Home Design and analysis of digital to analog converter (DAC) using quantum dot semiconductor optical amplifier
Article
Licensed
Unlicensed Requires Authentication

Design and analysis of digital to analog converter (DAC) using quantum dot semiconductor optical amplifier

  • Kousik Mukherjee ORCID logo EMAIL logo
Published/Copyright: March 13, 2025
Become an author with De Gruyter Brill

Abstract

Digital to analog converter (DAC) based on amplifying action of quantum dot semiconductor optical amplifier is designed and performance is investigated numerically using Matlab. The performance of the DAC is analyzed by calculating resolution or step size (1.001 mW), dynamic range (11.762 dB), relative output (RO), desired relative output (DRO), absolute error (0.15 %) etc. The dynamic range values offer nearly ideal behavior. The effect of amplified spontaneous emission noise is also investigated on dynamic range and absolute error. An error as low as 0.5 % is achieved at operating speed more than 4 Tb/s. Moreover, the design is simple and uses only four QDSOAs.


Corresponding author: Kousik Mukherjee, Department of Physics, Banwarilal Bhalotia College, Asansol, India; and Centre of Organic Spintronics and Optoelectronic Devices, Kazi Nazrul University, Asansol, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Kousik Mukherjee is the only author.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Liu, S, Tong, Y, Norman, J, Dumont, M, Gossard, A, Tsang, HK, et al.. High efficiency, high gain and high saturation output power quantum dot SOAs grown on Si and applications. In: Optical fiber communication conference (OFC) 2020, OSA technical digest. San Diego, CA, USA: Optical Society of America; 2020. paper T4H.3.10.1364/OFC.2020.T4H.3Search in Google Scholar

2. Izadyar, SM, Razaghi, M, Hassanzadeh, A. Quantum dot semiconductor optical amplifier: investigation of amplified spontaneous emission and noise figure in the presence of second excited state. Opt Quant Electron 2018;50:5. https://doi.org/10.1007/s11082-017-1265-3.Search in Google Scholar

3. Liu, S, Normal, J, Dumont, M, Pintus, P, Tran, M, Jung, D, et al.. O-band quantum dot semiconductor optical amplifier directly grown on CMOS compatible Si substrate. In: 2019 IEEE photonics conference (IPC). San Antonio, TX, USA: IEEE; 2019:1–2 pp.10.1109/IPCon.2019.8908327Search in Google Scholar

4. Lu, G, Zhang, H, Xing, Z, Akahane, K, Cheng, Z, Liu, T, et al.. PAM4 receiver based on quantum-dot SOA preamplifier for short-reach applications. In: Conference on lasers and electro-optics, OSA technical digest. San Jose, USA: Optical Society of America; 2020. paper JTu2E.18.10.1364/CLEO_AT.2020.JTu2E.18Search in Google Scholar

5. Fouskidis, DE, Zoiros, KE, Hatziefremidis, A. Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J Sel Top Quant Electron 2021;27:1–15. https://doi.org/10.1109/JSTQE.2020.3023807. Art no. 7600915.Search in Google Scholar

6. Kotb, A, Guo, C. All-optical OR and NOR gates using quantum-dot semiconductor optical amplifiers-assisted turbo-switched Mach-Zehnder interferometer and serially delayed interferometer at 1 Tb/s. Optik 2020;218. https://doi.org/10.1016/j.ijleo.2020.164879.Search in Google Scholar

7. Safari-Anzabi, K, Habibzadeh-Sharif, A, Connelly, MJ, Rostami, A. Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach-Zehnder interferometer. Opt Laser Technol 2021;135. https://doi.org/10.1016/j.optlastec.2020.106628.Search in Google Scholar

8. Kotb, A, Guo, C. Two-photon absorption in quantum dot semiconductor optical amplifiers-based all-optical XOR gate at 2 Tb/s. Opt Quant Electron 2019;51:58. https://doi.org/10.1007/s11082-019-1772-5.Search in Google Scholar

