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Abstract: A large systematic di�erence (ranging from
−20 cm to +130 cm) was found between NAVD 88 (North
AmericanVerticalDatumof 1988) and thepure gravimetric
geoid models. This di�erence not only makes it very di�-
cult to augment the local geoidmodel by directly using the
vast NAVD 88 network with state-of-the-art technologies
recently developed in geodesy, but also limits the ability of
researchers to e�ectively demonstrate the geoidmodel im-
provements on the NAVD 88 network. Here, both conven-
tional regression analyses based on various prede�ned ba-
sis functions such as polynomials, B-splines, and Legen-
dre functions and the Latent Variable Analysis (LVA) such
as the Factor Analysis (FA) are used to analyze the sys-
tematic di�erence. Besides giving a mathematical model,
the regression results do not reveal a great deal about the
physical reasons that caused the large di�erences in NAVD
88, which may be of interest to various researchers. Fur-
thermore, there is still a signi�cant amount of no-Gaussian
signals left in the residuals of the conventional regression
models. On the other side, the FA method not only pro-
vides a better �t of the data, but also o�ers possible expla-
nations of the error sources. Without requiring extra hy-
pothesis tests on the model coe�cients, the results from
FA are more e�cient in terms of capturing the system-
atic di�erence. Furthermore, without using a covariance
model, a novel interpolating method based on the rela-
tionship between the loading matrix and the factor scores
is developed for predictive purposes. The prediction error
analysis shows that about 3-7 cm precision is expected in
NAVD 88 after removing the systematic di�erence.
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1 Introduction
The NAVD 88 in the Conterminous United States (CONUS)
area contains over 20,000 GPS/Leveling benchmarks (at
least another 10,000points are expected to be available for
the �nal NGS hybrid geoid model, i.e. Geoid19), making it
one of the largest continental vertical datums in theworld,
at least in terms of size. In addition to serving as the local
datum, the NAVD 88 derived geoid is often used on these
benchmarks to compare to various global and local geoid
models. However, in addition to the implicit datum o�set,
a very clear tilt with a range of 1.5 meters across the con-
tinent was found when comparing NAVD 88 with various
gravimetric geoid models such as EGM2008 (Pavlis et al.
2012), EIGEN6c4 (Förste et al. 2014), and the NGS xGeoid
models (xGeoid14, Roman and Li 2014; xGeoid15, Li et al.
2016; and xGeoid16) that include both the global gravity
signals o�ered by the Gravity Recovery and Climate Ex-
periment (GRACE; Tapley et al 2004) and the Gravity �eld
and steady-state Ocean Circulation Explorer (GOCE; Rum-
mel et al. 2011) and the updated local gravity �eld infor-
mation provided by the Gravity for the Rede�nition of the
American Vertical Datum (GRAV-D; Smith 2007); please
see Smith et al. 2013 and the NGS webpages for the tech-
nical details of the NGS experimental geoidmodels (https:
//beta.ngs.noaa.gov/GEOID/).

These large di�erences make it very di�cult to aug-
ment the local geoid model by directly using this vast
network of benchmarks with methods recently developed
in geodesy, such as Prutkin and Klees (2008), Klees and
Prutkin (2010), where the gravimetric geoid errors at the
GPS/Leveling benchmarks can be formulated into a resid-
ual boundary value problem. It also limits the ability of re-
searchers to e�ectively demonstrate the geoid model im-
provements at these benchmarks. Any previously reported
precision of the geoid errors based on their mis�ts at these
benchmarks are questionable and cannot be used directly
as a rigorous interpretation of the geoidmodel precision at
these NAVD 88 benchmarks.

E�ectively removing the systematic errors in NAVD 88
is very necessary for many practical applications. Even af-
ter NAVD 88 is replaced by a geoid-based vertical datum
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by 2022, such kind of information is still useful for under-
standing the errors in the vast amount of historical appli-
cations based on NAVD 88. However, the leveling de�ning
NAVD 88 started about 100 years ago and its last nation-
wide adjustment was done several decades ago (Zilkoski
et al. 1992). It is almost impossible to try to reprocess ev-
erything from the very beginning at this time. As a result,
the di�erences are studied here directly by using numeri-
cal methods that include regression analyses (Koch 1988)
and the Latent Variable Analysis (LVA) methods such as
Factor Analysis (FA; Rummel 1988; Rencher 2002) in order
to e�cientlymodel these errors and try to �ndanypossible
physical explanations.

Section 2 brie�y describes the di�erences between
the gravimetric geoid models and the NAVD 88 deter-
mined geoid undulations. Several mathematical tech-
niques based on polynomials, B-splines, and Legendre
functions are used to try to model these discrepancies by
the regression analyses in Section 3. In Section 4, the fun-
damental idea of FA is recapped �rst while leaving the
derivationdetails onhow to solve theproblem inAppendix
A for the purpose of self-completeness of the paper. Then,
under the assumption that the systematic error in NAVD
88 was caused by multiple reasons, FA is employed to in-
vestigate the primary pattern of the NAVD 88 errors. In ad-
dition, a novel interpolationmethod is also developed and
tested with real numbers. In Section 5, the results are com-
pared with some recent gravity �eld models published by
the International Centre for Global Earth Models (ICGEM).
The comparison clearly shows the improvements of the
newer models at these calibrated NAVD 88 benchmarks.
Finally, the conclusions are presented in Section 6.

