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Abstract: For many developing countries such as Uganda,
precise gravimetric geoid determination is hindered by the
low quantity and quality of the terrestrial gravity data.
With only one gravity data point per 65 km?, gravimet-
ric geoid determination in Uganda appears an impossi-
ble task. However, recent advances in geoid modelling
techniques coupled with the gravity-field anomalies from
the Gravity Field and Steady-State Ocean Circulation Ex-
plorer (GOCE) satellite mission have opened new avenues
for geoid determination especially for areas with sparse
terrestrial gravity. The present study therefore investigates
the computation of a gravimetric geoid model over Uganda
(UGG2014) using the Least Squares Modification of Stokes
formula with additive corrections. UGG2014 was derived
from sparse terrestrial gravity data from the International
Gravimetric Bureau, the 3 arc second SRTM ver4.1 Digi-
tal Elevation Model from CGIAR-CSI and the GOCE-only
global geopotential model GO_CONS_GCF_2_TIM_R5. To
compensate for the missing gravity data in the target area,
we used the surface gravity anomalies extracted from the
World Gravity Map 2012. Using 10 Global Navigation Satel-
lite System (GNSS)/levelling data points distributed over
Uganda, the RMS fit of the gravimetric geoid model be-
fore and after a 4-parameter fit is 11 cm and 7 cm respec-
tively. These results show that UGG2014 agrees consider-
ably better with GNSS/levelling than any other recent re-
gional/global gravimetric geoid model. The results also
emphasize the significant contribution of the GOCE satel-
lite mission to the gravity field recovery, especially for ar-
eas with very limited terrestrial gravity data. With an RMS
of 7 cm, UGG2014 is a significant step forward in the mod-
elling of a “1-cm geoid” over Uganda despite the poor qual-
ity and quantity of the terrestrial gravity data used for its
computation.
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1 Introduction

Over the last 30 years, the importance of the geoid has
increased substantially due to the widespread use of
Global Navigation Satellite Systems (GNSS) for position-
ing and navigation. GNSS, unlike traditional surveying in-
struments, has the ability to provide three-dimensional
coordinates (latitude, longitude and height) anywhere in
the world, any time irrespective of the weather. However
the GNSS-determined heights, i.e. ellipsoidal heights, are
geometrical heights. These cannot be used in surveying
and engineering projects where orthometric heights are re-
quired. Hence the need for the determination of the geoid,
since it is the reference surface for orthometric heights.
Thus by combining the geoid and GNSS observations,
the ellipsoidal heights can be converted to the physically
meaningful orthometric heights.

The remove-compute-restore (RCR) is perhaps the
most well-known approach to gravimetric geoid deter-
mination and has been applied in most parts of the
world Zhang et al. (1998); Fotopoulos et al. (1999); Fors-
berg (2001). As an alternative, the Least Squares Modi-
fication of Stokes formula (LSMS) with additive correc-
tions (AC), commonly called the KTH method, has been
gaining prominence since winning the geoid modeling
competition at the International Hotine-Marussi Sympo-
sium in 2009 Agren et al. (2009a). The method was de-
veloped at the Royal Institute of Technology (KTH) Divi-
sion of Geodesy by Sjoberg (1991, 2003a,b, 2005). Com-
pared to other methods, this method is superior because
it is the only method that minimizes the expected global
mean square error of the estimated geoid height. Hence, in
contrast to most other methods of modifying Stokes’ for-
mula, which only strive at reducing the truncation error,
the KTH method matches the errors of truncation, grav-
ity anomaly and the Global Geopotential Model (GGM) in
a least squares sense.
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In this study, we compute the gravimetric geoid model
over Uganda using the KTH method. Although the method
has been successfully applied in a number of countries
such as Iran Kiamehr (2006), Tanzania Ulotu (2009), Cen-
tral Turkey Abbak et al. (2012) and was used for the official
gravimetric quasigeoid of Sweden Agren et al. (2009a,b),
the present study considers an area with unprecedented
very limited terrestrial gravity data. Compared to Central
Turkey, where there was one gravity data point per 22 km?,
the situation in Uganda is worse with only one gravity
data point per 65 km?. In addition to the limited nature
of gravity data, its distribution is not uniform over the en-
tire country, and its accuracy can only be estimated to ap-
proximately 9 mGal. Thus to determine a gravimetric geoid
precise enough at least for engineering applications, the
sparse terrestrial gravity data is optimally combined with
the Gravity Field and Steady-State Ocean Circulation Ex-
plorer (GOCE) satellite mission gravity anomalies in a least
squares solution. Therefore, the study also highlights the
effect of newly published GGMs on regional geoid deter-
mination thus emphasizing the contribution of the GOCE
satellite mission to the gravity field recovery, especially for
countries with uneven and sparse terrestrial gravity data.