9. Komatsu, K, Hosoya, G, Yashima, H. All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt Quant Electron 2018;50:131. https://doi.org/10.1007/s11082-018-1384-5.Search in Google Scholar

10. Yazbeck, HA, Belyaev, VV, Tkachenko, IM, Hamze, MM. Multi-electrode quantum-dot semiconductor optical amplifier as an intensity modulator of signals in optical communication systems, 2020. J Phys: Conf. Ser.;1560:012021. https://doi.org/10.1088/1742-6596/1560/1/012021.Search in Google Scholar

11. Akahane, K, Umezawa, T, Matsumoto, A, Yoshida, Y, Yamamoto, N. High temperature operation of quantum dot semiconductor optical amplifier for uncooled 80 Gbps data transmission. In: 2020 Conference on lasers and electro-optics (CLEO). San Jose, CA, USA: Optica Publishing Group; 2020:1–2 pp.10.1364/CLEO_AT.2020.AW3M.2Search in Google Scholar

12. Komatsu, K, Hosoya, G, Yashima, H. Ultrafast all-optical digital comparator using quantum-dot semiconductor optical amplifiers. Opt Quant Electron 2019;51:39. https://doi.org/10.1007/s11082-019-1756-5.Search in Google Scholar

13. Kotb, A, Guo, C. Theoretical demonstration of 250 Gb/s ultrafast all-optical memory using mach-zehnder interferometers with quantum-dot semiconductor optical amplifiers. IEEE J Sel Top Quant Electron 2021;27:1–7. https://doi.org/10.1109/JSTQE.2019.2948051. Art no. 7700307.Search in Google Scholar

14. Xu, H, Wang, Y, Liu, X, Niu, X, Pan, Y, Li, J. An all-optical sampling system utilizing QD-SOA-based NOLM. In: 2019 18th International conference on optical communications and networks (ICOCN). Huangshan, China: IEEE; 2019:1–3 pp.10.1109/ICOCN.2019.8934194Search in Google Scholar

15. Sun, X, Chang, Q, Gao, Z, Ye, C, Xiao, S, Huang, X, et al.. Demonstration of quantum dot SOA-based colorless ONU transmitter for symmetric 40 Gb/s TWDM PON. In: Proc. SPIE 9772, broadband access communication technologies. San Francisco, United States; 2016, X:97720T p.10.1117/12.2211377Search in Google Scholar

16. Kastritsis, D, Zoiros, KE, Dimitriadou, E. Design of ultrafast all-optical pulsed-mode 2 × 2 crossbar switch using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J Comput Electron 2016;15:1046–63. https://doi.org/10.1007/s10825-016-0863-9.Search in Google Scholar

17. Qasaimeh, O. Multichannel and multistate all-optical switch using quantum-dot and sample-grating semiconductor optical amplifier. Electronics 2018;7:166. https://doi.org/10.3390/electronics7090166.Search in Google Scholar

18. Matsuura, M, Ito, G. Selective amplitude-level regeneration based on blue-chirp spectral slicing using QD-SOAs. Opt Express 2019;27:3030–8. https://doi.org/10.1364/oe.27.003030.Search in Google Scholar PubMed

19. Hoshino, H, Okada, T, Matsuura, M. Photonic analog-to-digital conversion using a red frequency chirp in a semiconductor optical amplifier. Opt Lett 2018;43:2272–5. https://doi.org/10.1364/ol.43.002272.Search in Google Scholar

20. Ninomiya, N, Hoshino, H, Matsuura, M. Optical quantization based on intensity to frequency conversion using frequency chirp in a QD-SOA. In: Optical fiber communication conference, OSA technical digest (online). Los Angeles, USA: Optical Society of America; 2017. paper Th1F.6.10.1364/OFC.2017.Th1F.6Search in Google Scholar

21. Okada, T, Hoshino, H, Matsuura, M. 10-GSample/s, 15-level optical quantization using frequency chirp in a quantum-dot SOA. In: 2018 23rd Opto-electronics and communications conference (OECC). Korea (South): Jeju Island; 2018:1–2 pp.10.1109/OECC.2018.8730045Search in Google Scholar

