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Abstract: In geodesy, hypothesis testing is applied to a
wide area of applications e.g. outlier detection, defor-
mation analysis or, more generally, model optimisation.
Due to the possible far-reaching consequences of a deci-
sion, high statistical test power of such a hypothesis test
is needed. The Neyman-Pearson lemma states that un-
der strict assumptions the often-applied likelihood ratio
test has highest statistical test power and may thus fulfill
the requirement. The application, however, is made more
difficult as most of the decision problems are non-linear
and, thus, the probability density function of the param-
eters does not belong to the well-known set of statistical
test distributions. Moreover, the statistical test power may
change, iflinear approximations of the likelihood ratio test
are applied.

The influence of the non-linearity on hypothesis testing
is investigated and exemplified by the planar coordinate
transformations. Whereas several mathematical equiva-
lent expressions are conceivable to evaluate the rotation
parameter of the transformation, the decisions and, thus,
the probabilities of type 1 and 2 decision errors of the re-
lated hypothesis testing are unequal to each other. Based
on Monte Carlo integration, the effective decision errors
are estimated and used as a basis of valuation for linear
and non-linear equivalents.
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1 Introduction

Hypothesis testing plays an important role in the frame-
work of parameter estimation. In the context of outlier de-
tection, hypothesis testing is used to detect and to iden-
tify implausible observations (e.g. Lehmann and Losler
2016, Klein et al. 2017). In congruence analysis, hypoth-
esis testing is introduced to distinguish stable points or
areas from instable parts of an epochal observed network
(e.g. Velsink 2015, Lehmann and Losler 2017). To find an
adequate number of model parameters, e.g. in the frame-
work of reverse engineering, hypothesis testing indicates
the benefit of a more complex model versus a simplified
model (e.g. Ahn 2005).

In geodesy, the likelihood ratio (LR) test is most of-
ten applied (Koch 1999, Teunissen 2000). It bases on the
Neyman-Pearson lemma, which demonstrates that under
various assumptions such a test has the highest statistical
test power (Neyman and Pearson 1933). In practice, most
of the decision problems are non-linear and the under-
lying likelihood function must be maximized iteratively,
e.g. by ordinary least-squares techniques with the risk of
finding only a local maximum. Moreover, the often-used
LR test in the linearized model deteriorates the decision
due to a potential loss of statistical test power. Finally,
the true probability density function of such a test does
not belong to well-known class of statistical test distribu-
tions, and therefore, critical values cannot be computed
with standard statistical functions. To derive the true prob-
ability density function as well as corresponding critical
values, a Monte Carlo integration can be carried out (see
e.g. Lehmann 2012).

Estimation in non-linear geodetic models has been
widely investigated. Teunissen (1985) found that two types
of non-linearity exist: The first is inherent in the problem
and manifests itself in the non-linearity of the model oper-
ator. The second is perhaps introduced by a parametriza-
tion, which can even make an inherently linear problem
non-linear. This is the case when the planar four parame-
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ter transformation is parameterized by rotation angle and
scale.

This investigation focuses on the influence of the non-
linearity on hypothesis testing exemplified by the planar
coordinate transformations. Here, several mathematical
equivalent expressions are conceivable to evaluate the ro-
tation parameter of the transformation by hypothesis test-
ing. Depending on the degree of non-linearity, the effec-
tive a can differ in comparison to its usually used y? equiv-
alent. The planar geodetic coordinate transformation is a
good example to study non-linear effects in geodetic mod-
els, because under standard assumptions on the covari-
ance matrix it admits an analytical solution (Teunissen
1985, 1986). Moreover, the planar coordinate transforma-
tions have a wide range of applications in geodesy.

The paper is organized as follows: After briefly in-
troducing the non-linear Gauss—Markov model, we focus
on the LR test as a general decision method. Then the
least squares solutions of planar coordinate transforma-
tions are introduced. As an example for hypothesis testing
in non-linear models, we set up a test problem for the rota-
tion angle and solve it by various different applications of
the LR test. Finally, we compare these different solutions
in terms of decision errors, for which the method of Monte
Carlo integration is used.

2 Hypothesis test in the non-linear
Gauss—Markov model

Throughout this paper, true values of quantities will be de-
noted by tilde and estimates by hat.

We start from the non-linear Gauss—Markov model
(GMM)

Y=A(X)+e (2.1)

where Y is a n-vector of observations and X is a u-vector
of unknown true model parameters. A is a known non-
linear operator mapping from the u-dimensional param-
eter space to the n-dimensional observation space. e is an
unknown random n-vector of normally distributed obser-
vation errors. The associated stochastic model reads:

e ~ N(0, o’P1) (2.2)

P is a known positive definite n x n-matrix of weights
(weight matrix). o2 is the a priori variance factor, which
may be either known or unknown. Estimates X, Y of the
unknown true values of X, ¥ = Y - e are desired.

In geodesy, a decision problem is generally posed as
a statistical hypothesis test. Opposing the special model
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represented by the GMM Egs. (2.1), (2.2) augmented by non-
linear equality constraints

B(X)=5 2.3)
to a general model represented by the GMM without equal-
ity constraints is equivalent to opposing the null hypothe-
sis

Ho:B(X)=5 (2.4)
to the alternative hypothesis
Hy:B(X) # 6. (2.5)

The standard solution of the testing problem in classi-
cal statistics goes as follows (e.g. Tanizaki 2004 p. 49 ff):
1. A test statistic T(Y) is introduced, which is known to

assume extreme values if Hy does not hold true.

2. Under the condition that Hy holds true, the probability
distribution of T(Y) is derived, represented by a cumu-
lative distribution function (CDF) F(T|Hp).

3. A probability of type 1 decision error a (significance
level) is suitably defined (say 0.01 or 0.05 or 0.10), see
Fig. 1.

4. For one-sided tests, a critical value c is derived by
c = F'1(1 - a|Hy), where F~! denotes the inverse CDF
(also known as quantile function) of T|Hy. (For two-
sided tests two critical values are needed, but this case
does not show up in this investigation.)

5. The empirical value of the test statistic T(Y) is com-
puted from the given observations Y. If T(Y) > c then
H, must be rejected, otherwise we fail to reject Hy.