The applied version of the KTH method used in
this study is presented in Section 2. In Section 3, the
GNSS/levelling data and the required data for compu-
tation of the geoid are validated and evaluated using
GNSS/levelling. In Section 4, some important computa-
tional options, namely gravity anomaly signal and er-
ror degree variances, choice of cap size, optimum least
squares modification parameters and additive corrections,
are discussed. In Section 5, the computed gravimetric
geoid model (UGG2014) is evaluated both internally using
error propagation and externally using GNSS/levelling. Af-
ter that it is compared with some global/regional gravimet-
ric models. Finally, conclusions are presented in Section 6.

2 The KTH Method

2.1 The Least Squares Estimator of the KTH
method

The Least Squares Estimator of the KTH method is given
by Sj6berg (2003b) as
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where 0y is the spherical cap, R is the mean Earth ra-
dius, « is mean normal gravity on the reference ellipsoid,
St (¥) is the modified Stokes’ function, ¢ = R/2~, s, are
the modification parameters, M is the maximum degree
of the GGM, L is the maximum degree of modification, Qk
are the Molodensky truncation coefficients, Ag is the unre-
duced surface gravity anomaly, Ag¢°M is the Laplace sur-
face harmonic of the gravity anomaly determined by the
GGM of degree n. The estimator in Eq. 1 is the so-called
combined estimator Sjoberg (2003b), which means that
the truncated Stokes’ formula is applied to the unreduced
surface gravity anomaly after which the final geoid height
is determined by adding a number of additive corrections,
i.e. SN .- the combined topographic correction, 6N g,
the downward continuation correction, 6N ,- the total at-
mospheric correction and §Nf,;- the total ellipsoidal cor-
rection. Below we highlight the additive corrections one by
one.

The combined topographic correction is computed
as Sj6berg (2000, 2001)

ON oy (P) = =7 (H2 (py+ 2 )) @
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where P is the computational point, H is the topographic
height, u is the product of the gravitational constant
(G) and the standard topographic density (p), i.e. p =
Gp. Vermeer (2008) has questioned the exactness of the
above formula for realistic terrains. However, as discussed
in Sjéberg (2008, 2009), Eq. 2 corresponds to the negative
of the so-called topographic potential bias, which in this
case is the strict combined effect on the geoid height.
The downward continuation (DWC) correction can be
written as Sjoberg (2003b,c)
8N, = SNBL 4 sNt&L €)

dwc dwc

where SN2'X and 6N';! are the Bouguer shell effect and

terrain effect, respectively , given by
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In the equations above, P and Q are the points on the earth
surface and the running point on the sphere, respectively,
= R + H(P), (p is defined by Bruns’ formula, i.e. {p =
Tp/~v where Tp is the disturbing potential for point P and
~ is the normal gravity at the normal height of point P and
Agn the Laplace harmonics in the sum in Eg. 3a is taken
from a GGM, which requires the upper limit of the sum to
be set equal to or below its maximum order.
Following Sjoberg (2001); Sj6berg and Nahavandchi
(2000), the combined atmospheric correction can be com-
puted as

a M
6Ngomb - 5'{: ZHRP Z (%1 ~Sn— Q%)H" (P) @
n=2
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where §V§ is the zero degree term of the atmospheric po-
tential, po is the atmospheric density at sea level, Hy is the
Laplace surface harmonic of degree n for the topographic
height and either s}, = sy, if 2 < n < Mor s;, = 0 otherwise.

The ellipsoidal correction to order e*of the modified
Stokes’ formula is given by Sjoberg (2004) as

)

R 2 * a
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where 6gy, is the Laplace harmonics of the ellipsoidal cor-
rection to the gravity anomaly, which can be decomposed
into a series as shown by Sjoberg (2003d, 2004), k =
a/R - 1is ascale factor and a is the semi-major axis of the
reference ellipsoid.

