (4.11), (8.12) we need to generate the following
pseudo random numbers:

c|HA ∼ N (h · cos ϵ̃, h) , s|HA ∼ N(h · sin ϵ̃, h) (10.2)

We find

1 − βi (|ϵ̃| ) = Pr(Ti > ci|HA), i = 3.1, . . . , 4.4 (10.3)

where ci is the critical value, which equals the 1 − α-
quantile of either the χ2(1) distribution or the true distri-
butions obtained in the preceding section, whenever this
is different. The first case is practically applied. Below we
restrict ourselves to the choice of α = 0.05.

In Fig. 3, the power function Eq. (10.3) is plotted for
T4.4, which requires no Monte Carlo integration because
Eq. (8.2e) holds exactly. We see that the power is increas-
ing with |ϵ̃| , which is expected, because H0 and HA are
getting more and more different, cf. Fig. 1. Furthermore,
the statistical test power is worse when h is small, which is
also expected. Remember that h = 10 means that the mo-
ment of inertia of the points are only 10 times larger than
the standard deviations σ = 1 of the target coordinates,
which makes testing hypotheses nearly hopeless.

Figure 3: Power functions for T4.4 and various values of h.

In Fig. 4-6 the other power functions Eq. (10.3) are
plotted relative to that of T4.4. A ratio > 1 means that Ti
outperforms T4.4 and vice versa. Test results with χ2(1)-
quantiles are displayed by dotted curves and are denoted
by T

(︀
χ2
)︀
, while those using true distributions computed

by the Monte Carlo method are displayed by solid curves
and are denoted by T (α). For T3.4 only the solid curve
makes sense.

In case of weak non-linearity, i.e. h = 1000, see
Fig. 4, practically no difference is visible. All seven power
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Table 1: Quantiles of χ2(1)(column 2) vs. quantiles of the true distribution of Ti|H0 , i = 3.1, 3.2, 3.3 (following columns)

T4.3 ≡ T4.4 T3.1 T3.2 T3.3 ≡ T4.1 ≡ T4.2
χ2(1 − α, 1) h=10 h=100 h=1000 h=10 h=100 h=1000 h=10 h=100 h=1000

α=0.10 2.71 2.99 2.73 2.71 1.93 2.63 2.70 2.99 2.73 2.71
α=0.05 3.84 4.46 3.89 3.85 2.28 3.69 3.83 4.38 3.89 3.85
α=0.02 5.41 6.78 5.51 5.42 2.46 5.12 5.38 6.40 5.51 5.42
α=0.01 6.63 8.92 6.78 6.64 2.49 6.19 6.58 8.07 6.77 6.64

Table 2: Quantiles of the true distribution of T3.4|H0

T3.4 h=10 h=100 h=1000
α=0.10 2.79 2.71 2.71
α=0.05 3.96 3.85 3.84
α=0.02 5.59 5.43 5.41
α=0.01 6.86 6.65 6.63

Figure 4: Power function ratios for h=1000 (weak non-linearity).
Dotted curves: using χ2(1)-quantiles and are denoted by T

(︀
χ2
)︀
,

solid curves: using true quantiles for critical values and are denoted
by T (α). Black and red solid curves visually overlap.

functions behave equally well. In case of medium non-
linearity, i.e. h = 100, there is also no great difference be-
tween the test statistics, except for T3.2, when the χ2(1)-
quantile is used (red dotted curve), see Fig. 5. The reason
is that this approximate quantile (c = 3.69) differs much
from the true value (c = 3.84). Otherwise, χ2(1)-quantiles
are outperforming the true quantiles.

The strong non-linear case, i.e. h = 10, is depicted in
Fig. 6. The differences between the tests are even ampli-
fied. Note, the different vertical scales in Fig. 4-6. When
the χ2(1)-quantile c = 3.84 is used, T3.2 is unable to reject
a false H0, no matter how large |ϵ̃| is (red dotted curve).
This is a consequence of Eq. (8.11) and the price we have to
pay that α = 0 has been obtained in the preceding section.

Figure 5: Power function ratios for h=100 (medium non-linearity).
Dotted curves: using χ2(1)-quantiles and are denoted by T

(︀
χ2
)︀
,

solid curves: using true quantiles for critical values and are denoted
by T (α). Black and red solid curves visually overlap.