In principle, we are free to choose a test statistic. Even
heuristic choices like

T(Y):= HB (X) - EH 2.6)

with some suitable norm || - || are conceivable. Although
the statistical test power (probability of rejection of Hy
when it is false) of such a test might be non-optimal or even
poor.

3 The likelihood ratio test

In geodesy, we most often apply the likelihood ratio
(LR) test (e.g. Tanizaki 2004 p. 54 ff). The test statistic of
the LR test reads

max {L (X, 0?|Y) : B(X) = 6}
max {L (X, 0?|Y)}

Tir(Y):= (3.1)
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Figure 1: Probability density functions f of test statistic T under Hy
and H, and decision errors a, .

where L (X, 0?|Y) denotes the likelihood function of the
GMM to be maximized with no restriction (denominator)
and with the restriction B(X) = b (numerator). For the
GMM Egs. (2.1), (2.2) the likelihood function reads

L(X,02|Y) -

5\ 05 1 ) r )
(det <2ﬂ0 P )) exp (~555(¥ - A(X)P(Y - A (X))
(3.2)
It is well known that maximizing L (X, UZ\Y) is equiv-

alent to minimizing the least squares error functional (e.g.
Koch 1999 p. 161f, Losler et al. 2017)

QX) := (Y- AX)P(Y - A (X)) (33)

either with constraints B (X) = 6 or without constraints. In
the first case, Q is augmented by the Lagrange term

Q (X, k) = Q(X) + 2k" (B (X) - b) (3.4)

where k is the vector of Lagrange multipliers, in geodesy
also known as correlates.

To simplify matters, we will restrict the derivation to
the case of a known a priori variance factor 02, In this case,
(3.1) can be expressed as

exp (
Tir(Y) = .
exp (_mlnz(fz(X)))

exp (_ min(Q (X, k)) - min(Q (X))> (3)

202

B min(Q'(X,k)))

202

Moreover, we may replace T;(Y) by the fully equiva-
lent test statistic

min(Q (X, k)) - min(Q (X))

T(Y):=-2-1og(Trr(Y)) = o2

(3.6)

If T(Y) > c with a properly chosen critical value c,
then Hy must be rejected, otherwise we fail to reject Hy.
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Note that all these derivations are fully valid even if A or
‘B are non-linear operators.
In the case that A and B are both linear operators, we
obtain the expression (e.g. Lehmann and Neitzel 2013)
T(Y)=wlztw

w

3.7
where

Wi=B (X) — 6 (3.8)
is the vector of estimated misclosures and X, is the re-
lated covariance matrix. X denotes the minimizer of Q(X)
in Eq. (3.3), known as least squares estimate of X. Equa-
tion (3.7) can be seen as a special case of Eq. (2.6). If 62 is
known and Eq. (2.2) holds true, the test statistic Eq. (3.7)
follows the distributions:

T (Y|Ho) ~ x* (m) (3.9a)
T(Y|Hy) ~ x> (m, A') (3.9b)

with the non-centrality parameter
A =Wz (3.10)

m denotes the number of independent constraints. The
vector of true misclosures w = B (5() — b and hence also
A’ are naturally unknown.

All established tests in geodesy belong to the class of

LR tests. The rationale of these tests is provided by the

famous Neyman-Pearson lemma (Neyman and Pearson

1933), which demonstrates that under various assump-

tions such a test has the highest statistical test power

among all competitors. It is often applied even if we can-
not exactly or only approximately make these assump-
tions in practice, because we know that the power is still

larger than for rival tests (Teunisssen 2000, Kargoll 2012,

Lehmann and Vof3-Béhme 2017).

In truly non-linear models, we generally encounter
three special problems:

1. The likelihood function Eq. (3.2) can only be maxi-
mized iteratively with the danger of finding only a lo-
cal maximum. (Global optimization methods, which
promise to find also the global maximum, are not yet
widely applied practically because of the considerable
computational workload for multidimensional prob-
lems.)

2. Test statistic Eq. (3.7) is only an approximation of the
true LR test statistic Eq. (3.6) because the likelihood
ratio is taken in the linearized GMM.

3. The probability density function (PDF) of T (Y) or
some equivalent of it does not belong to the well-
known set of statistical test distributions (t, y?, F etc.)
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such that the critical values must be computed numer-
ically.

In the next sections, we will illustrate some consequences
of these problems. In the conclusions, we will return to
these points.

4 The least squares solution of the
three-parameter transformation

cartesian target
system

Xp

cartesian source system

Figure 2: Planar parameter transformation

In a plane consider two Cartesian reference frames x, y and
X, Y, which are related by translation and rotation, such
that an arbitrary point P has coordinates xp, yp, Xp, Yp
satisfying the non-linear transformation equations

Xp=Xo+Xxp-cCcose—yp- sine

. (4.1)
Yp=Yo+xp:-sine+yp- cose

with transformation parameters Xg, Yo, €, see Fig. 2. Re-
lated equations can be formulated for the opposite trans-
formation direction.

We start from a set of N points having observed coordi-
nates

Xl,yl,...,XN,yN,X1,Yl,...,XN, YN (42)

in both frames. The problem is to find the best estimates for
X9, Yo, €intheleast squares sense, also known as the least
squares solution of the three-parameter transformation.

In the following, we restrict ourselves to the case that
the coordinates of one system are non-stochastic (error-
free) fixed quantities. Without restriction of generality, the
error-free coordinates are denoted as x1,y1,...,Xn,YN-
Moreover, we assume that for each pair of observations
X;, Y;, both X; and Y; have the same weight p;. This GMM
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Xy
Y1 ¢
Y= y X= Xo s
Xy Yo
Yy
Xo+x1 - COSE€ -y Sin€
Yo+x1- siné+y; - cosé
A (%) = ; ,
Xo+Xxy - COSE—yy - siné
Yo+ xy - siné+yy - cosé
pi 0 -+ O 0
0 p1 0 0
pP-= . : : (4.3)
0O O pn O
0O O 0 pn

This setting is one of the rare cases, where an analytical
solution exists. For the sake of simplicity, we assume that
o? is chosen such that the weights fulfill Zp; = 1.