2.2 The expected global mean square error

The expected global mean square error (MSE) of the
geoidal undulation estimator is developed by Sjoberg
(1986, 1991, 2005) as:

oo
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where either sy, = s, if2 < n < Lors, = O other
wise, c2 is the gravity anomaly degree variance given by

ci = 7 [/ Agndo and the global error degree variances for
o

AgTand Ag®M are givenby 02 = E { = (e,f)2 da} and
Oo
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R/(2) is a scale factor and s, are the least squares mod-
ification parameters. Therefore, the MSE is thus the sum
of the variances from the terrestrial gravity data and the
GGM plus the truncation bias squared Sjoberg (2005). In
practice, the KTH method aims at selecting s, in a least
squares sense so as to minimise the MSE.

and E,; =

3 Validation and Evaluation of the
Data sets Required for Geoid
Determination

3.1 GNSS/levelling data

Over the years, GNSS/levelling data has become one of the
standard tools for validating and evaluating global and
local gravimetric geoid models. With improved precision,
i.e. 1to 2 cm, for the ellipsoidal heights, GNSS/levelling
is nowadays used as an external measure of the accu-
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Figure 1: Location of the gravity data and GNSS/levelling/EGM96
benchmarks
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Table 1: Statistics of the model comparison with 24 GNSS/EGM96 points (Unit: m)

Comparison Resolution () Min Max  Mean  Std. RMS
H(EGM96)-H(ASTER) 1 -23.62 12.74 -2.34 8.36 8.51
H(EGM96)-H(SRTM3) 3 -8.48 8.95 -1.95 4.13 4.48

H(EGM96)-H(SRTM30) 30 -11.16 58.85 9.30 17.82 19.77
Table 2: Overview of the selected GGMs
Model Year Degree Data Reference
GO_CONS_GCF_2_TIM_R5 2014 280 GOCE Brockmann et al. (2014)
GO_CONS_GCF_2_DIR_R5 2014 280 GOCE, GRACE, LAGEOS Bruinsma et al. (2013)
JYY_GOCEO04S 2014 230 GOCE Yietal. (2013)
GOGRA04S 2014 230 GOCE, GRACE Yietal. (2013)
DGM-1S 2012 250 GOCE, GRACE Farahani et al. (2013)
GOCO003S 2012 250 GOCE, GRACE, CHAMP,LAGEOS  Mayer-Giirr et al. (2012)
EGM2008 2008 2190 GRACE, T, A" Pavlis et al. (2008)

" T= Terrestrial Gravity data, A= Altimetry data

racy of the global and local gravimetric geoid models.
Therefore, before the computation of UGG2014, the first
task was to assess the availability of the GNSS/levelling
data in the country. Unfortunately, there is either no in-
formation or little information about the location and
general status of the levelling benchmarks in Uganda to
the extent that as of 2014, there is no information per-
taining to how many of the 3033 benchmarks that were
established by the British Directorate of Overseas Sur-
veys still exists. In addition, no GNSS observations have
been made on levelled benchmarks. Therefore, as part
of this study GNSS observations using Trimble R7 GNSS
receivers were carried out on 24 points shown in Fig. 1
consisting of 10 Fundamental Benchmarks (FBM) of
the Uganda vertical network, whose normal-orthometric
heights were readily available from the National Mapping
Agency, and 14 zero-order points of the Uganda Trian-
gulation network without normal-orthometric heights.
For the zero-order points, the GNSS ellipsoidal heights
were transformed to physical heights using the National
Geospatial-intelligence Agency NGA EGM96 (Lemoine
et al., 1998) geoid calculator (http://earth-info.nga.mil/
GandG/wgs84/gravitymod/egm96/intpt.html) and are
therefore denoted as GNSS/EGM96.

3.2 Digital Elevation Models (DEM)

Height information derived from digital elevation mod-
els is very important in geoid computation, because
heights are required in the computation of the Bouguer

correction, which is used in the conversion of the sur-
face free-air anomalies to Bouguer anomalies which
are then used in the gridding procedure. In addition,
heights are required in the computation of the com-
bined topographic correction and the downward con-
tinuation(DWC) effect, which are additive corrections
to the approximate geoid height. Thus any errors in
the DEM will introduce errors in the gravity anoma-
lies, the topographic correction and the DWC effect,
thereby directly affecting the accuracy of the geoid es-
timate. In this study, 3 global DEMs, i.e.Consortium
for Spatial Information (CSI) of the Consultative Group
of International Agricultural Research (CGIAR), Italy
(CGIAR-CSI SRTM ver4.1- http://www.cgiar-csi.org/data/
srtm-90m-digital-elevation-database-v4-1), the SRTM30
data Version 2.0 (http://dds.cr.usgs.gov/srtm/version2_1/)
and ASTER GDEM ver2 (http://www.jspacesystems.or.jp/
ersdac/GDEM/E/index.html), were evaluated using the 24
GNSS/EGM96 data points referred to in Section 3.1. The
evaluation was carried out by comparing the heights de-
rived from the DEM with those of the same points de-
rived from GNSS/EGM96. We used the 24 GNSS points but
with the GNSS ellipsoidal heights transformed to physi-
cal heights using EGM96 Lemoine et al. (1998). The ad-
vantage with this dataset is that the heights derived from
GNSS are consistent with the vertical georeferencing of
both SRTM and ASTER Hirt et al. (2010). This minimises
biases due to differences in vertical datum definitions. The
results reported in Table 1 show that of the 3 DEMs, SRTM3
gives the best results in terms of the mean, standard devi-
ation and RMS of the differences versus the GNSS/EGM96
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heights. Its standard deviation and RMS are almost half
those of ASTER, which indicates that in Uganda the qual-
ity of SRTM3 is clearly much better than ASTER. Therefore
SRTM3 is selected for the final computation of UGG2014.