2 Statement of the problem
It is well known that the accuracy of joint GRACE and
GOCE models is better than a few centimeters with about
100 km spatial resolution (Rummel 2012, Gruber 2014),
which is approximately equivalent to degree and order
200 in the spherical harmonic domain. Hence, the gravi-
metric geoid models that contain these satellite models
should have equivalent accuracy in the long wavelength.
Furthermore, recent studies have shown that the airborne-
enhanced NGS xGeoid models have about a 1-2 cm ac-
curacy at the newly observed independent leveling lines
(Smith et al 2013) and at the multi-year averaged mean al-
timetry passes over the Great Lakes (Li et al. 2016). How-
ever, when compared with the GPS/Leveling determined
geoid values at the NAVD 88 benchmarks, all of the above

mentioned geoid models show signi�cant di�erences to
this leveling based vertical datum. For instance, Fig. 1
shows the di�erences between NAVD 88 and xGeoid16B,
where a clear diagonal “tilt” is identi�ed across the conti-
nent ranging from about −20 cm in the state of Florida on
the Southeast to about 130 cm in the state of Washington
on the Northwest.

Figure 1: The geoid di�erences between the newest experimental
geoid model, xGeoid16B, and the NAVD 88 orthometric height im-
plied geoid heights at 21,112 GPS/Leveling benchmarks over the
target area.

Both the spatial distribution and themagnitude of the
di�erences appears to indicate that the errors must come
from NAVD 88. However, unlike the Australian Height Da-
tum that was constrained to several tide gauge stations
(Featherstone and Filmer 2012), NAVD 88 is only tied to
a single tidal gauge station at Rimouski, Quebec, which
makes it impossible to apply the method developed by
Featherstone and Filmer (2012) to resolve the current prob-
lem. If the quality of the gravimetric geoid models is be-
lieved to some extent, the “NAVD 88 systematic error”
can be estimated and modeled. One easy way is just to
use a satellite-only model up to certain degree, say de-
gree andorder 200, as an “error-free” reference, andmodel
the NAVD 88 di�erences to this reference surface only up
to this selected degree (200). Apparently, the omission er-
rors of the reference model have to be somehow removed.
Three techniques, i.e. a 200 km half wavelength Gaussian
Filter, the Radial Basis Function (RBF) method (Li 2017),
and the spherical harmonics are used to remove/reduce
the omission e�ects of the reference model and try to only
model the signal in the interesting band. The �rst two



Modeling the North American vertical datum of 1988 errors in the conterminous United States | 3

methods can be applied directly to the NAVD 88 points.
Extra gridding and global zero padding steps are required
when the last technique is used. The computed NAVD 88
errors from all of these three methods are shown in Fig. 2,
which shows that di�erentmethods give di�erent answers
due to the irregular data distribution, though they all show
about the same trend in general. Most importantly, they
all cannot tell if there is any systematic error in NAVD 88
that is above the resolution of the reference �eld. More-
over, we also would like to try to investigate if there are
some fundamental reasons that caused the errors. Thus, a
“full” gravimetric geoid model (the xGeoid16B model that
includes the satellite data, airborne data, and surface data
aswell as the residual terrain e�ects) is used as a reference
surface. Based on this reference, the NAVD 88 error is an-
alyzed by using both regression analyses based on prede-
�ned basis functions and LVA methods such as FA in the
following two sections.

Figure 2: The modeled NAVD 88 di�erences with respect to
GOCO05s up to degree 200 by using di�erent approaches (upper
panel Gaussian �lter; middle panel RBF; lower panel SHA).

3 Regression analyses
Maybe the simplest approach is to use regression analysis
to model the errors as described by Eq. (1).

ζ̃ i := Ni −
(
hi − HNAVD88i

)
= β0 + β1φi + β2λi + β3hi + . . . + ϵi

i = 1, . . . , n, where n = 21, 112 (1)

where the observable ζ̃ is the di�erence between the geoid
undulation N (computed from the gravimetric geoid mod-
els) and the measured one by taking the di�erence be-
tween the ellipsoidal height h and the orthometric height
HNAVD88 , φ is the geodetic latitude, λ is the geodetic lon-
gitude, {β0,1,2...k} are the coe�cients needed to be esti-
mated, and ϵ is assumed to be random noise.

The forward selection method (Hocking 1976) is used
to try to �nd the necessary variables that will be needed to
be included in Eq. (1). The analysis report of the forward
selection is included in Table 1. The �rst column shows
the models that are tested in each step. The second col-

umn gives the adjusted R square (R2adj = 1 −
[ ∑

(ei )
2

sstot
(n−1)

n−k−1

]
with sample size nand number of variables kas well as
the sum of the model residuals

∑
(ei)

2 from the total sum
of squares, sstot), an indicator of the model �t that in-
creases only if the new term improves themodelmore than
expected by chance. The standard error of the estimate
(
√∑

(ei)2
n−k−1 ) in column three is a measure of the accuracy

of the model prediction. The last few columns are the t-
test statistics for the signi�cances of the coe�cients of the
model.