For the sake of compact notation, we introduce in ei-
ther coordinate system the following abbreviations:
1. the weighted barycentres are given by

N N
X+ := ZpiXi, Ys = Zpiyi,
i=1 i=1

N N
X+ 1= PiXi, Yei= > DY
i=1 i=1

2. the coordinates related to the barycentres as origins

(4.4)

AXl' = Xi —X*, AYI = Yi - Y*,

AXj = X;—Xx, AY;:=Y;i— Y~ (4.5)
3. the moments of inertia related to the barycentres

h:= ip,- (Axiz +Ayi2> =x?-yr+ ipi (xlz +yi2)
i=1

i=1

(4.6a)
N 2 N 2
H:=> p; (AX1~2+AYi> - x2-v2+ 3 p; (Xi2+Yl.)
i=1 i=1
(4.6b)
4. the auxiliary terms
N N
c:= > pi(AXidx; + AY;Ayy) = > pi (XiAx; + YiAy,)
i=1 i=1

(4.7a)
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N N
s:= Y pi(AYidx; - AXAy) = > pi (Yidx; - Xidly;)
i=1 i=1

(4.7b)

In GMM Egq. (4.3) the non-linear least squares solution
for €, Xq, Y, reads (see appendix 1)

€ = arctan % (4.8a)
e ~ PN Xx+C—Yx-S
Xo=X+—X+x+ COSE+ Yy« SIN€E=Xe - ———=——
° Y V2 +s2
(4.8b)

Xx+S+Yx-C
V2 +s2
(4.8¢)

Yo=Ye—X«: siné—y«- cosé= Y-

Q(f{) =h+H-2vc?+s2

These formulas do not directly contain the observa-
tions Y, but only the statistics c, s, X«, Y«. All other quanti-
ties are fixed. Therefore, the vector (c, s, X+, Y*)T is a suffi-
cient statistic of the problem. Moreover, it is normally dis-
tributed because of the linear relationship

(4.8d)

Axy Ay, Ayy
S -Ay; Axq Axy
Z := = PY (4.
X« 1 o .- 0 (49)
Y« 0 1 oo 1

The covariance matrix of Z can be derived by covariance
propagation

Axy Ay, Ayy
-Ay; Axq Axy
Xy =
1 0 -+ 0
0 1 cee 1
T
Ax1 Ay, Ayy
po2p-ip| A1 Ax Axy
1 0 - 0
0 1 cee 1
h 0 0 O
e (4.10)
0 0 1 0
0 0 0 1

Thus, c, s, X«, Y« are even independent random vari-
ables. For the expectations we obtain

N
E{c} =) pi(E{Xi} Ax; + E{Yi} Ay))

i=1
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N
=Y pi((Xo+x;- cos&-y; - sin&) Ax;
1

3

+ (Yo +x;- siné+y; - cos&) Ay;)

Di ((Ax; - cos& — Ay; - sin€) Ax;

'Puﬂz

e

i=

+(Ax; - sin€+ Ay, - cos€)Ay;) = h- cos€& (4.11a)

N
E{s}=> pi(E{Yi}Ax; - E{X;}Ay;) = h- sin& (4.11b)

i=1

N N
E{X:} = Zp,-E{Xi} = Zpi (Xo +x; - COSE —y; - sin&)
i-1 i-1

=Xo+ X« COSE—y«- siné (4.11¢)

N N
E{Y.} = ZpiE{Y,-} = Zpi (Yo +x; - siné+y;- cos&)

i=1 i=1

= Yo+ X« sin&+y«- cosé& (4.11d)

Starting from an initial guess for €, Xy, Yy, the solu-
tion Eq. (4.8) can also be obtained as the limit of a se-
quence of linearized GMM. Despite of the non-linearity of
the GMM, we obtain a unique solution for the parameter
estimation problem. Thus, there is no danger of finding
only a local minimum here.

5 The least squares solution of the
four-parameter transformation
In extension of Eq. (4.1) we introduce a scale parame-

ter u such that the new observation equations read

Xp=Xo+u-(xp- cose—-yp- sine)
Yp=Yo+pu-(xp- sine+yp- cose) (5.1)

By the substitution a := u - cose, 0 := u - sine we
obtain the linear representation

Xp=Xo+Xxp-a-yp-o0

Yp=Yo+xp-0+yp-a (5.2)
with the parameter vector
a
5 0
X = 5 53
%, (5.3)
0
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The least squares solution of this linear GMM is simple and well known:

o=13 (5.4a)

a=£
K h

5{0=X*—X*-&+y*-6 (54b)
170=Y*—X*-6—y*-& (5.4(:)
2 2
e c-+S
o(X)-H- (5.4d)

where h, H, c, s are as defined in Egs. (4.6a,b), (4.7a,b). This solution permits an estimate of the rotation angle and scale
parameter:

~

€ = arctan % = arctan % (5.5a)
Vo2 1+ o2
ji=\a2+6? = % (5.5b)

See also appendix 3. Note that Eq. (5.5a) coincides with Eq. (4.8a).

6 LR hypothesis testing in the three-parameter transformation

As an example of a hypothesis test in a planar transformation model, we want to test a hypothesis for the rotation angle
€ of the form

Hy:€=€9 vs. Hy:€# ¢ (6.1)

which can be identified as a special case of Egs. (2.4),(2.5) by
B(X) = 0 X, 5=€0, W=é—€0 (62)

with m = 1. Obviously, B is a linear operator, but A is not. To apply test statistic Eq. (3.7), A(X) must be linearized by
Taylor expansion:

A(X):A()‘()+A- (X—X)+0(HX—XH) (6.3)

In the following, we investigate four different derivations of a test statistic for problem Eq. (6.1).
@ Starting from an initial guess for €, Xg, Yo, a sequence of linear GMM is computed, until the iteration converges. In
the final step, the Jacobian matrix A assumes the form

[E=N
o

-X1-siné€-y; - cosé€
X1+ COSE—-Yyq- siné
A= : : : (6.4)
-Xy - sin€-yy- cosé
XN COSE—yy - Sing 0

o
[u=y

=Y
- o -
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This gives an approximation of the covariance matrix of the estimated parameters (see appendix 4)

-1

) p; (xlz + yf) symm.
2( 4T 2 . .
25(=‘7(A PA) =0 | —x«-sin€-y«-cos¢ 1
X«+ COSE—-y~-sin€ O 1
5 1 symm.
= % Xx+SiN€+ys+cos& h+(x«-siné+yx- cosé)? (6.5a)
2 2
—Xx+ COSE+yx-siné Y77 sin28 - x«yxcos2&  h+(xx- coS& -y« - siné)?
2
o
03 = o (6.5b)