3.3 Global Geopotential Models

The current GGMs, representing the Earth’s gravitational
field, can be classified into three groups: satellite-only,
combined and tailored gravity field models. The satellite-
only GGMs are derived from the tracking and analysis of
the orbits of artificial Earth satellites only. The combined
GGMs include satellite gravity data, terrestrial gravity data
and satellite altimetry data. The tailored GGMs are either
satellite-only or combined models, which are adjusted and
extended to higher degrees by using previously used or un-
used higher resolution gravity data. Currently a number
of GGMs have been derived and made available freely to
the scientific community and can be downloaded from the
website of the International Centre for Global Earth Mod-
els (http://icgem.gfz-potsdam.de/ICGEM/). From this web-
site we selected 6 satellite-only models and one combined
model for evaluation. We choose these models because
they were the most recently published GGMs at the time. In
addition we also wanted to test how the GOCE-only mod-
els compare with the GOCE/GRACE/CHAMP models when
fitted to GNSS/levelling data. Table 2 gives an overview of
the models selected.

The GGMs were evaluated by comparing the geoid
heights from GNSS/levelling with the GGM geoid heights
computed using the MATLAB based software EGMlab Ki-
amehr and Eshagh (2008), which transforms the coeffi-
cients so that they refer to GRS80. The comparison was
carried out both before and after the 4-parameter fitting
with the parametric model used to minimize the effect of
systematic biases emanating from commission and omis-
sion errors of the GGMs and biases from GNSS and level-
ling Fotopoulos (2013). The descriptive statistics of the dif-
ferences between the GGM derived geoid heights and the
GNSS/levelling geoid heights are reported in Table 3.

As expected, EGM2008 with standard deviations
of 22 cm and 9 cm before and after the 4-parameter fitting
is the GGM that best fits GNSS/levelling in Uganda. This
is because EGM2008 is a combined model which includes
terrestrial gravity anomalies and is also given as a series
of spherical harmonic coefficients complete to d/o 2159
unlike all the other GGMs tested which are satellite-only
GGMs with maximum degree and order up to 280. How-
ever, for the computation of UGG2014, we used the GOCE-
only model GO_CONS_GCF_2_TIM_R5 up to degree 280,
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whose standard deviations of 37 cm and 29 c¢cm before
and after the 4-parameter fitting respectively are the low-
est for the satellite-only GGMs. This was preferred in or-
der to guard against correlations that may arise between
the errors in the GGM and the terrestrial gravity anomalies
in the case of the combined model Agren (2004); Agren
et al. (2009b). However, these results also highlight the
contribution of the GOCE satellite mission to the gravity
field recovery as the difference in standard deviations be-
tween the GOCE-only model to d/o 280 and the combined
model —EGM2008 complete to d/o 2159 is approximately
only 17 cm.

3.4 Gravity anomalies

The terrestrial gravity data used in this study was
downloaded from the International Gravimetric Bureau
(BGI) gravity database (http://bgi.omp.obs-mip.fr/data-
products/Gravity-Databases/Land-Gravity-data). The
data covers the area which lies between 3°S < ¢ < 5°N
in latitude and 28° < A < 36° in longitude. The distri-
bution of the data is presented in Fig. 1. 7839 gravity
data points with an accuracy of approximately 20 mGal
were provided. Of these, 3624 points lie within the bound-
aries of Uganda between 1.5°S < ¢ < 4.5°N in latitude
and 29.5° < A < 35° in longitude, producing a density of
one point per 65 km?. We can see that the gravity data is
not uniformly distributed all over the entire country with
a uniform distribution observed only in the North-Eastern
part of the country where mineral deposits were suspected
leading to a lot of gravity measurements undertaken be-
tween 1936 and 1975.