Table 1 shows clearly that the coe�cients are keep-
ing signi�cant while the actual �t does not change too
much. Changing the forward selection method into other
methods such as backward selection and stepwise selec-
tionmethod gives similar results. This tells that the simple
regression method may not be a su�cient choice for this
kind of problem though a linear trend model (Roman et
al. 2010a, 2010b, and Pavlis et al.2012) was often used to
represent the NAVD 88 systematic error. Furthermore, the
quantile by quantile (Q-Q) plot, in Fig. 3, shows that the
residuals of this linear �tting are far away from the pre-
sumed normal distribution that has been assumed by the
model described in Eq. (1). As such, some extra treatment
suchas themulti-matrix technique (e.g. Roman et al. 2004;
Roman et al. 2010c) or the generalized Least Squares Col-
location (LSC) (Klees and Prutkin 2010) have to be applied
to deal with these residuals.

In addition to the polynomial functions, some other
local basis functions based on B-splines and Legendre
functions can be used in the regression analysis to model
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Table 1: Summary of the forward selection report.

Model Adjusted R Square Std. Error of the Estimate Coe�cients t Sig.
βi Std. Error

β0 0.837 0.124 −1.189 0.005 −223.885 � 0.01
+β1φi 0.044 1.32E-4 329.368 � 0.01
β0

0.959 0.062
1.789 0.012 145.881 � 0.01

+β1φi 0.037 7.2E-5 516.016 � 0.01
+β2λi −.010 4.0E-5 −248.830 � 0.01

β0 + β1φi
0.961 0.060

2.038 0.014 149.898 � 0.01
+β2λi .037 7.0E-5 534.305 � 0.01
+β3h −.011 4.6E-5 −238.744 � 0.01
β0

0.962 0.060

−4.562E-5 1.0E-6 −37.600 � 0.01
+β1φi 0.627 0.081 7.739 � 0.01
+β2λi 0.072 0.002 36.562 � 0.01
+β3h −0.006 2.97E-4 −19.499 � 0.01

+β4φiλi −4.178E-5 1.0E-6 −34.139 � 0.01
−1.27E-4 7.0E-6 −17.641

Figure 3: The Q-Q plot of the model residuals as exempli�ed by the
blue symbols (the quantiles of the residuals versus the theoretical
quantiles from a normal distribution. A straight line, as indicated by
the red line, is expected if the residuals are normal.

the NAVD 88 errors; see Appendix A. However, the numer-
ical tests show that they do not add new insight to the
problem. Moreover, they all have one key drawback: they
depend on prede�ned basis functions that lack any di-
rect physical support for this particular application. These
other methods also face under-�tting or over-�tting prob-
lems when separating the systematic component from the
randomerrors (see Cawley andTalbot 2010 for details). Be-
cause real data are often unpredictably noisy, a coarse �t-
ting usually produces complicated residuals. On the other
hand, a high order model often has the risk of being over
parameterized. Furthermore, the results from high order
models are di�cult to understand and properly explain.

4 Latent variable analysis (LVA)
Considering that the leveling used to de�ne the NAVD
88 datum dates back to the early 20th century and that
its last nationwide adjustment was done over 30 years
ago (Zilkoski et al.1992), it would be very di�cult and ex-
pensive to identify the speci�c reasons for the systematic
errors and, consequently, rigorously formulate an e�ec-
tive and relatively simple mathematical model. Therefore,
rather than speculating on the “true” physical background
and forcing the data into some prede�ned basis functions,
FA is used to analyze the systematic di�erences and to try
to �nd some coherent physical explanation of the detected
NAVD 88 errors.

4.1 A short overview of FA

FA is a process to explain observed relations among vari-
ables without knowledge of the physical causes of the
changes (Cattell 1965, Rummel 1988). The rationale and
mathematical developments of FA were well documented
by Cattell (1965) and Rummel (1988), and tutorially de-
scribed in many multivariate textbooks such as Rencher
2002. However, for the purpose of self-completeness of
this paper and for the convenience of the readers, a short
review is still given in the following paragraphs without
heavily repeating these previous publications.

FA has two large branches. One is called Exploratory
FA. The other is the Con�rmatory FA. Here, we are mainly
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focusing on the former and trying to �nd the hidden pat-
terns in the data. The essential assumption of FA is that the
observed variables are actually in�uenced by (fewer) fac-
tors that are not observed directly. In the literature, there
aremanyways to carry out this idea. For the reason of sim-
plicity, let’s assume that

{
xi,[1,2,...,p]

}
are observed vari-

ables from object i, and
{
fi,[1,2,...,q]

}
are the factors. Then

we have the common factor model read as in Eq. (2).
xi,1
xi,2
...
xi,p

 =


µ1
µ2
...
µp



+


fi,1w11 + fi,2w21 + · · · + fi,qwq1
fi,1w12 + fi,2w22 + · · · + fi,qwq2

...
fi,1w1p + fi,2w2p + · · · + fi,qwqp

 +


ϵi,1
ϵi,2
...
ϵi,p


(2)

where {wj,r; j = 1, . . . , p, r = 1, . . . , q} are the fac-
tor loadings, {ϵi,j; i = 1, . . . , n} are the noise terms that
are assumed to have zero mean and variance ψj (i.e. dif-
ferent variables have di�erently sized noise terms), and
E
{
ϵi,j , ϵl,m

}
= 0unless i = l& j = m (each observation and

each variable have uncorrelated noise, whichmay not rep-
resent the actual cases for some real data), {µj} is themean
value of each variable, which can be easily removed from
the data if we assume that the sample average is a good
approximation of the population mean, and most impor-
tantly we assume the factors

{
fi,[1,2,...,q]

}
are uncorrelated

with a variance of 1.
Equation (2) is very similar to a linear multiple re-

gressionmodel. However, it has totally di�erentmeanings.
Thismodel postulates that observedmeasures are a�ected
by underlying common factors (fi,j) and unique factors
(ϵi,j), and that correlation patterns need to be determined
(Yong and Pearce 2013). The basic idea behind this model
is that FA tries to look for factors such that when these
factors are extracted, there remain no inter-correlations
between any pairs of

{
xi,[1,2,...,p]

}
, because the factors

themselves will account for the inter-correlations. Note:
this does not mean that

{
xi,[1,2,...,p]

}
itself are inde-

pendent. It only means that all pairs of any two ele-
ments of

{
xi,[1,2,...,p]

}
are conditionally independent

given the value of
{
fi,[1,2,...,q]

}
.

