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Abstract: It is well known that the success in precise de-
terminations of the gravimetric geoid height (N) and the
orthometric height (H) rely on the knowledge of the topo-
graphic mass distribution. We show that the residual to-
pographic bias due to an imprecise information on the to-
pographic density is practically the same for N and H, but
with opposite signs. This result is demonstrated both for
the Helmert orthometric height and for a more precise or-
thometric height derived by analytical continuation of the
external geopotential to the geoid.

This result leads to the conclusion that precise gravimetric
geoid heights cannot be validated by GNSS-levelling geoid
heights in mountainous regions for the errors caused by
the incorrect modelling of the topographic mass distribu-
tion, because this uncertainty is hidden in the difference
between the two geoid estimators.

Keywords: analytical continuation, geoid height, ortho-
metric height, topographic bias, topographic density

1 Introduction

The concept of topographic bias was introduced by Sjoberg
(2007) as the error caused by using analytical continu-
ation of the external gravity field in gravimetric geoid
determination, primarily in applying the KTH method of
Least Squares Modification of Stokes formula with Addi-
tive corrections (LSMSA) with the subtraction of the topo-
graphic bias as one of several corrections (Sjoberg 2003,
2007; Sjoberg and Bagherbandi 2017, Chaps. 5 and 6). How-
ever, as will be shown here, the topographic bias is also
a problem in the commonly practised Remove-Compute-
Restore (RCR) technique for geoid determination (e.g. Fors-
berg 1993; Ellmann and Vanicek 2007), as the lack in re-
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moval and restoration of the contributions of the topogra-
phy leads to a residual topographic bias.

Orthometric and geoid heights are affected by the same to-
pographic mass distribution, and here we will study the
relation between the corrections for topographic density
distribution (TDD) in these heights. It is important for the
study, as illustrated in the example below, that at each ob-
servation/computational site on or above the Earth’s sur-
face the topographic mass provides exactly the same con-
tribution to the geoid and orthometric heights but with op-
posite signs.

Example 1: Let the points Q and P be located at sea (geoid)
level and in free air vertically above the geoid, respectively.
If the volume between P and Q is filled with topographic
mass, the geoid height will increase, but as the geodetic
height of P does not change, the orthometric height of P
will decrease. The height changes depend on the topogra-
phy and its density distribution.

2 The topographic bias in
gravimetric geoid determination

The error caused by the harmonic analytical continu-
ation of the disturbing potential T down to sea level
(denotedT"), where the true potential T, at the geoid (de-
noted by subscript g) is not harmonic inside the topo-
graphic masses, was defined by Sjoberg (2007) as the to-
pographic bias:
- T" - Tg
N bias ~ % ’ (1)
where ~, is normal gravity at the reference ellipsoid. He
also presented a simple formula for estimating the bias for
a constant TDD:
3
Noias = 2 (12 2000, @
where H is the orthometric height and y = Gxp is the grav-
itational constant times mean TDD between the geoid and
topographic surface along the vertical at the site of compu-
tation, and this formula can be refined for a variable verti-
cal density distribution (Sjoberg 2007). Equation (2) was
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also supported by several studies (Sjoberg 2009a-c). At
this point it should be noted, as already stated in Sjoberg
(2007) and emphasized in Sjéberg (2017), that determining
T" by a series of spherical harmonics includes not only the
topographic bias but also other errors, as the external type
series does not converge inside the topographic masses.
The subtraction of Eq. (2) is an important correction that
reaches about 9 m for Mt. Everest with an elevation of 8864
m when assuming a topographic density of 2.67 g/cm> in
the LSMSA method of geoid determination.

However, Eq. (2) also provides an estimate for correcting
or at least estimating the uncertainty due to the residual
topographic density in RCR applications of geoid determi-
nation as can be shown as follows. If the standard density
used when removing and restoring the effects of the topog-
raphy on the geoid is po and the correct local density is
Mo + dy, then the residual topographic bias to correct for
in the RCR method is

_2mdy (. 2H?
ANpigs = 22 <H e ©)

If one assumes that du is 10 % of pp(cf. Martinec 1998, p.
82) with the “standard” density 2.67 g/cm?, Eq. (3) yields
residual biases of 1.1, 4.5 and 89.5 cm for H being 1, 2 and
8.864 km, respectively.

