Home Performance Estimation of Advanced Intensity Modulation Formats Using Hybrid SAC-OCDMA through IsOWC Channel
Article
Licensed
Unlicensed Requires Authentication

Performance Estimation of Advanced Intensity Modulation Formats Using Hybrid SAC-OCDMA through IsOWC Channel

  • Himali Sarangal EMAIL logo , Simrandeep Singh Thapar , Paramjot Singh , Isha Sharma and Harmandar Kaur
Published/Copyright: August 24, 2018
Become an author with De Gruyter Brill

Abstract

Spectral amplitude coding optical code division multiple access (SAC-OCDMA) is one of the most important multiplexing schemes of OCDMA that has turned out to be a stimulating investigating area in optical communication due to its increased privacy, network capacity and its flexibility in allocating the channels and asynchronous environment. On the other hand, Inter-satellite optical wireless communication (IsOWC) which is a favorable area of research in optical communication is useful for bursty transmissions and long-distance communications. In this paper, we have designed a hybrid SAC-OCDMA system through IsOWC channel using ZCC code for advanced intensity modulation formats (CSRZ, Db, and AMI). The investigation is done for four users at a bit rate of 40(4×10) Gb/s using a direct detection technique. Further, on comparing the proposed system using advanced intensity modulation formats, the result shows that system using CSRZ format is better in terms of BER, Q-factor, SNR and the eye diagram with respect to AMI and Db.

References

1. Nisar KS, Sarangal H, Thapar SS, Qutubuddin M, Rahamath M. Performances analysis of permutation matrix zero cross correlation code for SAC-OCDMA systems. Eur J Eng Res Sci. 2018Jan;3:15–19. DOI:10.24018/EJERSSearch in Google Scholar

2. Yin H, Richardson DJ. Optical code division multiple access communication networks theory and applications: architectures, protocols and applications for OCDMA networks. Springer-Verlag Berlin Heidelberg, Tsinghua University Press China, 2009: 300. Doi:10.1007/978-3-540-68468-8Search in Google Scholar

3. Abd TH, Alijunid SA, Fadhil HA, Ahmad RB, Rashid MA. New approach for evaluation of the performance of spectral amplitude coding-optical code division multiple access system on high-speed data rate. IET Commun. 2012Aug;6:1742–49. DOI:10.1049/iet-com.2011.0482Search in Google Scholar

4. Kaur K. Analysis of different OCDMA techniques: A Review. Int J Recent Innov Trends Comput Commun. 2014 Jun;2:1726–29.Search in Google Scholar

5. Jindal S, Gupta N. OCDMA: study and future aspects. Recent development in wireless sensor and Ad-hoc networks. New Delhi: Springer, 2015:125–67. DOI:10.1007/978-81-322-2129-6_8.Search in Google Scholar

6. Sarangal H, Singh A, Malhotra J. Construction and analysis of a novel SAC-OCDMA system with EDW coding using direct detection technique. J Opt Commun. Aug 2017; DOI:10.1515/joc-2017-0061.Search in Google Scholar

7. Sahbudin RKZ, Kamarulzaman M, Hitam S, Mokhtar M, Anas SBA. Performance of SAC OCDMA-FSO communication systems. Optik-Int J Light Electron Opt. 2013 Sep;124:2868–70.10.1016/j.ijleo.2012.08.067Search in Google Scholar

8. Garadi A, Bouazza BS, Bouarfa A, Meddah K. Enhanced performances of SAC-OCDMA system by using polarization encoding. J Opt Commun. Jan 2017; DOI:10.1515/joc-2017-0182.Search in Google Scholar

9. Sarangal H, Singh A, Malhotra J, Chaudhary S. A cost effective 100 Gbps hybrid MDM-OCDMA-FSO transmission system under atmospheric turbulences. Opt Quant Electron. 2017May;49:184. DOI:10.1007/s11082-017-1019-2Search in Google Scholar

10. Djebbari A, Garadi A, Dayoub I, Taleb-Ahmed A. A new code construction with zero cross correlation based on BIBD. Optik-Int J Light Electron Opt. 2013 Sep;124:3419–21.10.1016/j.ijleo.2012.10.078Search in Google Scholar

11. Spectral C-CY. Efficiencies of the optical CDMA-Based PONs using two-code keying. IEEE Commun Lett. 2010 Aug;14:767–69.10.1109/LCOMM.2010.08.100585Search in Google Scholar

