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Abstract: Monitoring deformation of man-made structures
is very important to prevent them from a risk of collapse
and save lives. Such a process is also used for monitor-
ing change in historical objects, which are deforming con-
tinuously with time. An example of this is the Vasa war-
ship, which was under water for about 300 years. The
ship was raised from the bottom of the sea and is kept in
the Vasa museum in Stockholm. A geodetic network with
points on the museum building and the ship’s body has
been established and measured for 12 years for monitor-
ing the ship’s deformation. The coordinate time series of
each point on the ship and their uncertainties have been
estimated epoch-wisely. In this paper, our goal is to sta-
tistically analyse the ship’s hull movements. By fitting a
quadratic polynomial to the coordinate time series of each
point of the hull, its acceleration and velocity are esti-
mated. In addition, their significance is tested by compar-
ing them with their respective estimated errors after the
fitting. Our numerical investigations show that the back-
side of the ship, having highest elevation and slope, has
moved vertically faster than the other places by a velocity
and an acceleration of about 2 mm/year and 0.1 mm/year?,
respectively and this part of the ship is the weakest with
a higher risk of collapse. The central parts of the ship are
more stable as the ship hull is almost vertical and closer
to the floor. Generally, the hull is moving towards its port
and downwards
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1 Introduction

Deformation monitoring of man-made structures, e.g.
bridges, towers and dams, is one of the core tasks of geode-
sists. This is an important issue as such movements put
lives at risk (Savvaidis 2003, Schroedel 2002). Therefore,
knowing that constructions and buildings remain stable
without of any risk of collapse is of tremendous signifi-
cance. Monitoring the deformation of historical objects is
important as they carry culture and thoughts to future gen-
erations. So they should be kept in good condition and
in their original form and shape. By studying the move-
ments of such objects over time, we can reconstruct, re-
pair, strengthen, and preserve them for the future. In this
paper, displacements of one of these historical objects in
Sweden, the Vasa warship, are analysed statistically and
the strong and weak points of this object are determined
and visualised.

Deformation monitoring can be done by a variety
of methods; by traditional surveying, Global Navigation
Satellite Systems (GNSS), photogrammetric and remote
sensing approaches or laser scanning. In the traditional
method, the classical measurements like distance, angles
and height differences are used to compute coordinates of
different parts of a deforming object. Obviously geometric
configuration of points constructing a network has a direct
influence in the quality of coordinates being estimated.
This is the reason why there are lots of studies about opti-
mal design of classical networks (see e.g. Kuang 1996, Es-
hagh and Kiamehr 2007, Eshagh and Alizadeh-Khameneh,
2015a,b and Alizadeh-Khameneh et al. 2015).

Numerous studies have been done in deformation
monitoring. Chen (1983) presented a generalised method
for analysing deformation, Setan and Singh (2001) per-
formed least-squares adjustment of a geodetic network
and estimated time series of coordinate changes and
modelled their trends to how each point on the deform-
ing object moves. Hill and Sippel (2002) recommended
combing geotechnical, motorised surveying instruments
as well as GNSS sensors for deformation monitoring.
Radovanovic and Teskey (2001) studied Global Position-
ing System (GPS) and the robotic tacheometric system for
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this purpose. Meng (2002) studied the real-time deforma-
tion of dams using GPS and accelerometer data. Cosser et
al. (2003) took advantage of GPS, accelerometers, pseu-
dolite and total stations for monitoring the deformation
of a bridge. Dermanis and Kotsakis (2005) reviewed dif-
ferent methods for deformation monitoring. Significance
of deformation was studies by Sanso and Calar de Lacy
(2005) and Albertella et al. (2005). Integration of local
and global frames without transformation for deforma-
tion monitoring purpose was investigated by Zurutuza and
Sevilla (2005). The uncertainty of local geodetic deforma-
tion networks was studied by Chieca et al. (2005). Lima
et al. (2005) compared the classical geodetic network and
GPS with submillimetre accuracy over a large dam. Erol et
al. (2005) used the GPS and levelling data for analysing
deformation of a bridge to enhance the quality of verti-
cal deformation measurements. Subsidence detection by
GPS was performed by Esquivel et al. (2005) in Aguas-
calientes and they mentioned that the subsidence is about
18 cm at some points due to groundwater extraction and
landslides. Raziq and Collier (2007) studied the GPS de-
flection monitoring of the West Gate Bridge in Melbourne
and concluded that for engineering structures that exhibit
smaller movements due to their stiffness GPS is not suit-
able. Andersson (2008) used the undifferenced GPS mea-
surements to detect the displacement over Lilla Edet city in
Sweden. Kaloop and Li (2009) used GPS for deformation
monitoring of a bridge in China using Kalman filter and
least-squares methods. Beshr and Kaloop (2013) used total
station measurements to study and analyse deformation
of another bridge using auto-correction adjustment tech-
niques. Bagherbandi (2016) studied different adjustment
methods for deformation monitoring based on total sta-
tion observations. Amiri-Seemkooei et al. (2017) presented
a method for analysing the stable points in a monitor-
ing network. Niemeier and Tengen (2017) recommended a
method for uncertainty assessment according to the guide-
lines for the expression of uncertainty in measurements
and Monte-Carlo simulation.