The geodetic datum of the gravity points is the GRS67
geodetic system with the normal gravity on the GRS67 el-
lipsoid determined to an accuracy of +0.004 mGal. How-
ever, in this study our intention is to determine a gravimet-
ric geoid model for Uganda relative to the GRS80 geode-
tic system using surface gravity anomalies following Molo-
densky’s theory in which the gravity anomalies refer to the
Earth’s surface (the ground) instead of the geoid (Heiska-
nen and Moritz, 1967, pp. 287-328)(Hofmann-Wellenhof
and Moritz, 2006, p. 289). We used the Somigliana-Pizzetti
formula (Moritz, 1980, p. 131) to compute the normal
gravity on the GRS80 reference ellipsoid with the normal
height of the computational point computed as the sum
of the normal-orthometric height of the gravity point and
the geoid-to-quasi-geoid separation approximated by Eq.
(8-103) in (Heiskanen and Moritz, 1967, pp. 327-328).

In addition to the uneven distribution of the gravity
points, the KTH method requires gravity data outside the
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Table 3: Statistics of the differences between GGM geoid heights and GNSS/levelling geoid heights for 10 GNSS/levelling points over

Uganda (Unit: cm)

Model Min Max Mean Standard deviation
Bef 23 87 4 22
EGM2008 :ft(:arre -18 13 09 9
Bef -22 11
GO_CONS_GCF_2_TIM_R5 :ﬁ:rre S 65 304 ;;
Bef 17 118 32 40
GO_CONS_GCF_2_DIR_R5 :ft(:re oo i1 o i
Bef -35 128 36 46
JYY_GOCEO4S :ft(:arre —6; 43 0 36
Bef - 121 8 4
GOGRA04S :ft:rre —Z; 43 3o 3?
Bef -11 143 53 46
DGM-15 :ft(;rre —64 47 0 34
Bef -48 98 21 44
60C0035 :ft(:arre -54 23 0 32

extents of the study area (up to the cap size), this data is
either sparsely available e.g. beyond the border with the
Democratic Republic of the Congo or is completely miss-
ing e.g. beyond the border with South Sudan. To fill these
gaps, surface gravity anomalies were extracted from the
World Gravity Map 2012 Bonvalot et al. (2012).

The final grid of the surface gravity anomalies at a res-
olution of 1’x1'was made as follows:

— Detection of outliers in the terrestrial gravity data
using visual inspection, direct comparison with the
WGM2012 surface gravity anomalies and the use of
the cross validation approach Kiamehr (2007); Ulotu
(2009). As a result a total of 812 gravity points rep-
resenting 10.3 % of the terrestrial gravity data were
identified as outliers and then removed from the
gravity data.

Using the Bouguer surface (removal of topographic
masses) to convert the surface gravity anomalies
into reduced gravity anomalies, which are assumed
to be smoother than the original surface gravity
anomalies. This technique was used to overcome
the challenge of interpolating unreduced gravity
anomalies since the KTH method works on the
full gravity anomaly without any reduction Sjoberg
(2003b). Then the reduced gravity anomalies were
interpolated to a denser grid and finally the ef-
fect of the topographic masses were restored to the
Bouguer anomaly grid resulting in to free-air anoma-
lies.

We used the method of Kriging with linear vari-
ograms Kiamehr (2007); Ulotu (2009) to construct

the final grid. By cross-validation of all gravity data
the accuracy of the surface gravity anomaly was es-
timated to be approximately 9 mGal. This certainly is
a great improvement from the initial 20 mGal of the
original terrestrial gravity data from BGI. This shows
the effect of outlier detection on gravity surveys and
subsequently on regional gravimetric geoid determi-
nation.

4 Determination of UGG2014

4.1 Signal and error degree variances

The error degree variances of the GGM are provided to-
gether with the GGM up to the maximum degree of the
particular GGM. The problem is in determining the sig-
nal degree variances for higher degrees. In this study
we numerically test three degree variance models, i.e.
Kaula’s rule Kaula (1963, 1966), the Tscherning and
Rapp model Tscherning and Rapp (1974) and the Jekeli
and Moritz model Jekeli (1978); Moritz (1976, 1977) with
the selected GGM GO-CONS-GCF-TIM-R5 (nmax = 280).
The numerical results show that beyond degree 2000,
the Jekeli/Moritz model yields degree variances approx-
imately equal to zero, showing that there is no gravity
anomaly power above this degree, which is unrealistic
since we now (2014) know that GGMs can have gravity
anomaly power complete to degree and order 2159 (e.g.
EGM2008; Pavlis et al. (2008)). Beyond degree 2500, the
Kaula model yields too much power (almost twice as much
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Figure 2: Error degree variances of GO-CONS-GCF-TIM-R5 and sur-
face gravity anomaly