When we perform the LR test of Eq. (4.3) using the linear approximation of A, we come up with Eq. (3.7), which
reads here

. 2 5
T31(2) = (€ - €o) ngl (é-¢€) = (e UAEO) = % (arctan % - eo) (6.6)
€

(3.1” denotes here the 1st version of the three-parameter test statistic.)
@ A practically equivalent formulation of Eq. (6.1) is

Hp:tan€ =taneg vs. HA :tané€ # taneg (6.7)

(disregarding the impractical non-issue that tan € = tan (¢ + m)).
Here, B (X) is also non-linear and must be linearized by Taylor expansion:

13(X)=B(X)+BT- (X—X)+0<HX—XH) (6.8)

In the final step of the iteration, the Jacobian matrix B assumes the form
B= 0 (6.9)

In this case, Eq. (3.7) reads

-1
T3, (Z) = (tané - tan eo)T(BTZXB) (tané - taneg)

_ (tané - taneo)’  h (sc—cztane())z (6.10)

Pcos4e 07 2 +s2

This result is obviously different from Eq. (6.6). One could argue that Eq. (6.10) should be less reliable than Eq. (6.6)
because also B must now be linearized too. But this argument is not conclusive, because we could have obtained this
result also by substituting ¢ := tan € in the transformation equations and solving and testing for the new parameter
t instead of €. In this case, B would be the same as in Eq. (6.2). The same line of reasoning would apply for other
trigonometric functions in Eq. (6.7).

The main reason why (6.6) and (6.10) are different is not the “non-issue” discussed above, but the fact that the
linearization errors by truncating the corresponding Taylor expansions are different. Proof: Use “cot” instead of “tan”
in (6.7). Although the same € = € + ki, k € Z holds, we arrive at a different test statistic than in (6.10).
® Applying covariance propagation to Eq. (4.8a) and using the quotient rule and the chain rule, we obtain the expres-
sion:

T

2 =S
5= 00|22 00 = = 6.11
e \Tiva]e Ties]e egfe @07 €1




DE GRUYTER Hypothesis testing in non-linear models exemplified by the planar coordinate transformations = 105

This is different from Eq. (6.5b), because the linearization is applied at a later stage. Therefore, we can assume that
this is a better approximation than Eq. (6.5b). Using this expression in Eq. (3.7) yields

A 2 2 2 2
T33(Z) = (e 0A€°> = Coz’f (arctan % - eo) (6.12)
€

But still this test statistic is a linear approximation via Eq. (3.7).
@ To obtain a fully non-linear LR test statistic, we revert to Eq. (3.6):

B min(Q,) - min(Q)

S ez

_ (X0, Yo, €0) - 2(Xo, Yo, &)
UZ

T3.4(2)

_ L h+H-2(c-coseg+S- sineg
o2

—(h+H—2\/m)}
2 (\/m—c- COS€y—S - sineo) (6.13)

02

where appendix 1 and Eq. (4.8d) have been used.
Note that this test statistic is as simple to compute as the three previous versions.

7 LR hypothesis testing in the four-parameter transformation

We want to test the same hypothesis Eq. (6.1), but now for the four-parameter transformation. In terms of the substitution
model parameters Eq. (5.5a), it can be formulated as

Hp: arctan% =€p VS. Hy: arctan% # €9 (7.1)

This can be identified as a special case of Egs. (2.4), (2.5) by

~ A

B (X) = arctan %, b=¢€o, W= arctan% ~€o (72

withm = 1.
In the following, we investigate four different derivations of a test statistic for problem Eq. (7.1).
@ Acting on a, o, operator B is non-linear, but A is linear here. Consequently, B (X) must be linearized as in Eq. (6.8):

T -0
B= _Oz 12 00 =—5 : 2 . (7.3)
[1+%}a2 [1+g—2}a 0% +a 0
0
In this case, Eq. (3.7) reads
T, < (Z 0 TBTZB’1 o c? +s2 s 2 "
41 (2) = (arctan e eo> ( % ) (arctan e eo) =~ oh (arctan P eo> (7.4)

where Xy, is the well-known covariance matrix (e.g. Wolf 1966, Somogyi and Kalmar 1988)

1/h 0 O
B 1/h 0 0
0 0 0 1
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It turns out that T,.1 (Z) = T5.3 (£). However, the corresponding models are different.
@ Alternatively, we can solve the non-linear four-parameter transformation with parameters y, € instead of a, o by iter-
ation. In the final step, the Jacobian matrix A assumes the form

-x1+jl-siné-y;-ji- cosé€ xp-cos€-y;-siné 1 0
Xy -fl-cosé-yy-ji-singé xp-siné+y;-cose 0 1
A= : : P (76)
-xy-jl-siné-yy-jl-cosé€ xy-cosé-yy-siné 1
Xy:fl-Ccos€—yy-fl-siné xy-siné€+yy-cosé 0 1

This gives the covariance matrix of the estimated parameters (see appendix 5)

- 2
f*Zp; (Xlz + )’,-) symm.
_ 2
zy =0’ (a"Pa) Lo 0 i (x+])
fio (=X« sin&-ys- COSE) Xx:COSE-yx- siné 1
fi (Xx- COSE—ys-siN€) X«-SINE+Ys- COSE 0 1
f[z symm.
o2 0 1
=5 - . . A . 2 7.7a
h ﬁl- (X« - sin€+ys- coS€) yx-SiNé&—-x«- cOSE Zpi(Xiz’f}/,-) (772)
f[l “ (yx- siné—-x«-cosé&) —xx-siné-y«-cosé 0 Zp; (Xlz +yl.2)
2
2 o
Ué = m (7.7b)

The hypotheses are now formulated as in Eq. (6.1). Acting on y, €, operator A is non-linear, but B is linear here and
corresponds to Eq. (6.2).
When we perform the LR test using the linear approximation of A, we come up with Eq. (3.7), which reads here

N 2
e—eo> _c?+s® h

s 2
o g2 (arctan o eo) (7.8)

02D (E-e0) 53" (6-eo) -

It turns out that T4, (2) = T41 (Z2) = T35 (2).
® Let us now study the special case €y = 0. Here, the hypotheses can be written as

H0:6=OVS. HA(N)#O (79)

In the four-parameter transformation, this can be identified as a special case of Egs. (2.4), (2.5) by

T

B (X) = X, 6=0, W=0 (7.10)

S O = O

Ti3( @)= 5=—F =% (711)

where Eq. (5.4) and Eq. (7.5) have been used.
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@ To obtain a fully non-linear LR test statistic, we revert to
Eq. (3.6):

Tus(Z) min(Q') - min(Q)

02
_ 'Q(X05 YO’ €0, ﬁ) - 'Q(XO’ YO’ é’ ﬂ)
= 2
: 2 2 o2
1 (c- cosep+s- sinep) c°+s
= ) H_ _H+
o h h
. 2
_c?+5?—(c- cosep + S - sineg)
ho?
_(c-singy-s- cos €p)*

(712)

ho?

where appendix 2 and Eq. (5.4d) have been used.