After removing the mean values by the so-called cen-
tering procedure in statistical analysis, the above system
in Eq. (2) can be re-written in vector form as:

~X=i ~FWi + ~ϵi (3)

with ~Fi = [fi,1, fi,2, . . . , fi,q] and fi,j represents subject i’s
score on factor j.W is a q×pmatrix and it is the same for all
subjects, and ~Xi represents the observation i that contains
p variables. After stacking all n observations into amatrix,
we have the following equation:

X = F W + ϵ (4)

FA is used to estimate the factor scores F and the load-
ing matrixW as well as the speci�c errors ϵ. It is assumed
that all the factor scores are uncorrelated with each other
and have variance 1 and that they are uncorrelated with
the noise terms. The above estimation problem can be re-
duced to an eigenvalue problem after noticing that n times
the sample covariancematrix V has the following relation-
ship with the loading matrix as shown in Eq. (5):

nV = XTX = ϵTϵ+ϵTFW+WTFTϵ+WTFTFW = nψ+nWTW ,
(5)

where ψ is a diagonal matrix whose entries are ψj.
The factors F are eliminated in Eq. (5), so one only

needs to �gure out the speci�c errors and the loading co-
e�cients. There are p2 equations, one for each entry of V
and p+pq unknowns in ψ andW, whichmeans that there
is no exact solution in general. There are two main meth-
ods to estimate ψ andW. The �rst one is called the Princi-
pal Axis Factoring (PAF). The second one is the Maximum
Likelihood (ML), which needs an extra multivariate nor-
mality assumption for ~Xi. The detailed derivations of both
the PAF and ML methods are given in Appendix B.

After obtaining the estimation of the speci�c errors
and the loading coe�cients, the factor scores can be easily
obtained byminimizing themean squared error. However,
unrotated factors are ambiguous (Yong and Pearce 2013).
For better interpolation of the results, the loading matrix
is usually rotated according to certain rules (Browne 2001).
The goal of the rotation is to attain anoptimal simple struc-
ture which attempts to have each variable load on as few
factors as possible, but maximizes the number of high
loadings on each variables (Rummel, 1988). Here the Vari-
max method (Kaiser 1958), a rotation that gives maximum
variance of the loadings, is applied in order to concentrate
the power of each individual loading coe�cient.

There are two major misconceptions about the use
of FA for the present application that can lead to poten-
tial misunderstandings. The �rst misconception is that FA
requires the data to have a multi-normal (or near multi-
normal) distribution. However, this requirement only ap-
plies when tests of statistical signi�cance are applied
to the factor results (Rummel 1988) or a certain PDF is
assumed when using the maximum likelihood method,
which is recapped inAppendix B. “FA can bemeaningfully
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applied even to nominally scaled bi-variant (yes-no) data,
the lowest and least demanding rung on themeasurement
ladder” (Rummel 1988). From a practical point of view,
however, FA does not have any restrictions on the content
of the data. The othermisconception is that FAmaybemis-
understood to be equivalent to the Principal Component
Analysis (PCA), confusion probably caused by their heav-
ily overlapped terminologies and their algorithms which
resemble one another. Indeed, they were not very distin-
guishable in the earlier literatures, but there are funda-
mental di�erences starting with their underlying models
and goals. The components of PCA are calculated as lin-
ear combinations of the original variables,

{
xi,[1,2,...,p]

}
.

PCA is not concerned with the error in the data; it will try
to reproduce “true-value-plus-noise” from a small num-
ber of components (Shalizi 2009). In FA, the original vari-
ables are de�ned as linear combinations of the factors,{
fi,[1,2,...,q]

}
. FA analyzes only the shared variances, U;

error (ψ) is estimated apart from the shared variances (see
Appendix B). The bottom line is that PCA is mainly de-
signed for data reduction whereas FA is used for explana-
tory studies. In-depth discussions about the di�erences
between FA and PCAwere described in Rummel 1988, Cat-
tell 1965, and more recently by Suhr 2005.

4.2 The application of FA to the NAVD 88
problem

After clearing all thesehurdles, the applicationof FA to our
problem is straightforward. The �rst step is to standardize
or normalize the data by removing the means and divid-
ing them by the standard deviations, which is a commonly
used statistical procedure (Mulaik 1972). The standardized
observations at each benchmark are put into the vector ~Xi.
The observation data includes latitude (φ), longitude (λ),
ellipsoidal height (h), and the geoid di�erence (δN), which
leads to Eq. (6):

~Xi = [φ, λ, h, δN]i (6)

which implies that p = 4. The correlation matrix V is
given in Table 2. Themagnitudes of correlation coe�cients
between the geoid error (δN) and other variables are all
above 0.3. Though the correlation between the geoid error
and the latitude is bigger than 0.9 (a simple rule of thumb
for possible collinearity), the determinant of the correla-
tion matrix is still much larger than the normally used
threshold for collinearity, i.e. 0.00001. Furthermore, the
Bartlett’s test of sphericity (Snedecor and Cochran, 1989)
has a very small p-value (� 0.05) that con�rms that the
data has patterned relationships in the variables.