If the surface Bouguer anomaly is used for downward con-
tinuation to the sphere prior to Stokes integration, there
will be another bias in the RCR technique (Sjcberg 2014
and 2015), but not in the LSMSA method. (However, this
bias is not essential for this study.)

3 The topographic bias in
orthometric heights

Consider the geometric relation between the geodetic
height (h), the orthometric height (H) and the geoid height
(N) given e.g. in Heiskanen and Moritz (1967, p. 325) and
Sjoberg and Bagherbandi (2017, p. 113):

h=H+N. ()

Let us assume that the density is constant but unknown.
As the determination of h by satellite positioning does not
depend on the topographic density distribution y as do H
and N when calculated with gravimetric data, one obtains
by differentiating Eq. (4) w.r.t. u:

0 =dH (u) + dN () or dH (u) = —dN (), (5)

implying that any small change in u results in identical
small changes dH and dN in orthometric height and geoid
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height but with opposite signs. Below we will demonstrate
this result for Helmert orthometric heights in Sect. 3.1 as
well as for precise orthometric heights in Sect. 3.2.

The orthometric height is given by (e.g. Heiskanen and
Moritz 1967, Sect. 4.4 ; Sjoberg and Bagherbandi 2017,
Sect.3.5.2)

C
H= 7 (6a)
where
H
C=-L [gah=wo-w (6b)
0

is the geopotential number obtained by precise levelling,
and g is the mean gravity value along the plumb-line be-
tween the geoid and the computation point on the Earth’s
surface. Finally, Wy and W are the Earth’s gravity poten-
tials at the geoid and computation point, respectively. The
TDD is essential in estimating the mean gravity g, while C
is obtained by precise levelling.

3.1 Helmert orthometric heights

In Helmert orthometric heights (H O) the mean gravity is
defined by

_ 1
%= gp+ jF - 2ny0HO, 7

where F is the free-air correction. Hence, if the standard
density po needs a correction du, the mean gravity in
Eq. (7) need a correction dg® = -27Hdu, which implies
that H? = ¢/g? is in error by

C C o dg°

0—7— =
dH 20 g0+dgO g0 +dg0’

(8)

Using the approximation g° + dg® = ~¢ , one obtains the
approximate error of the Helmert orthometric height due
to the imprecise topographic density as

do® Zn(H(’)Zdy

dH~dHO ~HO%% -\ ) " L 4N, (9)
Yo Yo

Hence, the error is approximately the same as the resid-

ual topographic bias in the geoid height but with opposite

sign.

3.2 Precise orthometric heights

A precise orthometric height requires a precise approxima-
tion of mean gravity (g) as given by Egs. (6a,b). Here we
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will first rewrite the gravity potential on the geoid as

Wo=Tg+Ug=T —~0Npijas + Ug = W —0Npias, (10)

where U is normal gravity. As W", the geopotential analyt-
ically continued down to the geoid, can be determined by
a Taylor expansion of W at the surface point P:

o akl
: Z .(ahm);

one obtains the mean gravity from Egs. (6a, b), (10) and
(11) as

(11

Wo-Wp _ W' - Wp—70Npias _

_0 _
i = T g’ +dg, (12a)

g=

where g2 was defined in Eq. (7) as the mean gravity used
in the Helmert orthometric height, and

___1a5g_ dmes = H)k1 ok1g
%@=-33K *22 ohe1),

(12b)

where dNy,;,s was given in Eq. (3). Here 6g is the gravity
disturbance.
As aresult Eq. (6a) becomes

C_ _po_pod8

= 1
g0 +dg (13)

or, if one uses the approximations H ~ H? in Eq. (12b) and
g =~ 7o in Eq. (13), one finally obtains
k
oo [_pg0
oo 1 () oy
- £ k! ahk’l bias*

~HO
H~H 2+o oh

Alternatively one obtains directly by differentiating
Eqg. (6a) and noting Egs. (12a) and (12b):

'YOdNblas

dH(u) = i

éidNbias ~ dNpjgs- (15)

Again we notice that the change in orthometric height
equals the change in geoid height with opposite sign.