when compared with the Tscherning/Rapp model). This
makes it unsuitable for modelling degree variances for
higher frequencies. Compared with EGM2008, the Tsch-
erning/Rapp model fits the degree variances of EGM2008
reasonably well for the frequencies between degrees 280
and 1000. Based on the above numerical results and the
findings of Agren (2004), we use the Tscherning and Rapp
model to determine the degree variances for the degrees
higher than the maximum degree of our selected GGM. To
account for the error degree variances of the surface grav-
ity anomaly, we use the correlated model as recommended
by Agren (2004). This model is based on a combination
of the white noise model (cf. Rummel (1997); Jekeli and
Rapp (1980)) and the reciprocal distance model of Sjoberg
(1986). The reciprocal distance model provides the power
for the low degrees while the white noise model provides
the power for the higher degrees of the spectrum up to
the Nyquist degree, My, which is defined by Agren (2004)
asmt/A¢, where A¢ is the block size of the gravity anomaly
grid in question (in our caseMy = 10800 since the block
size of the gravity anomaly grid is60”'), beyond which de-
gree, the power drops down to almost zero as would be ex-
pected.

To determine the weighting scheme of the gravity
anomaly data, we plot the error degree variances of the
satellite-only GGM GO-CONS-GCF-TIM-R5, and the surface
gravity anomaly error degree variances determined by the
correlated model (Fig. 2). We can see that up to about de-
gree 200, the GOCE-only model is better than the surface
gravity anomalies. This represents the upper degree for
which the GOCE model is believed to be better than the ter-
restrial gravity anomalies (cf. Agren et al. (2009b)).
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Figure 3: 3D surface view of the combined topographic corrections
overlaid with relief and contour layers (Unit: m and contour interval
=0.1m)

4.2 Choice of the cap size

Theoretically there is no optimum cap size for the numeri-
cal integration by the KTH method provided homogeneous
gravity data is available Sjoberg (2003b). However, to re-
duce the effect of undetected systematic/gross errors in the
gravity data, a limited cap size of a few degrees is usually
used. On the basis of gravity data availability, a cap size
of 1° was used for the determination of UGG2014 so as to
optimise the available gravity data while at the same time
reducing the influence of the WGM2012 gravity data on the
surface gravity anomalies.

4.3 Determination of the Optimum Least
Squares Modification Parameters

The determination of the optimum least squares modifi-
cation parameters has been studied in detail by Agren
(2004); Sjoberg (1991). Based on these studies the badly
conditioned system of equations for the unbiased least
squares estimator in the KTH method is solved using Sin-
gular Value Decomposition. In this study we use the cor-
related model to compute the least squares modification
parameters. We numerically study the behaviour of the pa-
rameters using different standard deviations for the terres-
trial gravity data (0 = 1mGal, 5 mGal, 9 mGal and 20 mGal),
a correlation length of 0.2° for the reciprocal distance
model and My = 10800. Our results show that ( although
the parameters s, depend on the gravity anomaly de-
gree variances which are not accurately known), the least
squares method is rather insensitive to the choice of the
weights such that even with very low quality terrestrial
gravity data (in our case 0 = 9 mGal), the resulting least
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squares modification parameters are insensitive to the
long-wavelength gravity anomaly errors and at the same
time yield a low truncation error (cf. Agren et al. (2004)).

4.4 Determination of Approximate Geoid
Height

The approximate geoid height model for Uganda was com-
puted from GGM GO_CONS_GCF_TIM_R5 and a 1’x1’grid
of the surface gravity anomalies. It has the following statis-
tics: minimum = -17.62 m, maximum = -4.67 m, mean
= -12.56 m, standard deviation = 2.47 m and RMS =12.81 m.
This implies that the geoid is located below the reference
ellipsoid.

4.5 Additive Corrections

The combined topographic correction is computed accord-
ing to Eq. 2 where H is extracted from the 3”x3” SRTM3
DEM. The results in metres are presented in Fig. 3, where
we can see that generally the combined topographic cor-
rections are between —0.2 m and —1.0 m over the study area

0.1

-0.1
-0.3
-0.5
-0.7

-0.9

Figure 5: The total topographic effect (Units: metres)
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with the lowest correction observed along the Great Rift
Valley and the highest correction observed on the Rwen-
zori Mountains along the western border of the country.
The downward continuation correction, illustrated
in Fig. 4, is computed according to Eq. 3 using the SRTM3
DEM and the chosen GGM GO_CONS_GCF_TIM_R5 with
M = 280. 1t is clear that this correction is large especially
around the Rwenzori Mountains along the western border
and around Mountain Elgon along the eastern border with
Kenya where it ranges from 1 m to 2.4 m. For the rest of the
country, this correction is still large as it ranges between
0.4 m and —0.2 m. Overall, the statistics of the DWC correc-
tion are: minimum = -0.23 m, maximum = 2.45 m, mean
= —-0.00 m, standard deviation = 0.08 m and RMS = 0.08 m.
By combining the combined topographic correction
and DWC correction we obtain the total topographic effect