Table 2: Correlation Matrix (Determinant = 0.023)

Correlation φ λ h δN
φ 1.000 −0.368 0.269 0.915
λ −0.368 1.000 −0.567 −0.660
h 0.269 −0.567 1.000 0.380
δN 0.915 −0.660 0.380 1.000

Since the sample size is much bigger than 200, the
scree test (eigenvalues vs number of factors, Cattell 1965)
in Fig. 4 is used to determine the number of underlying fac-
tors. However, the point of in�exion is not that clear in Fig.
4. To avoid any possible drawbacks of using these meth-
ods in determining the number of factors, the FA analy-
sis is run for both the case of 2-factor and 3-factor scenar-
ios as suggested by (Yong and Pearce 2013) for both the
PAF and ML methods, during which we found that the ML
method does not converge properly and the loading coef-
�cient of the PAF for the third factor for the geoid error is
smaller than 0.3 (rule of thumb value for signi�cant). As
a result, the results for the 2-factor case computed by the
PAFmethod are accepted. The unrotated and rotated load-
ing coe�cients, as well as the variance explained by each
factor, are summarized in Table 3. Comparing them,we see
that φ is more loaded into factor 1 whilst h is more corre-
lated with factor 2 after the rotation. However, the other
two variables are still looking like comprehensive ones,
i.e. they are still signi�cantly (>.3) contributing to more
than one factor. Other oblique rotations give some better
decompositions. However, the resulting factors are quite
similar to the Varimax ones. At this stage, the results from
the Varimax method are used in the following analysis.

Figure 4: Scree plot of the FA analysis

The residuals of the 2-factor PAF model are shown in
Fig. 5. The Q-Q plot of these residuals is shown in Fig. 6
also along with the counterparts from the linear models
in Table 1 for the purpose of comparisons. From the Q-Q
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Table 3: The unrotated and rotated loading coe�cients of the PAF results from the 2-factor case.

PAF Factors φ λ h δN
Variance
Explained

Standard
deviation
of the

residuals
Unrotated 1 0.82316 -0.79820 0.64002 0.94359 2.6147059

3.821 cm2 0.52213 0.37850 -0.65171 0.30672 0.9346838

Rotated 1 0.96818 -0.38121 0.08622 0.92593 1.9474762
2 0.11336 -0.79690 0.90935 0.35651 1.6019135

plot, it is clear that the FA method provides a better �t to
the data. In addition, it also gives an estimation of the fac-
tor scores that may be useful during the search for some
potential physical explanations of the NAVD 88 orthomet-
ric height errors. Fig. 7 shows the �rst factor of the model,
which is basically describing the general trend fromNorth-
West to South-East. This agrees with some speculation of
the accumulated systematic errors in the leveling network.
However, to rigorously verify this, the original levelling
routes that actually connect these benchmarks are needed
to perform some simulation tests. For instance, one can
add some prede�ned small errors in the actual leveling
routes and propagate them into the orthometric heights at
the NAVD 88 benchmarks. Then use these arti�cially dis-
torted heights to compare with the gravimetric geoid to get
the di�erences, based on which to repeat the FA analysis
to see if the �rst factor corresponds to the accumulation
e�ects to the leveling error. However, this original leveling
information has not been preparedwell for this purpose at
this time though the author is eager to perform such kind
of study. Thus, similar follow-up studieswill be carried out
once these resources are available. Fig. 8 shows the sec-
ond factor that is highly correlated with the terrain, i.e.
small in the �at states but large in the mountainous areas
such as in the Rockies and theAppalachians. Tomake sure
these terrain errors are not coming from the geoid model
that su�ers the downward continuation error inside of the
masses from the topography to the geoid (Sjöberg 2007),
the geopotential numbers from the NAVD 88 leveling and
the geopotential number synthesized from the xGeoid16B
reference model are compared directly on the surface of
the Earth. These di�erences have similar patterns as the
geoid di�erences. A quickly repeated FA analysis based on
the geopotential di�erences shows the same thing as it has
been described from Figs. 5-8. To save space, they are not
plotted again here. Considering that the geopotential dif-
ferences between twopoints are essentially the integration
of the gravity values along the height increments, we can
do a quick check on the gravity values used in NAVD 88

though currentlywe cannot repeat its leveling that ismuch
more desired. As such, Fig. 9 shows the di�erences be-
tween the NAVD 88 gravity values and the XGeoid16B ref-
erence model predicted ones at these benchmarks (NAVD
88-XGeoid16refB). Figure 9 shows that the extreme values
can reach almost up to 400 mGal. The size of the dots rep-
resents the magnitude of the di�erence. The color of the
dots represents the sign. It is interesting to see that the
NAVD 88 gravity tends to be systematically smaller than
the XGeoid values in the mountainous areas, whereas it is
systematically bigger in the �at areas.

Figure 5: The model residuals of the PAF method (rms = 3.8 cm).