8 Distributions

Due to the coincidence with Ts3, the test statistics
T4.1, T4 will not be further discussed.

Note that all derived test statistics T;(Z) depend on
only two of the four elements of Z, i.e. ¢ and s. This will
be highlighted by the notation T; (c, s) used below:

h S 2
T5.1(c,s) = 2 (arctan o eo) (8.1a)
h (sc-c’taneg\’
T3, (C, S) = ? (TSZO) (8.1b)
2,2 2
T35 (c,s) = % (arctan % - eo) (8.1c)

2 .
T5.4(c,8)= = (\/c2+sz—c- COS€y— S+ smeo)

O"z
(8.1d)
2
Ty3(c,s)= o2h (8.1e)
. i _— . 2
Tya(C,s) = (c- sineg—s- CcoOSE€p) 8.16)

o2h

In the linear or linearized GMM, we obtain from
Eq. (3.9) the following distributions of the LR test statistics:

T;(c,s)|Ho ~ x> (1), i=3.1, 3.2, 3.3, 4.3, 4.4 (8.2a)

2
Ti(c,s)|Ha ~ x* (1, %(é—eo) ) ,i=3.1, 3.3 (8.2b)
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Ts.,(c,s)|Ha ~ x2 (1, %(tan € —tan eo)zcos4é>

(8.2c)

=2
Ty (c,8)[Ha ~x* (1, %) (8.2d)

- . ~ 2
’ C-+ SINn€Eyg— S+ COS €
Tyt (C, )| Ha ~ X2 (1, (€ siney "8 cosco) ) (8.2¢)

However, observing that test statistics T;(c,Ss),
i = 3.1, 3.2, 3.3,4.4 in Eq. (8.2a) are obtained by lin-
earization of A or B or both, these distributions can be
no more than approximations of the true distributions of
T; (c, s) in the vicinity of €. But oftentimes T; (c, s) is eval-
uated far away from &, especially if a is small. Test statistic
T3.4, T4.4 is defined in the fully non-linear model and test
statistic T, 3 is defined in the fully linear model. Therefore,
no such approximation is made here.
Remark: In Eq. (8.2b) it would not be correct to apply Eq.
(6.11) instead of Eq. (6.5b). Equation (6.5b) must be used
even in case i = 3.3, because Eq. (6.5b) is derived from X;
in Eq. (6.5a), as it is required by Eq. (3.9).
Simplifications:
@ If we rotate the source system (x, y) by €o about the
barycentre (xx,y+) and solve the same transformation
problem with the rotated coordinates, c, s are replaced by

C =C+COS€Ey+S- siney

S =-c-siney+s- coseo (8.3)

N

Note that the vector (c,s) is the result of the rota-
tion of (c, s)T by angle —¢( about the origin (0,0) and has
therefore the same covariance matrix

h 0
Z‘c',s'=o'2< 0 h)

The transformation problems with the rotated coordi-
nates have the solution

(8.4)

’

cosé - c _ C-COS€y+S- sinegg
Vc'2+s?2 V2 + 52

= oS €+ cos€p +siné - sineg = cos (€ - €) (8.5)
Now, testing Eq. (6.1) is obviously identical to testing
Ho:&=0vs. Hi:& #0 (8.6)

with the rotated coordinate system, i.e. with ¢, s". This ob-
viously results in the same test statistics T3 1, T3.3. Less
obvious, the same applies to T3 4 and T, 4 by virtue of

T34 (C,, s') = % (\/ c2+s2- cl)
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2 .
== (\/c2+52—c- COS€E)—S+ smeo>

0‘2
=Ts.4(c,S) (8.7a)
T (c' s') _ i _ (=c- sineg + s - coseo)2
4.4 ’ 02 ho_z
= T4_4 (C, S) (87b)

For T, 3 no rotation is necessary, because it only ap-
plies to the special case €y = 0. Moreover, note that for
€0 = 0 we find a coincidence of T, 3 and T, 4. This shows
that T, 4 follows the y?-distribution Eq. (8.2a,d,e). Hence,
we will further discuss only T4 4.

However, the situation for T3 , is different. Here, a dif-
ferent result is obtained. Note that the solution in terms of
the parameter ¢ := tan € is not rotational invariant. This
becomes obvious in the case of & = +71/2, where f not even
exists.

Disregarding this non-issue, we will continue with
€o = 0, noting that almost no restriction of generality is
made.

@ If we scale both coordinate systems by the factor 7! and
solve the transformation problem with the scaled coordi-
nates, ¢, s, h, are replaced by

.oc i »~ h 2 o?

c =—, § =—, g =—=1

0_2 = F ) 0_2 (8.8)

The weights do not change, such th?t Zp; = lisre-
tained. Note that the new vector (¢’,s”) has the covari-

ance matrix
h 0 K0
) -(58) e

Zc”,s" =07’ (

The new solutionis & = .
Now testing Eq. (8.6) with the scaled coordinates, i.e.
with ¢”, s”, obviously results in

”

2
T3.1 (c", s") =h <arctan i—) =T34 (c,, sl) (8.10a)
v o 2
T ") = —SE =T 's’) (8.10b)

32(€C,S | = m =13,1(C,S .

ny oy i 2
"o C “+S8 S ro
Ts3(c,s = arctan —, | =T33(c,s
c

(8.10c)

T34 (c", s") =2 ( c"2+5"2 - c") =T34 (c', s')
(8.10d)

DE GRUYTER

"2
T4_4 (C", S") = % = T4_4 (Cl, S,) (8.106)
Thus, all test statistics are scale invariant, too.
A special problem exists for T5 ,, which can be written
as
o W, W
T ( ):7 26 <L 8.11
32(c,s g Sin28 < (8.11)
The fact that the 2 density function is non-zero on the
whole positive real line again proves that T5 , has not the
X2 distribution.
Henceforth, we drop double-primes, such that

(8.12)

is assumed with almost no loss of generality. (Remember

that “almost” here concerns only T ,, which is not rota-

tion invariant.)
The question, which test statistic is best, must be an-
swered by the resulting probabilities of decision error.