~0.0008
—0.0005
—0.0002
-0.0001

+-0.0004

—-0.0007
ﬂ»D.UO‘\

Figure 7: The ellipsoidal correction (units: metres)
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on the geoid height as
6NtTot = 6Ngomb + 6NDWC (7)

The magnitude of the total topographic effect in metres is
illustrated in Fig. 5. The counteracting effect of the DWC
on the combined topographic correction is depicted by the
reduction in the magnitude of the total topographic ef-
fect whose statistics are: minimum = -0.98 m, maximum
= 0.14 m, mean = -0.18 m, standard deviation = 0.11 m
and RMS = 0.11 m.

The total atmospheric correction in the KTH method
is dependent on the type of GGM used in the modi-
fication Sjoberg (2001). In our case we use the GGM
GO_CONS_GCF_TIM_R5, which is a GOCE-only GGM to de-
gree 280. Thus the total atmospheric effect on the geoid
height is computed according to Eq. 4 and illustrated
in Fig. 6. This correction is very small (within 3 mm) with
the maximum absolute values observed along the Great
Rift Valley.

The ellipsoidal correction to the modified Stokes for-
mula is computed according to Eq. 5 using the se-
lected GGM GO_CONS_GCF_TIM_R5 with maximum de-
gree = 280. The result is illustrated in metres in Fig. 7.
This correction is very small (within 1 mm) mainly because
in the KTH method it depends on the cap size which is
only 1°. In addition, the GGM gravity anomaly is computed
based on the Mean Earth Ellipsoid instead of the Mean
Earth Sphere following studies of Sjoberg (2003d,e, 2004).

5 Internal and External Accuracy
Assessment of UGG2014

From Eq. 1, we can identify three major sources of error
namely errors due to truncation of the integration cap, er-
rors emanating from the observed terrestrial gravity data
and errors stemming from the GGM. In addition, errors em-
anating from the additive corrections especially the total
topographic effect are also noted. The internal accuracy of
UGG2014 represented by the RMS of the geoidal undula-
tion estimator is computed by Eq. 6 and reported in Ta-
ble 4 for the 3 GGMs tested namely a GOCE-only model,
a GOCE/GRACE/CHAMP/LAGEOS model and a combined
model.

From the Table, we can see that the GOCE-only model
has the lowest estimated geoid height RMS value of the
3 GGMs compared. This emphasizes the important con-
tribution of the GOCE satellite data to gravity field recov-
ery as model GO_CONS_GCF_2_TIM_R5 includes all the
GOCE observations for the entire mission Brockmann et al.
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(2014), whereas model GOCOO03S includes only 18 months
of the GOCE observations Mayer-Giirr et al. (2012). In ad-
dition, the contribution of the GGM to the RMSE is only
4.6 cm which is less than half the contribution from the
terrestrial gravity data. This shows the significant progress
brought about by the improved knowledge of the long
and medium wavelengths of the Earth’s gravity field as a
result of the GOCE gravity satellite mission. At the same
time it highlights the need for accurate terrestrial gravity
data, since the biggest contribution stems from the terres-
trial gravity data, which as we have earlier noted, is of a
very low quality.

The internal accuracy assessment above is based on
error propagation and therefore cannot be used alone to
tell how good a geoid model is. The external accuracy as-
sessment on the other hand is based on independent data
sets (e.g. GNSS/levelling data) and is therefore a good indi-
cator of the accuracy of the gravimetric geoid model. The
assessment is usually carried out by comparing the esti-
mates of the geoid heights (NV662014/G6M) with that ob-
tained from GNSS/levelling (NNSS/LEV-) hased on the dif-
ference

AN; = NiGNSS/LEV _NiUGGZOM/GGM - h;—HNO _NiUGGZOM/GGM

(8)
where h and HM° are the ellipsoidal and normal-
orthometric heights respectively. From the above model,
the statistics of the residuals for the 10 FBMs are pre-
sented in Table 5 together with a comparison made with
the regional model for Africa i.e. African geoid Merry et
al. (2005) and two combined GGMs, i.e. EGM2008 Pavlis
et al. (2008) and EIGEN-6C3stat Forste et al. (2012). The
residuals are also fitted using a 4-parameter model in or-