The Swedish warship Vasa (Figure 1a) sank in 1628
on its maiden voyage, just 1000 metres after leaving port
(http://www.vasamuseet.se/en/vasa-history/disaster/). It
was salvaged in 1961 and is currently stored and dis-
played in the Vasa museum in Stockholm. During its 333
years at the bottom of the Baltic Sea decomposition and
erosion of the ship occured. Most of the iron that was
holding the ship together had rusted away, some of the
wooden spars were eroded by the streams and sediment
that the stream brought (http://www.vasamuseet.se/en/
vasa-history/salvage). The Vasa warship has been, and
still is, studied carefully to monitor and detect all move-

DE GRUYTER

ments and changes in the body of the ship. Since Octo-
ber 2000, the displacement of this warship is monitored by
Horemuz (2003). The data have been processed and anal-
ysed by Rosewarne (2007) as well. Over the hull there are
227 monitoring points, which can give a much clearer pic-
ture of how the ship is deforming due to the ongoing de-
composition. This study is a continuation of the work done
by Horemuz (2003) and Rosewarne (2007). Similar to the
work of Setan and Singh (2001), we establish time-series of
the coordinates and estimate the velocities and accelera-
tions of all points and analyse them statistically according
to the presented errors of the coordinates. The difference
between our study and those done by Horemuz (2003) and
Rosewarne (2007) is that we have modelled the velocity
and acceleration of all points on the ship’s hull and per-
formed statistical analysis of them as well as the estimated
displacements.

2 Basic definitions of
displacement, velocity and
acceleration

In surveying, displacement is known as coordinate
change. It means that the coordinates of a point are mea-
sured repeatedly to see whether that point has moved or
not. The displacement will have the same dimension as
the coordinates, e.g. it can be detected in x-, y- and z-
dimensions at any point.

In order to detect displacements, some points on a de-
forming object are chosen and their coordinates are esti-
mated repeatedly with respect to an a priori defined refer-
ence frame. The coordinate difference of a point between
each two successive epochs can be a measure for displace-
ment. The displacement is a vector and it has both direc-
tion and magnitude (Croft et al. 2008, p. 628):

d=p>-p: (1a)

where d is the displacement vector, p, is the final and p;
the initial position vectors, respectively. Velocity v, or dis-
placement rate, is defined as the speed of displacement,
which is obtained by dividing d by the time interval be-
tween the epochs:

d

V= ——
th-t

th >t (lb)
where t, and t; are the times at which the coordinates are
computed. The sign of velocity represents in which direc-
tion the object or point moves. Similarly, acceleration a is
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defined as rate of velocity:

(1c)

a= tz‘—,t1 and t, > 4
If acceleration of a point has the same sign as its velocity,
the point is accelerating, otherwise decelerating (Avison
1989, p.128).