1. The probability of type 1 decision error a is usually se-
lected by the user. But if the 1 - a-quantile of y?(1) is
used for T34, T5.5, T3 3, the effective @ can be differ-
ent.

2. The probability of type 2 decision error 8 should be
small.

Both probabilities « and S8 are linked via the critical value
¢, see Fig. 1.

9 Probability of type 1 decision
error

The idea is to compare the 1 — a-quantiles of y?(1) with
the quantiles of the true distribution of T;|H, obtained
by Monte Carlo integration. This method has been suc-
cessfully used e.g. by Lehmann (2012) for the computation
of critical values of normalized and studentized residuals
employed in geodetic outlier detection. In principle, it re-
places

e random variates by computer generated pseudo ran-

dom numbers,
e probability distributions by histograms and
e statistical expectations by arithmetic means

computed from a large number of Monte Carlo experi-
ments, i.e. computations with pseudo random numbers in-
stead of noisy observations.
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In the case that Hy is true, we have € = 0, such that
from Eq. (4.11) follows

E{c|Ho} = h, E{s|Ho} = 0. (9.)

According to Egs. (4.10), (8.12) we need to generate the
following pseudo random numbers:

c|Hy ~ N(h, h), s|Ho~ N(O,h) 9.2)

We use M = 10 Monte Carlo samples, which turns out
to be sufficiently high, because the results only insignifi-
cantly change, when the computations are repeated with
different pseudo random numbers.

We use three stages of non-linearity, expressed by the
signal/noise ratio: h = 1000 means that the signal is 1000
times larger than the noise (¢ = 1), which causes only
weak non-linear effects. Analogous, h = 100 and h = 10
cause medium and strong non-linear effects, respectively.

In Table 1, the 1 - a-quantiles of y?(1) and the quan-
tiles of the true distribution of T;|Hyp, i = 3.1, 3.2, 3.3 are
compared. For T43 = T4.4 we can directly use the quan-
tiles of x%(1). As expected, the largest differences occur for
h = 10 and T;,. Using the y?-quantile as a critical value
can be both, an advantage and a disadvantage in terms of
a. Consider h = 10 and a desired a = 0.01 in T5_1, we erro-
neously select 6.63 as a critical value, instead of 8.92. The
true a for T5.; is not 0.01, but even larger than 0.02. By
interpolation of the derived quantiles in Table 1, we obtain
an effective « = 0.021. In contrast to that, we find from
Eq. (8.11) that |T3.5| < 2.5 always holds, such that 6.63 is
never exceeded, which corresponds to an effective a = 0.

The true quantiles of T3 4 are given in Table 2, but
should not be compared to the y?-quantiles, because they
are obtained in the non-linear model. It is perhaps un-
expected that T3 4 follows the y? distribution even better
than other test statistics, as can be seen from a comparison
of Table 1and 2.

10 Probability of type 2 decision
error

The aim of this investigation is to find out, which test statis-
tic has the highest statistical test power, i.e. the best abil-
ity to reject a false Hy. For comparison, we plot the power
function of T;|H,, i = 3.1, ..., 4.4, denoted as

1-p; (&)

Due to the symmetry of §;, all plots are produced
only for positive & Whenever Eq. (8.2b,c) hold only ap-
proximately, we again use Monte Carlo integration to

(10.1)
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compute the true distribution of T;|H4. According to
Egs. (4.10), (4.11), (8.12) we need to generate the following
pseudo random numbers:

c|Hy ~N(h- cos& h), s|Hy~ N(h-sing, h) (10.2)

We find

1-B.(1&)) =P(T; > ¢i|Hp), i=3.1,...,4.4 (103)

where c; is the critical value, which equals the 1 - a-
quantile of either the x2(1) distribution or the true distri-
butions obtained in the preceding section, whenever this
is different. The first case is practically applied. Below we
restrict ourselves to the choice of @ = 0.05.

In Fig. 3, the power function Eq. (10.3) is plotted for
T,4.4, which requires no Monte Carlo integration because
Eq. (8.2e) holds exactly. We see that the power is increas-
ing with |€|, which is expected, because Hy and H, are
getting more and more different, cf. Fig. 1. Furthermore,
the statistical test power is worse when h is small, which is
also expected. Remember that h = 10 means that the mo-
ment of inertia of the points are only 10 times larger than
the standard deviations 0 = 1 of the target coordinates,
which makes testing hypotheses nearly hopeless.

L L L s
0.00 0.05 0.10 0.15 0.20

Figure 3: Power functions for T4 4 and various values of h.

In Fig. 4-6 the other power functions Eq. (10.3) are
plotted relative to that of T, 4. A ratio > 1 means that T;
outperforms T, 4 and vice versa. Test results with y?(1)-
quantiles are displayed by dotted curves and are denoted
by T ()(2), while those using true distributions computed
by the Monte Carlo method are displayed by solid curves
and are denoted by T (a). For Ts 4 only the solid curve
makes sense.