22. Okada, T, Ohtsuki, T, Kobayashi, R, Matsuura, M. Photonic digital-to-analog conversion based on blue chirp spectral slicing using a quantum-dot SOA. In: 2019 24th Optoelectronics and communications conference (OECC) and 2019 international conference on photonics in switching and computing (PSC). Fukuoka, Japan; 2019:1–3 pp.10.23919/PS.2019.8818023Search in Google Scholar

23. Mukherjee, K, Dutta, S, Roy, S, Majhi, K, Raja, A. All-Optical digital to analog converter using Tera Hertz Optical Asymmetric Demultiplexer based on quantum dot semiconductor optical amplifier. Opt Quant Electron 2021;53:242. https://doi.org/10.1007/s11082-021-02900-4.Search in Google Scholar

24. Mukherjee, K, Chattopadhyay, T. Digital-to-analog converter using QDSOA-MZI switches. Opt Quant Electron 2022;54:761. https://doi.org/10.1007/s11082-022-04151-3.Search in Google Scholar

25. Mukherjee, K. A terabit-per-second all-optical four-bit digital-to-analog converter using quantum dot semiconductor optical amplifiers. J Comput Electron 2021;20:1270–6. https://doi.org/10.1007/s10825-021-01675-x.Search in Google Scholar

26. Anil, KM. Digital electronics principles, devices and applications, ch 12. Chichester, England: John Wiley & Sons, Ltd; 2007.Search in Google Scholar

27. Tocci, RJ. Digital systems, 6th ed. New Delhi, India: PHI; 2001.Search in Google Scholar

28. Moniem, TA, El-Din, ES. Design of integrated all optical digital to analog converter(DAC) using 2D photonic crystals. Optics Comn 2017;402:36–40. https://doi.org/10.1016/j.optcom.2017.05.028.Search in Google Scholar

29. Indira Gandhi, S, Sridarshini, T. Design of photonic crystal based optical digital to analog converters. Laser Phys 2019;29:046206. https://doi.org/10.1088/1555-6611/ab05d1.Search in Google Scholar

30. Zhang, T, Qiu, Q, Su, J, Fan, Z, Xu, M. Optical assisted digital-to-analog conversion using dispersion-based wavelength multiplexing. Opt Commun 2019;432:44–8. https://doi.org/10.1016/j.optcom.2018.09.025.Search in Google Scholar

31. Rakshit, JK, Roy, JN. Silicon micro-ring resonator-based all-optical digital-to-analog converter. Photonic Netw Commun 2017;34:84–92. https://doi.org/10.1007/s11107-016-0664-x.Search in Google Scholar

32. Yang, L, Ding, J, Chen, Q, Zhou, P, Zhang, F, Zhang, L. Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators. Opt Lett 2014;39:5736–9. https://doi.org/10.1364/ol.39.005736.Search in Google Scholar

33. Zhang, T, Qiu, Q, Fan, Z, Su, J, Xu, M. Experimental study on a 4-b serial optical digital to analog convertor. IEEE Photon J 2018;10:1–9. https://doi.org/10.1109/JPHOT.2018.2818126. Art no. 5501009.Search in Google Scholar

34. Itoh, T, Sagara, M, Matsuura, M. 40 Gb/s operation of photonic digital-to-analog conversion using frequency chirp in a QD-SOA. In: 2023 International conference on photonics in switching and computing (PSC). Mantova, Italy: IEEE; 2023:1–3 pp.10.1109/PSC57974.2023.10297227Search in Google Scholar

35. Agarwal, V, Gupta, S, Balaji, B, Singh, L. All optical 4 bit digital to analog converter based on carrier reservoir SOA-Mach Zehnder Interferometer (MZI) configuration. Opt Quant Electron 2023;55:724. https://doi.org/10.1007/s11082-023-05045-8.Search in Google Scholar

Received: 2025-01-14
Accepted: 2025-02-18
Published Online: 2025-03-13

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0010/html
Scroll to top button