As Eqgs. (1a)-(1c) show, displacement, relative velocity
and acceleration vectors are estimated once position of a
point at two different epochs are measured. In the follow-
ing, we explain the general idea of determining a displace-
ment vector.

3 Geodetic approach to
displacement measurement

Geodetic measurements consist of angles (horizontal and
vertical), lengths and height differences, defined as polar
coordinates, which need to be transformed into the Carte-
sian coordinates of x-, y-, and z. For establishing a defor-
mation monitoring network, the precision and accuracy of
the measurements are of great importance. We always try
to measure more quantities than the minimum necessary
for coordinate estimation, this means that the number of
measurements is larger than number of unknowns or coor-
dinates. In such a situation, least-squares is the method to
use for coordinate estimation. However, the mathematical
models relating measurements and coordinates are nor-
mally nonlinear and need to be linearised. Such linearised
formulae are written in a matrix form and solved in a least-
squares sense. In the following, this principle is briefly pre-
sented. For solving linearised equations approximate co-
ordinates of the points are required (x°), which can sim-
ply be estimated by solving a simple traverse connecting
the points. x°is used to reconstruct the measurements L°
and compare them with the real ones (L). The difference
between L and L° denoted by AL® shows how far the coor-
dinates are from what they should be. Therefore, a vector
of corrections to the approximate coordinates (Ax') is es-
timated from AL® using A° matrix, which is in fact a trans-
formation matrix between AL® and Ax® coming from the
linearised mathematical models.

Suppose that our linearised system of equations forms
a Gauss-Markov model:

A°Ax° = AL° -¢, E{e}=0, E {ssT} =05Q (3a)

ALY is an n x 1 vector of differences between the real mea-
surements and those estimated from the approximate co-
ordinates, A° is an n x m coefficients derived after lin-
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earisation of the mathematical model connecting the mea-
surements and coordinates, Ax° is the m x 1 vector of cor-
rections to the approximate coordinates and € isan n x 1
vector of random errors. E{. } describes the statistical ex-
pectation operator. Q is the co-factor matrix of the obser-
vations and o3 is the a priori variance factor.

The least-squares solution of the Gauss-Markov model
(3a) is:

AR° = <(A°) o (AO) ) B (A°>TQ‘1AL°.

By adding the estimated corrections A% to x°, the ap-
proximate coordinates are updated. Thereafter, the coef-
ficient matrix and measurements are reconstructed by the
updated coordinates and the least-squares process is re-
peated for the new corrections and so on. This process is
done until the corrections become significantly small or in
other words, the solution has converged. The last update of
the coefficients matrix (A) is used to estimate the variance-
covariance matrix of the estimated coordinates:

(3b)

R -1 sTo 1
C; = 53 (ATQ’lA) where 3 = £ (} £ (3c)
and the residual vector will be:
€ = AL - AAR. (3d)

where AL is the last updated differences between the con-
structed measurements and real ones, and AX the last up-
dated corrections.

Estimation of coordinates and their variance-
covariance matrix should be repeated for every epoch of
measurement so that by comparing the coordinates at two
successive epochs, the coordinate change is seen. Let us
consider two subsequent epochs of i and j. The difference
between two vectors of coordinates is nothing else than
the displacement vector:

dij = )A(] - ﬁi (43)
According to the error propagation law the variance-
covariance matrix of the displacement vector is:

éd,-,- = éij + éf( (4hb)

Eq. (4a) contains displacement values of all points and
Eq. (4b) the variance-covariance matrix of them. This
means that, for example, the first 3 elements of d;; are the
displacement of a point in x, y and z-directions and the first
3 elements of diagonal elements of CA;(U, are the variances
of the displacement in the corresponding directions and
so on.
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For a single point the coordinates at epoch i are p; =
T T
X Vi % } and at epoch j p; = { X ¥ % | ,re

spectively. The displacement vector at this point will be:

dij=pj-Pi=| Jj-0i | =| 4y (4c)
Zj -z Az
and subsequently the error of displacement vector:
0)3(]_ + 03
2 _ 2 2
0q, = U);j + UZ*‘ . (4d)
03, + 03,