Figure 6: Power function ratios for h=10 (strong non-linearity). Dot-
ted curves: using χ2(1)-quantiles and are denoted by T

(︀
χ2
)︀
, solid

curves: using true quantiles for critical values and are denoted by
T (α).

Due to the strong non-linearity, the power is againworst, if
the true quantiles are applied. This behavior is expected,
because a shift of the critical value c changes α and β in
opposite directions, see Fig. 1. It follows that the increase
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of probability of type 2 decision error corresponds to the
loss of probability of type 1 decision error observed in the
preceding section.

All solid curves are free of this effect, because they
truly refer to α = 0.05. This can easily be validated be-
cause for ϵ̃ = 0 the power is always equal. The only signifi-
cant differences between the powers of Ti occur for strong
non-linearity, so we will only focus on the case h = 10, see
Fig. 6.

In the interval 0 < ϵ̃ < 0.2 the best power is obtained
for T3.3, where the covariance propagation has been ap-
plied to Eq. (4.8a). This is even better than for the full non-
linear test T3.4 (green curve). But this advantage is very
small and could be accidental. Remember that there is no
mathematical proof that Eq. (3.6) outperforms Eq. (3.7).
This has been demonstrated here. However, for values of
ϵ̃ > 0.4 the situation changes, as is displayed in Fig. 7.

Figure 7: Same as Fig. 6, solid curves only, but larger range of ϵ̃

Note that a comparison of T3.i vs. T4.j is less instruc-
tive, because if the scale is unknown, one should always
use the four-parameter transformation, even though a test
in a three-parameter transformation model may be more
powerful.

Finally, note that the results in this section are not
obtained from a “numerical experiment”, but are strictly
valid for all planar coordinate transformations with error-
free coordinates in one coordinate system and the conven-
tional assumption on the weights Eq. (4.3).

11 Conclusions
Wehave presented an analysis of the decision errors,when
performing LR tests in planar coordinate transformation
models. Several mathematical equivalent expressions are
conceivable to apply the LR test to one specific hypothesis
test Eq. (6.1), but different results are obtained.

At the end of section 3, we named three problems,
which arise, if we apply the LR test to non-linear models
in the usual way, which we now want to further comment
on.
¬ The likelihood function Eq. (3.2) can only be maximized
iteratively with the danger of finding only a local maxi-
mum. For problems likemany transformations, which per-
mit a unique analytical non-linear least squares solution
like Eq. (4.8), this problem does not exist. The likelihood
function has a unique maximum.
­ Test statistic Eq. (3.7) gives an LR-Test only in the lin-
earized GMM, i.e. not in the truly non-linear GMM. While
Eq. (3.6) requires the minimization of Ω and Ω′, Eq. (3.7)
only relies on the minimization of Ω. min(Ω

′
) − min(Ω) is

computed only by linear approximation. The consequence
could be a small loss of statistical power of the test, de-
pending on the degree of non-linearity. For the planar co-
ordinate transformations with α = 0.05 this has not al-
ways been found, not even for strong non-linearity. How-
ever, if α is chosen smaller, the differences between the
power functions amplify.
® The PDF of Eq. (3.6) or Eq. (3.7) does not belong to the
well-known set of test distributions (t, χ2, F etc.) such that
the critical values must be computed numerically. This is
usually not done, because it requires numerical effort. But
using Monte Carlo integration it is simple, as has been
demonstrated in section 9. The advantage would be that
we effectively obtain the desired value of α. Otherwise, we
found a shift of some probability from type 1 to type 2 de-
cision error or back, which is undesired.

The same analytical computation can be done for
other problems, for which explicit non-linear analytical
least squares solutions exist. This encloses
• many other transformation problems, also 3D trans-

formations (e.g. Grafarend and Awange 2003), also
transformation where coordinates in both systems are
error-affected (e.g. Chang 2015)

• many curve and surface fitting problems (e.g. Ahn
2005)

The four parameter transformation is an exceptional case,
because it is intrinsically linear, but can be made non-
linear by parameterization Eq. (5.1). The resulting non-



112 | R. Lehmann and M. Lösler

linear effects can be investigated easily by comparison
with the linear model Eq. (5.2).
Also, more complex hypothesis tests can be studied in this
way, e.g. in the framework of multiple outlier detection.
The same approach can be applied to study other deci-
sion methods like model selection by information crite-
ria, which has also been applied to transformations and
other geodeticmodels (Lehmann2014, 2015, Lehmannand
Lösler 2016, 2017).