4.3 An extension of FA for predictions

The FAmethod ismainly used for analysis rather than pre-
diction. However, formodeling purposes, it is necessary to
predict the scores and the corresponding geoid di�erences
at any location. This is fairly straightforward once we no-



8 | X. Li

Figure 6: Q-Q plot of the FA residuals (blue signs and red line) vs.
the counterparts both from the linear models ỹ= β*0 + β*1φ + β*2λ + ϵ
(dark triangles and dark line) and ỹ= β*0 + β*1φ + β*2λ + β*3h + ϵ (green
stars and green line) in Table 1.

Figure 7: The �rst factor scores of the FA results.

tice the correlation between the observables, implied by
the common factors ~Fi, and the loading matrixW.

At any predicted point, the common factors are esti-
mated based on the location of the data point and the al-
ready solved loading coe�cients. Then, ~Xi is transposed
into a column vector and separated into two parts:

~y1i :=
[
φ, λ, h′

]T
(7)

and
~y2i := [δN] (8)

Without losing generality, Eq. (3) can be rewritten as:[
~y1i
~y2i

]
= ~XTi = WT~FTi + ~ϵTi = L~FTi + ~ϵTi (9)

with L = WT .

Figure 8: The second factor scores of the FA results.

The common factors ~FTi are estimated by solving the
following system implied by ~y1i in Eq. (10)

~y1i = L3×21 ~F
T
i + ϵ (10)

Then the prediction is performed based on the solved
common factors ~FTi from Eq. (10), as shown by Eq. (11)

~y2i = L1×22 ~FTi (11)

where L1×22 is the last row ofWT , and L3×21 in Eq. (10) con-
tains the �rst 3 rows ofWT .

One can understand the overall concept as using the
�rst few rows in Eq. (10) to estimate ~FTi at this point and
then using the last few rows to predict the desired values
at the same place. It is clear that the loading matrix com-
puted by FA plays an important role in the analysis, which
opens a door other than LSC for making predictions of one
kind of variables based on di�erent kinds of observations
at the same point but without using an analytical covari-
ance model.

Considering that the actual prediction of the factors in
Eq. (10) is only based on partial information contained in
the full loading matrix, a rigorous mathematical expres-
sion and some practical numerical results should be given
for the neglected terms. If all the information is used, un-
der an equal weights assumption, the factor scores are
given by:

~FTi =

[ L1
L2

]T [
L1
L2

]−1[ L1
L2

]T [
~y1i
~y2i

]

=
[
LT1L1

]−1
LT1~y1i −

1
1 + g

[
LT1L1

]−1 [
LT2L2

] [
LT1L1

]−1
LT1~y1i
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Table 4: Testing of the FA interpolation errors

Data used Error Type Prediction error (cm)
2 Factors 3 Factors

75% Actual 6.92 6.18
Formal 3.06 2.78

+
[
LT1L1

]−1
LT2~y2i −

1
1 + g

[
LT1L1

]−1 [
LT2L2

] [
LT1L1

]−1
LT2~y2i

(12)

where g = tr
{[
LT2L2

] [
LT1L1

]−1}
The �rst term of the right hand side in Eq. (12) is the

solution of the factor only based on the observation equa-
tion from Eq. (10). Thus, the extra terms in Eq. (12) are the
prediction error of the factors, which is given by

Θi = −
1

1 + g L2
[
LT1L1

]−1 [
LT2L2

] [
LT1L1

]−1
LT1~y1i

+ L2
[
LT1L1

]−1
LT2~y2i

− 1
1 + g L2

[
LT1L1

]−1 [
LT2L2

] [
LT1L1

]−1
LT2~y2i (13)

Because the FA separates the speci�c errors ψ in the
data from the loading matrix W, the formal prediction er-
ror in Eq. (14) does not contain the observation errors in
the data. As such, it is usually smaller than the actual mis-
�ts that contains random observation errors. For instance,
75% of the data in Fig. 1 are sampled (Green 1977) as the
control to estimate the loadingmatrix, while the other 25%
are used to check the di�erences between the FA predicted
values.

The precision of the FA predicted value is 6.92 cm,
while the standard deviation of the formal errors com-
puted from Eq. (14) is only 3.06 cm. The di�erences are
due to neglecting of the speci�c error ψ in Eq. (11) and the
least square error during estimating the common factors in
Eq. (10). If 3 Factors are used, the formal error is reduced
from 3.06 cm into 2.78 cm, and the prediction error is also
reduced from6.92 cm into 6.18 cm. This reduction ismainly
due to the power transition from the speci�c errors into
systematic e�ects by using one extra factor. All the predic-
tion precisions are summarized in Table 4.

5 Evaluations
The NAVD 88 orthometric height errors modeled by all of
the abovemethodswere removed from theactual orthome-
tric height values at all of the 21,112 stations that were used