In order to see if the elements of d;; are significant,
their absolute values should be compared to their corre-
sponding errors. If one element is smaller than its error,
the displacement is not significant in a significance level
of 68%. Mathematically, this idea can be shown by:

A% > /0)?(}_ + 0)3(1_ (4e)
|A)7ij| > O')AZ/]_ + O')Az/i (4f)
42| >\ /o2 + 02 (4g)

Similarly, the magnitude of the displacement vector can
also be used. In this case, all three elements of position
vectors are considered together and not only in the x-,y- or
z-direction. The 3D-displacement magnitude is:

d=[|p; - pill = /(- x) >+ (- vi)? + (2 - 20)° )

As observed, Eq. (5a) is nonlinear with respect to the coor-
dinates. In order to see if the magnitude of displacement d
is significant, its errors should be estimated and compared
with d. The covariances between the coordinates of each
point are available after performing the least-squares esti-
mation and can be used to estimate the error of d as well.
For a point at two epochs of i and j, the variance-covariance
matrix of the coordinates is:

0>2<i UXi)’i Oxizi 0 0 0 ]
UXi)’i 051‘ OYiZi 0 0 0
Cij= 0)((),-zi 0;(/),-2,- Uoi 02 0 0 (5b)
Ox;  Oxy; Oxz
0 0 0 oxgy, 0y Oy
0 0 0 Oxjz;  Oyjz O%/ -

where 0%, 07, and o2, are, respectively, the variances of
x-,y- and z-coordinate at epoch i, and oy;, oy, and 0%, are
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the corresponding ones at epoch j. gy,y, stands for covari-
ance between x and y-coordinates, oy, between x- and z-
coordinates and 0y,,, y and z at epoch i and Oxjy;» Oxjz; and
similarly 0y,,; covariances at epoch j. As observed, there
is no covariance between the coordinates at two different
epochs, this means that the measurements at one epoch
are independent from another epoch.

By applying the error propagation law, the variance of
d will be:

oy =BC; ;B (50)

where B is the coefficients matrix of the equation with the
following structure:

od od od od od od
SEEE R !

aX,' ay, aZ,' aX,’ by, aZ,' (5 d)

and the elements of B are partial derivatives of d with re-
spect to the coordinates at epochs i and j. The magnitude
of displacement will be considered significant if it is larger
than its error, namely:

d>oy (5e)

So far, two methods for analysing the significance of dis-
placements have been presented. The first one is applied to
the displacement vector and shows that in which direction
the displacement is significant. The second one is applied
to the displacement magnitude.

4 Equations of motion of hull points

It is well-known in physics that the equation of motion of
a moving object with a constant acceleration is derived by
solving a second-order differential equation with respect
to time:
2

dd];gt) -
where f (t) is any function of time. For example, in this
study, f can be x, y or z-coordinate, and a stands for the
constant acceleration. Integrating Eq. (6a) twice with re-
spect to time ¢ yields (see also Croft et al. 2008, p.182):

(6a)

[t = Jatt-to) +v(t-to) +f(ts)  (6b)

and tyis the initial time and v stands for velocity.

Eq (6b) is a quadratic polynomial, which can be fitted
to any time series of coordinates for estimating the accel-
eration a, velocity v and initial coordinate f (¢y). Consider-
ing that values of coordinates f (t) are available at different
epochs, we can organise a system of equations of Gauss-
Markov type to solve the unknown parameters a, v, and
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f (to). In this case, the matrix form of the system of equa-
tion will be:
, , ;T ,
Ku=W-¢ and, E{s}=0, E{as }=0(2)Q (7a)
where € is the random error and

Iti-t)? (ti-to) 1

3t -to)? (ta-to) 1 a

K= . . s, u=| v s
o, f (to)
2(tn=to))” (tn—to) 1
f(t1)

t

W f(.z) ()

f(tn)
Least-squares solution of Eq. (7a) is:
o= (KTQ"lK)_lkTQ"lw. (70)

The variance-covariance matrix of the estimated pa-
rameters will be:

o 1 s _
& - (Kti-w) r?— i (K- W) (KT QﬁlK) 1 7d)

where nis the total number of epochs. The significance
of the estimated acceleration and velocity can be tested ac-
cording to their respective estimated errors.