A Appendix 1: Analytical solution
for the transformation with fixed
scale parameter

The least squares error functional Eq. (3.3) to beminimized
reads with Eq. (4.3)

Ω(X̂) =
N∑︁
i=1

pi[(Xi − X̂0 − xi · ϵ̂ + yi · ϵ̂)2

+ (Yi − Ŷ0 − xi · sin ϵ̂ − yi · ϵ̂)2] = min (A.1)

Two necessary conditions for a minimum read

0 = ∂Ω
∂X̂0

= −2
N∑︁
i=1

pi
(︁
Xi − X̂0 − xi · cos ϵ̂ + yi · sin ϵ̂

)︁

0 = ∂Ω
∂Ŷ0

= −2
N∑︁
i=1

pi
(︁
Yi − Ŷ0 − xi · sin ϵ̂ − yi · cos ϵ̂

)︁
Using Σpi = 1 gives estimates for the translation parame-
ters:

X̂0 =
N∑︁
i=1

pi
(︀
Xi − xi · cos ϵ̂ + yi · sin ϵ̂

)︀
= X* − x* · cos ϵ̂ + y* · sin ϵ̂

Ŷ0 =
N∑︁
i=1

pi
(︀
Yi − xi · sin ϵ̂ − yi · cos ϵ̂

)︀
= Y* − x* · sin ϵ̂ − y* · cos ϵ̂

Substitution X̂0, Ŷ0 into the least squares error functional
yields

min = Ω
(︁
X̂
)︁
=

N∑︁
i=1

pi
[︁(︀
∆Xi − ∆xi · cos ϵ̂ + ∆yi · sin ϵ̂

)︀ 2
+
(︀
∆Y i − ∆xi · sin ϵ̂ − ∆yi · cos ϵ̂

)︀ 2]︁
=

N∑︁
i=1

pi
[︁
∆X2i + ∆Y2i + ∆x2i + ∆y2i

−2∆Xi
(︀
∆xi · cos ϵ̂ − ∆yi · sin ϵ̂

)︀
−2∆Y i

(︀
∆xi · sin ϵ̂ + ∆yi · cos ϵ̂

)︀]︀
= h + H − 2

(︀
c · cos ϵ̂ + s · sin ϵ̂

)︀
The third necessary condition for a minimum reads

0 = 1
2
∂Ω
∂ϵ̂ = c · sin ϵ̂ − s · cos ϵ̂

This gives the estimate for the rotation parameter

ϵ̂ = arctan sc = arcsin s√
c2 + s2

= arccos c√
c2 + s2

This unique stationary point must be a minimum because
Ω is bounded from below. The minimum is obtained at

Ω
(︁
X̂
)︁
= h + H − 2 c2 + s2√

c2 + s2
= h + H − 2

√︀
c2 + s2

B Appendix 2: Analytical solution
for the transformation with fixed
rotation parameter

Similar to appendix 1, but with fixed rotation parameter ϵ0
and with estimated scale parameter µ̂, we start from

Ω
(︁
X̂
)︁
=

N∑︁
i=1

pi
[︂(︁
Xi − X̂0 − xi · µ̂ · cos ϵ0 + yi · µ̂ · sin ϵ0

)︁2
+(Yi − Ŷ0 − xi · µ̂ · sin ϵ0 − yi · µ̂ · cos ϵ0)2

]︁
= min

and obtain

X̂0 = X* − x* · µ̂ · cos ϵ0 + y* · µ̂ · sin ϵ0

Ŷ0 = Y* − x* · µ̂ · sin ϵ0 − y* · µ̂ · cos ϵ0
Substitution X̂0, Ŷ0 into the least squares error functional
yields

min = Ω
(︁
X̂
)︁
=

N∑︁
i=1

pi
[︁(︀
∆Xi − ∆xi · µ̂ · cos ϵ0 + ∆yi · µ̂ · sin ϵ0

)︀2
+
(︀
∆Y i − ∆xi · µ̂ · sin ϵ0 − ∆yi · µ̂ · cos ϵ0

)︀2]︁
= µ̂2 · h + H − 2

(︀
c · µ̂ · cos ϵ0 + s · µ̂ · sin ϵ0

)︀
The third necessary condition for a minimum reads

0 = 1
2
∂Ω
∂µ̂ = µ̂ · h − (c · cos ϵ0 + s · sin ϵ0)