12. Abd TH, Alijunid SA, Fadhil HA, Ahmad RA, Saad NM. Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA network. Opt Fiber Technol. 2011 Jul;17:273–80.10.1016/j.yofte.2011.04.002Search in Google Scholar

13. Kumar S, Gill SS, Singh K. Performance investigation of inter-satellite optical wireless communications (IsOWC) system employing multiplexing techniques. Wireless Pers Commun. 2018 Jan;98:1461–72.10.1007/s11277-017-4926-4Search in Google Scholar

14. Patnaik B, Sahu PK. Inter-satellite optical wireless communication system design and simulation. IET Commun. 2012Nov;6:2561–67. DOI:10.1049/iet-com.2012.0044Search in Google Scholar

15. Sharma V, Kaur A.Modeling and simulation of long reach high speed inter- satellite link (ISL). Optik. 2013Jan;125:883–86. DOI:10.1016/j.ijleo.2013.07.090Search in Google Scholar

16. Winzer PJ, Essiambre RJ. Advance optical modulation formats. Proc IEEE. 2006May;94:952–85. DOI:10.1109/JPROC.2006.873438Search in Google Scholar

17. Singh M. Enhanced performance analysis of inter-aircraft optical wireless communication link (IaOWC) using EDFA Pre-amplifier. Wireless Pers Commun. 2017Dec;97:4199–209. DOI:10.1007/s11277-017-4720-3Search in Google Scholar

18. Tan L, Yang Y, Ma J, Yu J. Pointing and tracking errors due to localized deformation in inter-satellite laser communication links. Opt Express. 2008 Aug 18;16:13372–80.10.1364/OE.16.013372Search in Google Scholar

Received: 2018-05-25
Accepted: 2018-08-14
Published Online: 2018-08-24
Published in Print: 2021-04-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Study the Performance of Various Optical Amplifiers for 80 Channels WDM System Using Attenuator
  4. Comparative Study of Various Optical Amplifiers for 32-Channel WDM System
  5. Devices
  6. All Optical BPSK Demodulator Using Photonic Crystal Based Coupled Waveguides
  7. Recirculating Buffer and Arrayed Waveguide Grating-Based Switch for Optical Data Centers
  8. A Proposal for All Optical XNOR Gate Using Photonic Crystal Based Nonlinear Cavities
  9. SWNT Saturable Absorption Application in Telecom Wavelength Range
  10. Measurements
  11. Multi-Beam Free-Space Optical Link to Mitigation of Rain Attenuation
  12. Networks
  13. A Novel Survivability Technique: DHMBC for WDM Optical Networks
  14. Limitation of Erlang B Traffic Model in Elastic Optical Network for Blocking Probability Estimation
  15. Link Fault Tolerant Algorithms to Optimize the Blocking in Optical Burst Switching Networks
  16. Survivable Virtual Optical Network Coordinated Mapping with Local Backup
  17. High Speed Radio over Fiber System for Wireless Local Area Networks by Incorporating Alternate Mark Inversion Scheme
  18. Load and Link Aware Protection Switching Technique for WDM Networks
  19. Minimization of Nonlinear Impairments and Its Impact on Transmission Performances of High-Capacity Long-Haul Optical Networks
  20. Systems
  21. Design of Multichannel Optical OFDM System Using Advanced Modulation Techniques
  22. Reduction of PAPR in FBMC System Using Different Reduction Techniques
  23. CO-OFDM and DP-QPSK Based DWDM Optical Wireless Communication System
  24. Comparison of DCO-OFDM, ADO-OFDM, HDC-OFDM and HNC-OFDM for Optical Wireless Communications
  25. Generalized Trapezoidal Companding Technique for PAPR Reduction in OFDM Systems
  26. Development of a ROF-based System Using DQPSK through IsOWC Channel for Long Haul Data Rate Applications
  27. Parametric Analysis of Self-Phase Modulation in Single-Tone RoF System
  28. Theory
  29. Neurofuzzy and Biogeography-Based Optimization of Bandwidth Granularity for PON Based on Optical Path Fragmentation
  30. Optoelectronic Scheme for Generation of Time Bound Low-Frequency Electronic Signal Using Multi-Passing of Light
  31. Performance Estimation of Advanced Intensity Modulation Formats Using Hybrid SAC-OCDMA through IsOWC Channel
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2018-0088/html
Scroll to top button