5 Numerical results

The described ideas are now applied to the coordinate time
series of 227 monitoring points at the Vasa warship hull. It
is of importance to study how the displacements at these
points behave to prevent the ship from the risk of collapse.
The errors and covariances between the coordinates of
each point are available and need to be considered in our
analysis. However, coordinates at each epoch are indepen-
dent from one another. In the following section, a general
overview of the geodetic network of this ship is presented.

5.1 Geodetic Network of Vasa warship

The geodetic network consists of control, station and de-
tail points — see Figure 2. There are 24 control points re-
alised by prisms mounted on the concrete walls of the mu-
seum building, which define a local coordinate frame used
for the deformation analysis. They are evenly distributed
(in the horizontal and vertical direction) around the ship
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and together with 49 total station points they form a geo-
metrically strong 3D control network. The coordinates of
the total station points are not considered as fixed in the
adjustment. These station points are located on five floors
(five height levels). Three to five control and 10 — 20 de-
tail points marked by reflective tapes on the hull are mea-
sured from each station in every measurement epoch. Each
detail point is measured from at least two station points.
So far 34-measurement epochs during 17 years were per-
formed.

Since the ship is decomposing slowly, the displace-
ments will be very small and therefore, the measurements’
precision plays a significant role. The points are evenly
distributed with a good geometry in the museum building
and a local reference coordinate system was defined for de-
scribing the coordinates. After the least-squares solution
of the coordinates, a standard error of 0.1 mm was achieved
for the individual coordinates except for few points hav-
ing precision of 0.2 mm. For the first seven epochs of mea-
surements the standard error of individual coordinates
of the monitored points ranges between 0.1 and 0.7 mm.
The largest errors are related to those points on the ship’s
masts, but they are not used in this study, as the masts are
not firmly attached to the ship.

The x-axis of the defined reference frame is along
the port/starboard side of the ship, and y-axis along the
stern/bow side and perpendicular to the x-axis. The z-axis
is along the plumb line and upwards. The coordinates of
the monitored points were computed by a constrained net-
work adjustment — the coordinates of control points are
fixed. Before this adjustment, the between-epoch stabil-
ity of the control network was checked by a separate free
network adjustment, where only observations towards the
control points are included. The stability was also checked
by a special measurement epoch in 2006, where the con-
trol points were measured with greater redundancy. No
significant changes of the control network were detected.
Two observation epochs have been performed every year:
one in spring and one in fall, so the time interval between
epochs is 6 months.

As mentioned before, there are 227 points on the ship’s
hull, but we select 16 of them, which shows the shape of
the ship approximately. Figure 1b shows the position of
the selected points and the coordinate frame. However, we
emphasise that we have analysed all 227 points on the de-
forming hull. As we can see, the ship is rather long with a
length of about 50 m, width of 10 m and a height of 15 m.
Each point has a unique code and 16 selected points are
presented in Figure 1b with their codes. 3 points, which
are highlighted by red circles, are those we have used for
presenting the coordinate times series. Presenting the time
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series of all 16 points is not very conclusive and makes the
paper long. Figure 1c shows the geodetic monitoring points
around and on the hull of the ship. The red triangles are
the control points, those blue circles stations points and
the black dots the points on the ship’s hull.