In case of weak non-linearity, i.e. h = 1000, see
Fig. 4, practically no difference is visible. All seven power
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Table 1: Quantiles of x2(1)(column 2) vs. quantiles of the true distribution of T;|Ho, i = 3.1, 3.2, 3.3 (following columns)

Ty3=Tyy T34 T3, T33=Ts1=Tsr
Xz(l—a, 1) h=10 h=100 h=1000 h=10 h=100 h=1000 h=10 h=100 h=1000
a=0.10 2.71 299 2.73 2.71 1.93 2.63 2.70 2.99 2.73 2.71
a=0.05 3.84 4.46 3.89 3.85 2.28 3.69 3.83 4.38 3.89 3.85
a=0.02 5.41 6.78 5.51 5.42 2.46 5.12 5.38 6.40 5.51 5.42
a=0.01 6.63 8.92 6.78 6.64 2.49 6.19 6.58 8.07 6.77 6.64
Table 2: Quantiles of the true distribution of T5 4|Ho
e By K
1.025 : X3¢ 3¢_
T34 h=10 h=100 h=1000 R
a=0.10 2.79 2.71 2.71
a=0.05 3.96 3.85 3.84 R
a=0.02 5.59 5.43 5.41 Qz 0975
a=0.01 6.86 6.65 6.63 = =BTy, L
Q’.g_ =T T0O),
< 0950 Amx—T0,,
v :
o —A—T(a),,
1.005 0.925 - e 7 Ty
7 —%—T(a)y,
I —k— TGy,
0.900 . : :
0.00 0.05 0.15 0.20

~ 1.000
<
~
> .
= v/V _'A'_T(Xz)m
< 7/ —=T(A),,
— v’ :
= 0995 7 —X—T(x%),
ﬁ/ —A—T(a):”
V,/V/ ——T(a),,
w7 X T,
0.990 | KTl
0.00 0.05 0.10 0.15 0.20
€

Figure 4: Power function ratios for h=1000 (weak non-linearity).
Dotted curves: using x*(1)-quantiles and are denoted by T (x?),
solid curves: using true quantiles for critical values and are denoted
by T (a). Black and red solid curves visually overlap.

functions behave equally well. In case of medium non-
linearity, i.e. h = 100, there is also no great difference be-
tween the test statistics, except for T3 ,, when the x*(1)-
quantile is used (red dotted curve), see Fig. 5. The reason
is that this approximate quantile (¢ = 3.69) differs much
from the true value (c = 3.84). Otherwise, x%(1)-quantiles
are outperforming the true quantiles.

The strong non-linear case, i.e. h = 10, is depicted in
Fig. 6. The differences between the tests are even ampli-
fied. Note, the different vertical scales in Fig. 4-6. When
the y?(1)-quantile ¢ = 3.84 is used, T5 , is unable to reject
a false Hy, no matter how large |€| is (red dotted curve).
This is a consequence of Eq. (8.11) and the price we have to
pay that a = 0 has been obtained in the preceding section.

o
My =
o

Figure 5: Power function ratios for h=100 (medium non-linearity).
Dotted curves: using y*(1)-quantiles and are denoted by T (y?),
solid curves: using true quantiles for critical values and are denoted
by T (a). Black and red solid curves visually overlap.

LR FeR: VR
1.25F Rfen *‘k'ﬁiiﬁjéjg:é-><-—>(—->6-9<»—><—»><
,A_A__A__A_A__A
1.00
@1
T 075 —A-—T(A),,
= —7=T06A)
2 X2 3.2
T 050 = XK=T(x )34
—A—T(a),,
—7—T(a);,
0.25 T,
—K—Tla)y,
0.00
0.00 0.05 0.15 0.20

0.10
€

Figure 6: Power function ratios for h=10 (strong non-linearity). Dot-
ted curves: using y%(1)-quantiles and are denoted by T (x2), solid
curves: using true quantiles for critical values and are denoted by
T (a).

Due to the strong non-linearity, the power is again worst, if
the true quantiles are applied. This behavior is expected,
because a shift of the critical value ¢ changes a and f§ in
opposite directions, see Fig. 1. It follows that the increase



DE GRUYTER

of probability of type 2 decision error corresponds to the
loss of probability of type 1 decision error observed in the
preceding section.

All solid curves are free of this effect, because they
truly refer to a = 0.05. This can easily be validated be-
cause for € = 0 the power is always equal. The only signifi-
cant differences between the powers of T; occur for strong
non-linearity, so we will only focus on the case h = 10, see
Fig. 6.

In the interval O < € < 0.2 the best power is obtained
for T3 3, where the covariance propagation has been ap-
plied to Eq. (4.8a). This is even better than for the full non-
linear test T5 4 (green curve). But this advantage is very
small and could be accidental. Remember that there is no
mathematical proof that Eq. (3.6) outperforms Eq. (3.7).
This has been demonstrated here. However, for values of
€ > 0.4 the situation changes, as is displayed in Fig. 7.

1.25

1.00

0.75

B (16,

T 050

—A—T(a),,
—g—T(a),;,
—%—T(a);4
—f— T,

0.25

000 C L L L ]
0.0 05 1.0 15 20

Figure 7: Same as Fig. 6, solid curves only, but larger range of &

Note that a comparison of T3 ; vs. T, ; is less instruc-
tive, because if the scale is unknown, one should always
use the four-parameter transformation, even though a test
in a three-parameter transformation model may be more
powerful.

Finally, note that the results in this section are not
obtained from a “numerical experiment”, but are strictly
valid for all planar coordinate transformations with error-
free coordinates in one coordinate system and the conven-
tional assumption on the weights Eq. (4.3).
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11 Conclusions

We have presented an analysis of the decision errors, when
performing LR tests in planar coordinate transformation
models. Several mathematical equivalent expressions are
conceivable to apply the LR test to one specific hypothesis
test Eq. (6.1), but different results are obtained.

At the end of section 3, we named three problems,
which arise, if we apply the LR test to non-linear models
in the usual way, which we now want to further comment
on.

@ The likelihood function Eq. (3.2) can only be maximized
iteratively with the danger of finding only a local maxi-
mum. For problems like many transformations, which per-
mit a unique analytical non-linear least squares solution
like Eq. (4.8), this problem does not exist. The likelihood
function has a unique maximum.

@ Test statistic Eq. (3.7) gives an LR-Test only in the lin-
earized GMM, i.e. not in the truly non-linear GMM. While
Eq. (3.6) requires the minimization of Q and Q', Eq. (3.7)
only relies on the minimization of Q. min(Q ) — min(Q) is
computed only by linear approximation. The consequence
could be a small loss of statistical power of the test, de-
pending on the degree of non-linearity. For the planar co-
ordinate transformations with a« = 0.05 this has not al-
ways been found, not even for strong non-linearity. How-
ever, if a is chosen smaller, the differences between the
power functions amplify.

® The PDF of Eq. (3.6) or Eq. (3.7) does not belong to the
well-known set of test distributions (¢, 2, F etc.) such that
the critical values must be computed numerically. This is
usually not done, because it requires numerical effort. But
using Monte Carlo integration it is simple, as has been
demonstrated in section 9. The advantage would be that
we effectively obtain the desired value of a. Otherwise, we
found a shift of some probability from type 1 to type 2 de-
cision error or back, which is undesired.

