Startseite Ultra-wide dense wavelength division multiplexing and ultra-high channel capacity based outdoor free space/optical wireless system applications in heavy atmospheric channel condition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultra-wide dense wavelength division multiplexing and ultra-high channel capacity based outdoor free space/optical wireless system applications in heavy atmospheric channel condition

  • Ramachandran Thandaiah Prabu EMAIL logo , Sundararajan Rajeshkannan , Balaji Sambandam Ramachandran , Nalini Neelamegam , Chandran Ramesh Kumar , Vijayalakshmi Sankaran und Asmaa Eisa EMAIL logo
Veröffentlicht/Copyright: 14. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper has clarified the simulation performance study of ultra-wide dense wavelength division multiplexing and ultra-high channel capacity based outdoor free space/optical wireless system applications in heavy atmospheric channel condition. We have demonstrated that the OWC channel can be reached to 20 km transmission distance with suitable signal to noise ratio while FSO channel can be reached to 250 m with minimum bit error rate through the use of BPSK modulation scheme. This work attempts to study the performance of UW-DWDM optical wireless communication (OWC) and free-space optical (FSO) channels under fog conditions using BPSK and NRZ-OOK modulation. The dense fog density level has bad effects on the performance of both OWC and FSO communication channels. The FSO/OWC communication channels performance is studied under light/thick/dense fog density levels. Non-return to zero (on–off keying (NRZ-OOK) and binary phase shift keying (BPSK) modulation schemes are applied through the FSO/OWC communication channel. Ultra-wide dense wavelength division multiplexing channels are employed to study the channel data rate capacity.


Corresponding authors: Ramachandran Thandaiah Prabu, Department of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Saveetha University, Chennai, Tamilnadu, India, E-mail: ; and Asmaa Eisa, Alexandria Institute of Technology, Alexandria, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: Not applicable.

References

1. Grubor, J, Randel, S, Langer, KD, Walewski, JW. Broadband information broadcasting using LED-based interior lighting. IEEE/OSA J Lightw Technol 2008;26:3883–92. https://doi.org/10.1109/jlt.2008.928525.Suche in Google Scholar

2. Zeng, L, O’Brien, D, Minh, H, Faulkner, G, Lee, K, Jung, D, et al.. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. IEEE J Sel Areas Commun. 2009;27:1654–62. https://doi.org/10.1109/jsac.2009.091215.Suche in Google Scholar

3. Elsayed, EE, Yousif, BB. Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems. Opt Quant Electron 2020;52:385. https://doi.org/10.1007/s11082-020-02497-0.Suche in Google Scholar

4. Mesleh, R, Elgala, H, Haas, H. Optical spatial modulation. IEEE/OSA J Opt Commun Netw. 2011;3:234–44. https://doi.org/10.1364/jocn.3.000234.Suche in Google Scholar

5. Fath, T, Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans Commun 2013;61:733–42. https://doi.org/10.1109/tcomm.2012.120512.110578.Suche in Google Scholar

6. Azhar, AH, Tran, T-A, O’Brien, D. A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photon Technol Lett 2013;25:171–4. https://doi.org/10.1109/lpt.2012.2231857.Suche in Google Scholar

7. Hanzo, L, Haas, H, Imre, S, O’Brien, D, Rupp, M, Gyongyosi, L, et al.. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc IEEE 2012;100:1853–88. https://doi.org/10.1109/jproc.2012.2189788.Suche in Google Scholar

8. Wang, TQ, Sekercioglu, YA, Armstrong, J. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. IEEE/OSA J Lightw Technol 2013;31:1744–54. https://doi.org/10.1109/jlt.2013.2257685.Suche in Google Scholar

9. Armstrong, J, Lowery, AJ. Power efficient optical OFDM. Electron Lett 2006;42:370–2. https://doi.org/10.1049/el:20063636.10.1049/el:20063636Suche in Google Scholar

10. Armstrong, J, Schmidt, BJC. Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun Lett 2008;12:343–5. https://doi.org/10.1109/lcomm.2008.080193.Suche in Google Scholar

11. Li, X, Vucic, J, Jungnickel, V, Armstrong, J. On the capacity of intensity-modulated direct-detection systems and the information rate of ACO-OFDM for indoor optical wireless applications. IEEE Trans Commun 2012;60:799–809. https://doi.org/10.1109/tcomm.2012.020612.090300.Suche in Google Scholar

12. Dissanayake, SD, Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. IEEE/OSA J Lightw Technol. 2013;31:1063–72. https://doi.org/10.1109/jlt.2013.2241731.Suche in Google Scholar

13. Bölcskei, H, Gesbert, D, Paulraj, AJ. On the capacity of OFDM-based spatial multiplexing systems. IEEE Trans Commun 2002;50:225–34. https://doi.org/10.1109/26.983319.Suche in Google Scholar