This gives the estimate for the scale parameter

µ̂ = c · cos ϵ0 + s · sin ϵ0h
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This unique stationary point must be a minimum because
Ω is bounded from below. The minimum is obtained at

Ω
(︁
X̂
)︁
= (c · cos ϵ0 + s · sin ϵ0)2

h

+ H − 2 c · cos ϵ0 + s · sin ϵ0h (c · cos ϵ0 + s · sin ϵ0)

= H − (c · cos ϵ0 + s · sin ϵ0)2
h

C Appendix 3: Analytical solution
for the four-parameter
transformation

Following the line of appendix 2, but replacing ϵ0 by ϵ̂
gives

µ̂ = c · cos ϵ̂ + s · sin ϵ̂h

Ω
(︁
X̂
)︁
= H −

(︀
c · cos ϵ̂ + s · sin ϵ̂

)︀2
h

NowalsominimizingΩ
(︁
X̂
)︁
for ϵ̂ yields a fourth necessary

condition

0 = 1
2
∂Ω
∂ϵ̂ = 1

h
(︀
c · cos ϵ̂ + s · sin ϵ̂

)︀ (︀
c · sin ϵ̂ − s · cos ϵ̂

)︀
At least one of the factorsmust be zero, thereforewe obtain
two solutions

ϵ̂1 = arctan sc , ϵ̂2 = arctan
(︁
− cs
)︁

but the second solution obviously belongs to a maximum
of Ω and is dropped. We thus arrive at

ϵ̂ = arctan sc

Inserting this for µ̂ and Ω
(︁
X̂
)︁
gives

µ̂ =
√
c2 + s2
h

Ω
(︁
X̂
)︁
= H −

√
c2 + s2
h

D Appendix 4: Covariance matrix of
the linearized GMM of the
three-parameter transformation
The normal matrix of the linearized GMM with A in

Eq. (6.4) is of the form

ATPA =

⎛⎜⎝ u v w
v 1 0
w 0 1

⎞⎟⎠

with
u := Σpi

(︁
x2i + y

2
i

)︁
, v := −x* · sin ϵ̂ − y* · cos ϵ̂,

w := x* · cos ϵ̂ − y* · sin ϵ̂.
The corresponding inverse can be readily written

down:

(︁
ATPA

)︁−1
= 1
u − v2 − w2

⎛⎜⎝ 1 −v −w
−v u − w2 vw
−w vw u − v2

⎞⎟⎠
= 1
h

⎛⎜⎝ 1 −v −w
−v h + v2 vw
−w vw h + w2

⎞⎟⎠
because u − v2 − w2 = −x2* − y2* + Σpi

(︁
x2i + y

2
i

)︁
= h.

E Appendix 5: Covariance matrix of
the linearized GMM of the
four-parameter transformation
The normalmatrix of the linearizedGMMwith A in Eq.

(7.6) is of the form

ATPA =

⎛⎜⎜⎜⎝
µ̂2 · u 0
0 u

µ̂ · v µ̂ · w
w −v

µ̂ · v w
µ̂ · w −v

1 0
0 1

⎞⎟⎟⎟⎠
with u, v, w as in appendix 4.

The corresponding inverse can be readily written
down:

(︁
ATPA

)︁−1
= 1
h

⎛⎜⎜⎜⎝
µ̂−2 0
0 1

−µ̂−1v −µ̂−1w
−w v

−µ̂−1v −w
−µ̂−1w v

u 0
0 u

⎞⎟⎟⎟⎠
where u − v2 − w2 = h has been used (see appendix 4).
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