The same analytical computation can be done for
other problems, for which explicit non-linear analytical
least squares solutions exist. This encloses
e many other transformation problems, also 3D trans-

formations (e.g. Grafarend and Awange 2003), also

transformation where coordinates in both systems are

error-affected (e.g. Chang 2015)

e many curve and surface fitting problems (e.g. Ahn

2005)

The four parameter transformation is an exceptional case,
because it is intrinsically linear, but can be made non-
linear by parameterization Eq. (5.1). The resulting non-
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linear effects can be investigated easily by comparison
with the linear model Eq. (5.2).

Also, more complex hypothesis tests can be studied in this
way, e.g. in the framework of multiple outlier detection.
The same approach can be applied to study other deci-
sion methods like model selection by information crite-
ria, which has also been applied to transformations and
other geodetic models (Lehmann 2014, 2015, Lehmann and
Losler 2016, 2017).

A Appendix 1: Analytical solution
for the transformation with fixed
scale parameter

The least squares error functional Eq. (3.3) to be minimized
reads with Eq. (4.3)

N
0%) =Y pilXi-Xo - x; - &+y; - 8)?
i-1

+(Y;- Yo —x;-siné—y; - &)?] = min (A1)

Two necessary conditions for a minimum read

20 l
0=— =—2§ p,-(Xi—Xo—x,--cosé+yi-siné)

0Xo i1

N
o0 5 A N
0=a?0=—2§ pi(Y,-—Yo—x,-~51ne—y,--cose)

i-1
Using Xp; = 1 gives estimates for the translation parame-
ters:

N
Xo =Zpl- (X; —X;- cosé+y;- sing)
i-1
=X« — X+ COSE+ Yy« siné
N
Yo=> pi(Yi-x-siné-y;- cosé)
i=1

=Y« —Xxs+-Sin€ -y~ cosé

Substitution Xy, ¥, into the least squares error functional
yields

N
min = Q (5() =Y pi {(AXI- - Ax; - cosé+Ay; - sing)?
i=1

+(AY; - Ax; - siné - Ay; - cosé&) 2}

N
=§:pipX$+AY$+Ax§+Ay%

i=1
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-2AX; (Ax; - cos€ - Ay; - sin€)
-2AY; (Ax; - siné + Ay; - cosé€)]

=h+H-2(c-cosé+s- sing)

The third necessary condition for a minimum reads

0o 109

=-—_=cC-siné-s-cos¢
2 0¢

This gives the estimate for the rotation parameter

o S .
€ = arctan = = arcsin = arccos

S c
Ve +s2 Ve +s?
This unique stationary point must be a minimum because
Q is bounded from below. The minimum is obtained at

2, 2

o c°+s

Q(X) =h+H-2———=h+H-2vc?+5s?
V2 + 52

B Appendix 2: Analytical solution
for the transformation with fixed
rotation parameter

Similar to appendix 1, but with fixed rotation parameter g
and with estimated scale parameter ji, we start from

- N - R R 2
Q(X) =Zp,- [(Xl-—Xo—xl--y-coseo+yi-y-sineo)
i=1
+(Y1-—170—)(,--ﬁ-sineo—yiﬁ-coseo)z} = min
and obtain
Xo=X«—x+-fi- cOSEq +ys-fi- siney

Yo=Y«—x«-ji-siney-ys-jl- coseg

Substitution f(o, Y, into the least squares error functional
yields

min = Q (f() =

N
Zpi [(AXI-—AXI- “jL- coseg+Ay; - - sineo)2

i=1
+(AY; - Ax; - ji- sineg - Ay; - ji - coseo)z]

=p? h+H-2(c-fi- coseq+s-fi- sineo)

The third necessary condition for a minimum reads

100

0=3%

=ji-h-(c- cosey+s- sinep)

This gives the estimate for the scale parameter

_ C-COS€y+S- sinegg
B h

=
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This unique stationary point must be a minimum because
Q is bounded from below. The minimum is obtained at

0 (5() _(c-cosey+s- sin €9)?
B h

C:COS€y+S- sine .
+H-2 Oh 9(c- coseg+s - sineg)
_H- (c-cosep+s- sineo)2

h

C Appendix 3: Analytical solution
for the four-parameter
transformation

Following the line of appendix 2, but replacing €y by €

gives
. C-COSE€+s-siné
H= h

(c-cosé+s- sin?:)2

Q(x)-H- R
Now also minimizing Q (X ) for € yields a fourth necessary
condition
100 1 A A . A
0=5 % h (c-cosé+s-siné)(c-siné-s- cosé)

Atleast one of the factors must be zero, therefore we obtain
two solutions

. s . c
€, = arctan o &= arctan (—g)

but the second solution obviously belongs to a maximum
of Q and is dropped. We thus arrive at

N S
€ = arctan -

Inserting this for fi and Q (f() gives

. V% +s?

=R

R o2 1 o2
Q(X>=H_ Ch+s

D Appendix 4: Covariance matrix of
the linearized GMM of the
three-parameter transformation

The normal matrix of the linearized GMM with A in
Eq. (6.4) is of the form

ATPA =

S < =
O = <
— O =
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with

2 A N
u = Xpi(xj+y;), v = —Xxx - sin€ — y« - COSE,
W :=Xx- COSE — Y« + siné.

The corresponding inverse can be readily written
down:

1 1 -v -w
T o 1 2
A" PA = m -V u-w vw
-w  vw  u-v?
1 1 -v -w
=nl v h+v:  vw
-w  vw  h+w?

because u - v? - w? = —x? - y? + Zp; (xlz + ylz) =h.

E Appendix 5: Covariance matrix of
the linearized GMM of the
four-parameter transformation
The normal matrix of the linearized GMM with A in Eq.

(7.6) is of the form

~2

uo-u 0O u-v pu-w
ATpA - AO u w -v
u-v w 1 0
p-w -v 0 1

with u, v, w as in appendix 4.
The corresponding inverse can be readily written
down:

ﬂ—z _ﬁ_lv _ﬁ_lw
-1 _
(A TPA) -1 ot W v
h v o—w u 0
-i'wov 0 u
where u - v2 - w? = h has been used (see appendix 4).
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