14. Paulraj, AJ, Gore, DA, Nabar, RU, Bolcskei, H. An overview of MIMO communications – A key to gigabit wireless. Proc IEEE 2004;92:198–218. https://doi.org/10.1109/jproc.2003.821915.Suche in Google Scholar

15. Carruthers, JB, Kahn, JM. Angle diversity for nondirected wireless infrared communication. IEEE Trans Commun 2000;48:960–9. https://doi.org/10.1109/26.848557.Suche in Google Scholar

16. Jiang, Y, Varanasi, MK, Li, J. Performance analysis of ZF and MMSE equalizers for MIMO systems: an in-depth study of the high SNR regime. IEEE Trans Inf Theor 2011;57:2008–26. https://doi.org/10.1109/tit.2011.2112070.Suche in Google Scholar

17. Dambul, KD, O’Brien, D, Faulkner, G. Indoor optical wireless MIMO system with an imaging receiver. IEEE Photon Technol Lett 2011;23:97–9. https://doi.org/10.1109/lpt.2010.2091627.Suche in Google Scholar

18. Singla, A, Rana, K. Comparison of FSO and OWC channel for various line coding techniques. Alka Singla J Eng Res Appl 2019;9:60–3.Suche in Google Scholar

19. Zhu, X, Kahn, M. Free space optical communication through atmospheric turbulence channels. IEEE Trans Commun 2002;50:176–88.10.1109/TCOMM.2002.800829Suche in Google Scholar

20. Aladeloba, AO, Phillips, AJ. WDM FSO network with turbulence-accentuated inter channel crosstalk. IEEE J Optic Commun Netw 2013;5:1234–45.10.1364/JOCN.5.000641Suche in Google Scholar

21. Bigo, S, Gauchard, S, Bertaina, A, Hamaide, J. Experimental investigation of stimulated raman scattering limitation on wdm transmission over various types of fiber infrastructures. IEEE Photonics Technol Lett 1999;11:671–3. https://doi.org/10.1109/68.766780.Suche in Google Scholar

22. Yadlowsky, MJ, Deliso, EM, Da Silva, VL. Optical fibers and amplifiers for WDM systems 1997;85:1765–79. https://doi.org/10.1109/5.649655.Proc IEEE11Suche in Google Scholar

23. Singh, Y, Bharti, M, Kumar, J. Performance analysis of optical wireless communication channel link at various bit rates. Int J Comput Sci Eng Technol 2014;5:26–35.Suche in Google Scholar

24. Gopalan, A, Simon, J, Hemalatha, T, Naresh Mandhala, V, Neelamegam, N, Sukumar, B, et al.. Comparative study of single pump all optical fiber amplifiers (POAs) with ultra wide band and high gain fiber optic parametric amplifiers in highly nonlinear fibers. J Opt Commun 2025;46:215–24. https://doi.org/10.1515/joc-2024-0022.Suche in Google Scholar

25. Prabu, K, Sriram Kumar, D, Srinivas, T. Performace analysis of FSO links under strong atmospheric turbulence conditions using various modulation schemes. Optics Journal 2014;125:5573–81. https://doi.org/10.1016/j.ijleo.2014.07.028.Suche in Google Scholar

26. Ramkumar, G, Deva Shahila, F, Lingaraj, V, Chandran, P, Chidambaram, V, Arumugam, P, et al.. Total losses and dispersion effects management and upgrading fiber reach in ultra-high optical transmission system based on hybrid amplification system. J Opt Commun 2025;46:289–98. https://doi.org/10.1515/joc-2024-0074.Suche in Google Scholar

27. Majumdar, AK. Free space laser communication performance in the atmospheric channel. J Opt Fiber Commun Rep 2005;2:345–96. https://doi.org/10.1007/s10297-005-0054-0.Suche in Google Scholar

28. Smith, G, Novak, D, Ahmed, Z. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans Microw Theor Tech 1997;45:1410–15. https://doi.org/10.1109/22.618444.Suche in Google Scholar

29. Yousif, BB, Elsayed, EE, Alzalabani, MM. Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system. Opt Commun 2019;436:197–208. https://doi.org/10.1016/j.optcom.2018.12.034.Suche in Google Scholar

30. Mbah, AM, Walker, JG, Phillips, AJ. Outage probability of WDM free-space optical systems affected by turbulence-accentuated interchannel crosstalk. IET Optoelectron 2017;11:91–7. https://doi.org/10.1049/iet-opt.2016.0057.Suche in Google Scholar

31. Elsayed, EE, Yousif, BB. Performance enhancement of hybrid diversity for M-ary modified pulse-position modulation and spatial modulation of MIMO-FSO systems under the atmospheric turbulence effects with geometric spreading. Opt Quant Electron 2020;52:508. https://doi.org/10.1007/s11082-020-02612-1.Suche in Google Scholar

Received: 2025-09-20
Accepted: 2025-10-20
Published Online: 2025-11-14

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0413/pdf?lang=de
Button zum nach oben scrollen