in the last NGS hybrid geoid model, i.e. Geoid12B, which
accordingly gives several versions of calibrated NAVD 88
heights. To investigate which method yields the best re-
sults, some of the recently published gravity �eld models
from ICGEM are used as external reference. Note, to try
to see the di�erences at various resolutions, not only the
higher degree and order models but also some of the satel-
lite onlymodels areusedhere. Please seemoredetailedde-
scriptions of thesemodels (suchasdata sources, data com-
bination schemes, solution technology used, and model
resolutions) at http://icgem.gfz-potsdam.de/home. First,
on each GPS/Leveling benchmark, the original orthome-
tric heights are calibrated by removing the systematic er-
rors modeled by all the above mentioned methods such
as the linear model, the cubic spline model, the Legendre
polynomial model and the FA model. Then, several ver-
sions of geoid heights are obtained based on these newly
calibrated orthometric heights. Finally, the geoid undu-
lations computed from the ICGEM models are compared
with these geoid heights based on these calibrated ortho-
metric heights. The logarithm of the standard deviations
of the di�erences are shown in Fig. 10, where the hori-
zontal axis is ordered by the maximum degree of the cor-
responding models, from low to high from left to right.
Before using any calibration of the NAVD 88 errors, the
model precision changes from low degrees to high de-
grees are relatively small, as indicated by the heights of
the dark blue bars from left to right in Fig. 10. After re-
moving the systematic errors modeled by the linear model
(cyanbars), theB-splines (yellowbars), the Legendre func-
tions (red bars), and FA (brown bars), the degree e�ects
from various models can be identi�ed more clearly, espe-
cially for the FA results. For the low degree models start-
ing from Tongji-grace01 (Chen et al. 2015) to DIR5 (Bru-
insma et al. 2014), the di�erences between di�erent error
modeling techniques are not substantial, though they all
tend to agree better to the calibrated heights except one
GRACE only model. Starting from the GGM05c model, it
is clear that the FA method consistently provides better
agreements with the ICGEM models. This is even clear for
the recentmodels suchasGECOandEIGEN6c4,whichmay
be due to the recently new applied techniques in these
newer models.

6 Conclusions
The di�erences between the geoid model-implied undu-
lations and the ground observed geoid heights at over
20,000 GPS/Leveling benchmarks in the CONUS area were

http://icgem.gfz-potsdam.de/home
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Figure 9: The gravity di�erences between NAVD 88 and
XGeoid16refB at the NAVD 88 benchmarks (the size of the dot
represents the magnitude with positive towards red and negative
towards blue).

Figure 10: The logarithm plot of the precision of various ICGEM mod-
els at the NAVD 88 benchmarks and all the counterparts after re-
moving the systematic errors modeled by a linear model, a B-Spline
model, a Legendre-polynomial model, and FA model.

used as data samples for determining the NAVD 88 errors
in this continental region. Both the standard regression
analyses and the FA method were applied to analyze and
comprehend these errors. The normality plots of the resid-
uals show that the NAVD 88 error embedded in the ortho-
metric heights is not characterized only by a simple “tilt”
aswidelyused inmanyprevious studies. By comparing the
results and the correspondinganalysis steps, it is clear that
the FA algorithm produced more accurate results with the
added advantage of being, in the author’s opinion, an ef-
�cient and elegant process. The common steps of select-
ing or de�ning the base functions and the associated time
consuming trial and error stage in the regression analysis
could be avoided.

In addition to giving a relatively compact representa-
tion of the errors, the factor scores from FA provided some
plausible explanations of the underlying causes creating
the NAVD 88 error. Further studies are still required to ab-
solutely verify them once enough information of the level-

ing is obtained. In addition to the analysis of the control
data, a predictive methodology was developed by using
the relationship between the loading matrix and the com-
mon factors. Based on the estimated loading coe�cients,
the factor scores at any given location can be computed,
and then used for predictive purposes. This novel usage
opens a new door to make predictions of one kind of vari-
ables based on the measurements of other kind of vari-
ables without using an analytical covariance model that
is usually used in the LSC. The prediction error analysis
tells that after removing the systematic errors in NAVD 88,
one can expect 3-7 cm random errors, which is especially
useful for evaluating the vast amount of historical appli-
cations based on NAVD 88, and provides error budgets for
stakeholders to make mitigation decisions.

Finally, independent geoid models from ICGEM were
used to validate the di�erent methodologies. The FA
method provided the best �ts to all ICGEM models, espe-
cially to the newer ones where new technologies and data
havebeenusedduringgenerating thesemodels. Thebetter
agreements show the improvements of these newer mod-
els more clearly.
Abbreviations
CONUS The conterminous USA
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GOCE Gravity and Ocean Circulation Explorer
GRACE Gravity Recovery and Climate Experiment
GRAV-D Gravity for the Rede�nition of the American
Vertical Datum
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LSC Least Squares Collocation
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NGS National Geodetic Survey
PAF Principal Axis Factoring
PCA Principal Component Analysis
PDF Probability Density Function
Q-Q Quantile by Quantile
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A The Computational Details of
Using B-splines and Legendre
Functions

In addition to the polynomial functions, some other lo-
cal base functions based on B-splines and Legendre func-
tions are also used tomodel the NAVD88 errors. The corre-
spondingmathematical expressions for B-splines andLeg-
endre functions are described in Eq. (A1) and Eq. (A6), re-
spectively.

ζ̃ x=φ/∆,y=λ/∆ :=
3∑
k=0

3∑
l=0

α(i+k)(j+l)Bk(s)Bl(t) + ϵ, (A1)

where α(i+k)(j+l) is the coe�cient on the control lattice, i =
bxc − 1, j = byc − 1, s = x − bxc , t = y − byc , x = φ/∆,
y = λ/∆, ∆ is the resolution of the control lattice. Bk and Bl
are uniform B-spline basis functions de�ned as:

B0(t) = (1 − t)3/6, (A2)

B1(t) = (3t3 − 6t2 + 4)/6, (A3)

B2(t) = (−3t3 + 3t2 + 3t + 1)/6, (A4)

B3(t) = t3/6. (A5)

The regressionmodel basedon theLegendre functions
reads as:

ζ̃ (~r) :=
I∑
i=1

αi

{ n2∑
n=n1

Pn

(
~r⌈
~r
⌉ · ~Ri

)}
+ ϵ, (A6)

where αi is the coe�cient on each of the control points
(1, · · · , I) located at ~Ri, ~r is the vector of the observation
point, and Pn is the nth-degree Legendre polynomial, n1
and n2 are the lower and upper spectrum limits of the
model; please see Eicker (2008), among others, for the de-
tails on using this kind of localized functions.