(a)

A R a0 0 20
7 - y-axis (metres)

(b)

(c)

Figure 1: a) The photo of the ship in the VASA museum, b) 16 se-
lected points over the ship’s hull, ¢) Points of geodetic monitoring
network. Red triangles — control points, blue circles — station points
and black dots - detail points on the hull.
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5.2 Time series of coordinate changes

Here, we plot the coordinate time series of three points of
A1, B114 and Bé61 for visualisation purpose. What we can
see in them is that the coordinates are mainly decreas-
ing. For example, Al is a decreasing point, meaning that
its x-, y and z-coordinates are decreasing. Since generally
the equation of motion is a quadratic polynomial, we used
Eqg. (6b) and fitted it to each coordinate time series, to esti-
mate its acceleration and velocity. The red line presented
in Figure 12 is the plot of this polynomial. The x- and y-
coordinate time series of the point B114 is not very conclu-
sive as we observe variations without a specific trend, but
that of the z-coordinate is decreasing. The coordinate time
series of the point B61 can be interpreted and explained
similarly. Generally, we can say the ship is becoming more
stable and the changes in the z-coordinates of the points
are being decreasing.

The quadratic polynomial is fitted to all 227 points and
the acceleration, velocity and the initial coordinate of each
point have been estimated during 22 epochs to see which
part of the ship moves faster than the other. The presented
plots in Figure 1 show that the behaviour of the points is
different depending on their position on the ship. Those
points located at the stern are behaving in one way and
the ones on the bow in another.

5.3 Significance of the accelerations and
velocities

Here, the estimated accelerations and velocities as well as
their errors for all coordinate times series on the ship’s hull
are plotted. The accelerations and velocities will be signif-
icant if their absolute values are larger than their corre-
sponding errors. Figure 3 shows these absolute values and
the errors. The horizontal axis of the plots is the number
of points, and vertical axis the accelerations and veloci-
ties in the units of mm/year? and mm/year. The black plots
show the absolute values of the estimated accelerations or
velocities and the red ones their corresponding estimated
errors.

Comparing the x-coordinate accelerations and their
errors, presented in Figure 3a, we can see that there are
points having larger error than the acceleration itself. Sim-
ilarly, the velocities presented in Figure 3b can be ex-
plained. Figure 3cis the plots of the accelerations along the
y-axis and their errors. As we observe, they are all larger
than the estimated errors and therefore significant. The
same is true for the velocities presented in Figure 3d. Fig-
ure 3e and 3f represent corresponding plots for the z-axis
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Figure 2: Time series of coordinates for points A1, B114 and B61.

and showing they are all significant. We have to mention
that since the absolute values of the accelerations and ve-
locities are considerably larger than the errors, plots of the
errors look like a line with zero values in Figures 3c, d, e,
and f.

Since we observe that there are some points with in-
significant accelerations and velocities along the x-axis,
we compute the ratio of all accelerations and velocities
and their errors. Those points having ratios larger than 1
are considered as deforming points and those with smaller
fixed ones. Figures 4a and 4b show, respectively, the in-
significant accelerations and velocities along the x-axis.
As we observe these insignificant values are located in the
lower part of the ship’s hull and close to the ship’s centre.

By fitting a quadratic polynomial to the coordinate
time series, we could estimate the accelerations and veloc-
ities of all points in x, y, and z directions. Also, we showed
in Figure 3 that their significant values are along the z-

direction. Figures 5a and 5b show them on the hull of the
ship. It is clearly visible that the highest parts, or the stern
side, have the largest values. This indicates that the ship
is unstable in the vertical due to lack of any support in
this area. The lowest accelerations and velocities are seen
in the midsection, as this part is closest to or partially on
the floor. Second highest accelerations and velocities are
found along the y-axis, showing that the ship is tilting to-
wards the starboard or portside.

5.4 Significance of the displacements

To test the statistical significance of displacements, they
are compared with their standard deviations, errors. Those
having larger errors than their own values had insignifi-
cant changes. Since there are 227 points on the ship mea-
sured 22 times, 21 values can be computed for each point.
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Acceleration, x-axis
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Figure 3: Plot of a) and b) x-coordinate accelerations and velocities and their errors of all points on the hull of the ship, c) and d) y-
coordinate acceleration and velocity with their errors, e) and f) those of z-coordinate

Here, we just present the displacement and their errors
only for the points A1, B61 and B114 in Figure 6.