4 Consequences

In this section we will look at some implications caused by
the fact that the residual topographic bias dN,,, impairs
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both the gravimetrically determined geoid height and the
estimated orthometric height.

First we consider the geoid height determined by GNSS-
levelling, theoretically given by

N=h-H, (16)

but in practice typically estimated by satellite/GNSS po-
sitioning with the geodetic and orthometric heights pro-
vided according to Helmert’s method:

0
Ngnss=h-H , (17)

leading to the following error due to the residual topo-
graphic bias (see Eq. 9):

dNgyss = ~dH® = dNpias, (18)

i.e. the same residual error as in the geoid height estimated
by gravimetry. This result reveals that GNSS-levelling is
useless for validating the topographic density used in a
gravimetric model applied in mountainous regions.

A similar problem occurs in studying the performance of
the residual (e) from geodetic heights (h) determined by
the GNSS, orthometric heights (H) and gravimetric geoid
heights (N) as suggested by Foroughi et al. (2017):

e=h-H-N. (19)

Again, as the orthometric and geoid height estimates are
both in error by the residual topographic bias but with
opposite signs, and the observation h is practically im-
mune to topographic density errors, any resulting signif-
icant error due to the lack of information about the TDD
vanishes in Eq. (19). Hence, as this formula propagates all
errors from the observations as well as lack of theoretical
rigour in geodetic, orthometric and geoid heights, it can-
not be used for studying the sensitivity to the choice of to-
pographic density in H or N.

4.1 A numerical example

In 2009 numerical comparisons of several software prod-
ucts for quasigeoid determination were carried out by
Agren et al. (2009) using the data available from the Au-
vergne geoid computation test area in France (Duquenne
2007). Recently Foroughi et al. (2017) used the data from
the same test area for orthometric and geoid height com-
putations in a comparison of the classical height system
(geoid plus orthometric height) versus the modern height
system (quasigeoid and normal height) by comparing the
residuals in Eq. (19) for the classical system and the corre-
sponding residual formula

E=h-H"-¢ (20)
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for the modern system. They computed the mean and
its standard deviation (STD) by Eq. (19) with the results
18.7 + 2.9 cm and 13.2 + 3.3 cm for all 558 points of the test
area and the 75 points used in the 2009 test, respectively.
However, only the second result with 75 points is of inter-
est here for comparison with those data already used by
Agren et al. (2009) for quasigeoid determination.

The LSMSA technique for quasigeoid determination, used
by the KTH team (Agren et al. 2009), performed at least
as good as any of the other methods in the comparison in
2009, and their result was used by Foroughi et al. (2017)
for comparison. With these data the mean off-set and STD
when applying Eq. (20) became 12.5 + 3.34 cm. Hence, it
follows that there is no significant difference in the mean
off-sets when using Egs. (19) and (20), and the STDs are
practically the same. This result supports the theoretical
discussion above.

5 Concluding remarks

We have shown, in accord with our postulate in the in-
troduction, that a sufficiently accurate choice of a topo-
graphic density model in gravimetric geoid determination
cannot be validated by GNSS-levelling, nor by comparing
geodetic heights from satellite positioning with those from
orthometric plus gravimetric geoid height estimates. The
reason for this failure is that the residual topographic bi-
ases in the gravimetric and geometric geoid estimates are
practically the same, and the residual error due to topo-
graphic density in the estimated orthometric height is also
practically the same but with opposite sign. As a result, we
conclude that today there is no simple geodetic way of vali-
dating estimated geoid and orthometric heights to the 1 cm
level for orthometric heights in high mountains, as the er-
ror due to incorrect TDD increases with the square of the el-
evation. This conclusion is obvious, if one realizes that the
problems of computing the geoid and orthometric heights
are actually gravimetric inverse problems, which cannot
be solved by geodetic observables alone. Such problems
are, of course, avoided by defining the height system by
normal heights with the quasigeoid as the vertical refer-
ence surface, as this system is independent of the topo-
graphic density distribution, as once suggested by M.S.
Molodensky.
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