Table 4: Global RMS values for the Unbiased LSM Estimator for
3 GGMs

Expected Estimated
GGM Error RMS
Total 11.5
GO_CONS_GCF_2_TIM_R5  Agonly 10.3
(nmax  =280) GGM only 4.6
Truncation 2.2
Total 14.9
Ag onl 12.2
GOCO03S (Mmax = 250) GGgM On‘ly oo
Truncation 3.0
Total 11.8
Ag onl 8.0
EGM2008 (mmax = 360) on‘{y o
Truncation 2.8
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Table 5: The GNSS/levelling residuals over the 10 FBMs before and after the 4-parameter fit (Unit: cm)

GGM/Regional Geoid Min Max Mean RMS
Before -14.6 23.6 5.8 11.6
201
U6G2014 After -11.9 12.2 0.0 7.4
EGM2008 Before 22.5 86.7 48.8 53.0
(Nmax = 2190) After -18.0 13.0 0.00 8.7
EIGEN_6C3stat Before 73.4 116.1 96.3 97.2
(Nmax = 1949) After  -14.7 11.1 0.0 8.2
Before -184.6 -91.4 -134.0 138.7
Afri id (2

rican Geoid (2007)  yqor 175 163 0.0 104

der to minimise the effect of a number of systematic biases
stemming from GNSS/levelling data and the gravimetric
geoid (cf. Fotopoulos (2013); Kiamehr and Sjoberg (2005).
We can see that UGG2014 has the best agreement (11.6 cm
before and 7.4 cm after) among all the gravimetric models.
Most significantly its agreement before the parameter fit-
ting (11.6 cm) is much better than any of the other gravimet-
ric models. This highlights the advantages of combining
terrestrial and satellite gravity data using the KTH method
to determine a regional geoid even for areas like Uganda
with very limited terrestrial gravity data. After applying
the 4-parameter fit, the absolute agreement of all models
recovers considerably to within +3 cm the fit of UGG2014
(74 cm).

Based on the RMS values of 11.6 cm and 74 c¢cm be-
fore and after the parameter fitting, respectively, and
assuming that the standard errors of the ellipsoidal
heights and the normal-orthometric heights are 2.2 cm
and 1.0 cm respectively, by simple error propagation
the standard error of UGG2014 before and after can
be estimated as \/ (11.6)> - (2.2)> - (1.0)> = 11.3 cm

and \/(7.4)2 -(2.2)* - (1.0)*> =70 cm. We can see that
the 4-parameter model has reduced the standard error of
UGG2014 by 4.3 cm or 38% by absorbing the systematic bi-
ases.

Let us finally compare the internal and external es-
timates of the accuracy of UGG2014. Considering that
the internal estimate is a pure error propagation of ran-
dom/stochastic errors, while the external error includes
systematic errors as well, the latter should exceed the for-
mer. After the 4-parameter fit, UGG2014 experiences the
opposite: internal and external error estimates are 11.5 cm
and 74 cm. A probable reason for this odd result could be
that the applied error degree variances for the GGM and
gravity anomaly observations are too large, which will af-
fect the internal error estimate directly, while the exter-
nal estimate is only indirectly affected through the geoid
height estimates. As a result, the internal accuracy esti-

mate is likely rather poor, while the estimated external ac-
curacy, which is much more important, is more realistic.

6 Conclusions

The main purpose of this paper has been to present the
computation of the gravimetric geoid model UGG2014 over
Uganda by combining very limited and sparse terrestrial
gravity data with a recently published GGM. The 11.6 cm
and 74 cm RMSE obtained by UGG2014 before and after
the 4-parameter fit, respectively, are very satisfactory given
the poor quality and quantity of the terrestrial data used.
If the standard errors for GNSS and levelling are taken as
2.2 cm and 1.0 cm, respectively, (which is reasonably re-
alistic given the current state of the vertical network in
Uganda), then the propagated RMSE for the fitted gravi-
metric geoid becomes 7 cm. Although this standard er-
ror is much larger than the 1 cm standard error antici-
pated for local/regional gravimetric geoid models in many
countries, it represents significant progress since UGG2014
is the first regional/local gravimetric geoid model over
Uganda. Our results also point out the significant contri-
bution of the GOCE satellite mission to gravimetric geoid
determination, especially for areas with sparse terrestrial
gravity data. As part of future work, we plan on densifying
the GNSS/levelling network over the entire country so as
to provide a much better homogeneous data set that can
be used for validating and evaluating global and regional
gravimetric geoid models. We also anticipate that improve-
ments in terrestrial gravity coverage as part of increased
mineral exploration in the country will provide more grav-
ity data that can be used to improve the accuracy of the
gravimetric geoid model.
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