The spike in the plots of the displacement is due to the
time gap between the epochs 5 and 6. Generally, the errors
are smaller than the displacements at the point Al. The
point B61 has small displacements but at the last epochs
the displacements and errors are in the same order. A sim-
ilar statement can be said for the point B114, but the errors
are considerably larger at epochs 18 and 19.

For presenting Figure 6, no covariance between the
coordinates of each point could be used. However, these
covariances have been also computed during the least-

squares solution of the coordinate and can be considered
when computing the errors of the displacements. Here, we
will show how much the computed displacement errors
differ in between the cases of considering and ignoring
the covariances. This investigation was performed for all
points on the ship’s hull, but here we present only the er-
rors for those 3 selected points of A1, B61 and B114 in Fig-
ure 7. In this figure, the red line shows the errors without
considering the covariances and the black one includes co-
variances. At the point A1, no significant change is seen in
the estimated errors in both cases. However, for the points
B61 and B114, a larger error is seen when the covariances
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Figure 5: a) Accelerations [mm/year?] and b) velocities along z-axis [mm/year]

are considered. In any case, we observe the differences be-
tween these cases are not very significant as the errors are
still at the same order and considerably smaller than the
displacements. Note that the largest coordinate changes
occur in the z-coordinates and the changes in x and y di-
rections are not very significant comparing to that of z.
Therefore, it is evident that the displacement along the z-
direction will have the largest contribution to the displace-
ment computed by Eq. (5a). So the small changes in the
estimated errors due to involvement of covariance do not
change the results comparing to the case where the covari-
ances are ignored.

In Figure 8, we show the total displacements over the
body of the ship. Displacements are multiplied by 50 and
added to the initial coordinates at the selected points for
the purposes of improved visualisation. As can be seen,
all points have moved towards the ship’s port while at the
same time going downwards, in other words, the body of
the ship is tilting clockwise.

6 Conclusions

Our numerical investigations confirm the previous stud-
ies and show that the ship is deforming downwards. It de-
forms faster at the stern and at the starboard side of the
bow than other parts. The general reason is that the ship
is decomposing and its strength is decreasing with time.
Having a high vertical rate of change is explained by the
attraction of gravity pulling down the ship continuously.
The back and front sides suffer by decomposing due to car-
rying more weight, and the concave shape of the ship’s
hull. Those parts constructed with a slope are more in-
fluenced by gravity than the other sides and those hav-
ing small displacements are almost constructed vertically.
The estimated velocities reach to 2 mm/year and the accel-
erations to 0.1 mm/year2 at some points, especially those
at the stern part. Therefore, the risk of collapse is higher
for back end of the ship, which has higher elevation and
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Figure 6: Plots of displacements and their errors for points a) A1, b) B161 and B114.
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DE GRUYTER

Displacoment

z-axis (metres)

y-axis (metres)

Figure 8: The magnified 3D-displacements (multiplied by 50).

slope. We should emphasise that we cannot predict the
ship deformation in the future using these velocities and
accelerations, as a quadratic polynomial has been fitted to
the time series of the coordinates and in most of the cases
the polynomial is concave meaning that if they are used
for prediction in the future wrong results will be obtained.
These values show that the ship has moved by these veloc-
ities and accelerations during these 22 epochs of measure-
ment.

In this study, an alternative method was presented for
analysis of displacements and their errors. In this method,
estimated covariances between the coordinates of each
point can also be considered in error estimation. This
method was applied in two scenarios; considering and ig-
noring covariances. The conclusion was that the errors, in
spite of being different in each scenario, have no signifi-
cant effect in the analysis of displacements and what we
conclude about the displacement significance in the case
where covariances are ignored will be valid for the other
scenario as well. Therefore, considering covariances is not
important in this method of displacement analysis.
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