Figs. A1-A2 show the standard deviations of the �t-
ting residuals versus the number of parameters that are
needed for the B-splines and the Legendre polynomials,
respectively. One can use them to roughly determine the
number of parameters that are needed to model the data,
while, at the same time, avoiding extreme interpolation er-
rors between points caused by over parameterization. For
instance, Fig. A2 shows that only 6 parameters are su�-
cient to capture the NAVD 88 error in the band of degree 0
to degree 4 when Eq. (A6) is applied. The standard devia-
tion of the �tting residual is about 5 cm. Fig. A1 shows that
many more parameters will be required to achieve about
the same results if the B-spline base functions are used.

Figure A.1: The model precision and the number of the correspond-
ing coe�cients versus the spatial resolution of the B-spline model.
The red curve is the model precision referring to the left axis. The
blue curve is the number of the parameters referring to the right.

Figure A.2: The model precision and the number of the correspond-
ing coe�cients versus the spatial resolution of the Legendre poly-
nomial model. The red curve is the model precision referring to the
left axis. The blue curve is the number of the parameters referring to
the right.

B The Derivation of Solving the FA
Problem with the PAF Method
and the ML Method

B.1 Principal Axis Factoring (PAF)

Starting from Eq. (10), we perform a linear regression of
each variable j on all other variables and setψj to themean
square error for that regression so that we obtain an esti-
mationofψ. Thenwede�ne the reduced covariancematrix
U as:

U = V − ψ. (B1)

Eq. (B1) shows howmuch of the variance in each vari-
able is associated with the variances of the latent factors
(Shalizi 2009). Because U is a symmetric matrix, there is a
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spectral decomposition of it, as shown in Eq. (B2).

U =
(
CqD1/2

q

)(
CqD1/2

q

)T
, (B2)

where Cq is thematrixwhose columns are the eigenvectors
of U, and D1/2

q is a diagonal matrix of the square roots of
the eigenvalues of U. Then we obtain an estimate ofW as:

W =
(
CqD1/2

q

)T
. (B3)

Eq. (B3) is used to re-set the speci�c errors according
to Eq. (B4).

ψj = Vjj −
q∑
r=1

W2
rj . (B4)

Then the iteration starts until some threshold ismet. It
is known that the convergence is very quick and does not
depend very much on the accuracy of the �rst estimate of
the speci�c errors (Shalizi 2009), as long as they are not
too extreme.

B.2 ML

If ~Xi is assumed to have multi-normal distributions, the
likelihood function of ~Xi is given by:

lik
(
~Xi; Σ = ψ +WTW

)
= (2π)−p/2|Σ| −1/2exp{−12

~XTi Σ−1~Xi}.
(B5)

The overall sample likelihood function reads as:

lik
(
~X1, ~X2, . . . , ~Xn; Σ = ψ +WTW

)
= (2π)−np/2|Σ| −n/2exp{

n∑
i=1

(−12
~XTi Σ−1~Xi)}. (B6)

The log of the likelihood function is:

l = log
{
lik
(
~X1, ~X2, . . . , ~Xn; Σ = ψ +WTW

)}
= −np2 log (2π)−n2 log |Σ| −

n∑
i=1

(−12
~XTi Σ~Xi). (B7)

The last term in the log likelihood function is:

n∑
i=1

(~XTi Σ−1~Xi) =
n∑
i=1

tr(~XTi Σ−1~Xi) = n
n∑
i=1

tr(
~Xi~XTi
n Σ−1)

= n · tr
( n∑
i=1

~Xi~XTi
n Σ−1

)
= n · tr(VΣ−1).

(B8)

Combining Eqs. (a7-a8) gives the �nal log likelihood
function as shown in Eq. (B9).

l = −np2 log 2π − n2 log
∣∣∣ψ +WTW

∣∣∣ − n2 tr (V(ψ +WTW)
−1)

(B9)

In theory, one can set the partial derivatives of l with
respect to the parameters in Σ to zero and solve the sys-
tem. But in practice, the following alternative target func-
tion TML in Eq. (B10) is used, after noticing that minimiz-
ing TML is essentially equivalent tomaximizing l (Joreskog
1969, Bartholomew 1987, Shalizi 2009). Note that the bi-
ased sample variance is replaced with the unbiased esti-
mates here.

TML := log |ψ +WTW| + tr
(
(ψ +WTW)

−1
V
)
− log |V| − p.

(B10)

Similar numerical iterations are normally used to
achieve the (numerical)minimumvalueof TML. Thedi�er-
ences between the ML and the PAF are normally not very
substantial. However, the Cramér–Rao theorem predicts
that when the variables aremulti-normal and the common
factor model holds in the population, the MLmethod gen-
erates the solution that most accurately re�ects the under-
lying population pattern (de Winter and Dodou 2012).
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