Home Review on Wavelength Division Multiplexing Free Space Optics
Article
Licensed
Unlicensed Requires Authentication

Review on Wavelength Division Multiplexing Free Space Optics

  • S. Magidi EMAIL logo and A. Jabeena
Published/Copyright: March 3, 2018
Become an author with De Gruyter Brill

Abstract

Wavelength division multiplexing-based free space optics (WDM FSO) has emerged as a potential communication network candidate for last-mile access among other applications. FSO has received much attention in the last few years as a complement as well as an alternative to radio frequency-based communication due to spectrum crisis among other reasons. On the other hand, WDM has been considered as one of the next-generation optical access network candidates for bandwidth efficiency and increased data rates. A hybrid network of these two technologies thus has emerged as another research direction. In this article, we present the background, progress and the current state of WDM FSO.

References

1. Ashraf N, Khan AK, Raja G. 64-qam full-duplex DWDM radio over fiber with 10 gbit/s and 25 gbit/s data and video transmission in the 5 ghz and 60 ghz dual frequency bands. J Opt. 2016;45:21–25.10.1007/s12596-016-0313-xSearch in Google Scholar

2. Son IK, Mao S. A survey of free space optical networks. Digital Commun Networks. 2017;3:67–77.10.1016/j.dcan.2016.11.002Search in Google Scholar

3. Chunlei Z, Ling G, Pengtu Z. An overview of integration of rof with pon. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), Vol 15, IEEE 2010, 2010:V15–40.10.1109/ICCASM.2010.5622502Search in Google Scholar

4. Khalighi MA, Uysal M. Survey on free space optical communication: A communication theory perspective. IEEE Commun Surveys Tutorials. 2014;16:2231–2258.10.1109/COMST.2014.2329501Search in Google Scholar

5. Bell AG. The story of alexander graham bell 1939;1:38:04.Search in Google Scholar

6. Hecht J, Beam: the race to make the laser. Opt Photonics news. 2005;16:24–29.10.1364/OPN.16.7.000024Search in Google Scholar

7. Williams, W.D., Collins, M., Boroson, D.M., Lesh, J., Biswas, A., Orr, R., Schuchman, L. and Sands, O.S., 2007. RF and optical communications: A comparison of high data rate returns from deep space in the 2020 timeframe.Search in Google Scholar

8. Tolker-Nielsen T, Oppenhaeuser G. In-orbit test results of the optical intersatellite link, silex. a milestone in satellite communication. In: IAF abstracts, 34th COSPAR Scientific Assembly, 2002.Search in Google Scholar

9. Hitam S, Suhaimi SN, Noor AS, Anas SB, Sahbudin RK. Performance analysis on 16-channels wavelength division multiplexing in free space optical transmission under tropical regions environment. J Comput Sci. 2012;8:145.10.3844/jcssp.2012.145.148Search in Google Scholar

10. Popoola WO, Ghassemlooy Z. Bpsk subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J Lightwave Technol. 2009;27:967–973.10.1109/JLT.2008.2004950Search in Google Scholar

11. Sharma V, Lumba M, Kaur G. Severe climate sway in coherent cdma-ossb-fso transmission system. Opt-Int J Light Electron Opt. 2014;125:5705–5707.10.1016/j.ijleo.2014.06.088Search in Google Scholar

12. Lange R, Smutny B, Wandernoth B, Czichy R, Giggenbach D. 142 km, 5.625 gbps free-space optical link based on homodyne bpsk modulation. In: Proceedings of the SPIE, Vol. 6105, 2006:61050A.10.1117/12.673749Search in Google Scholar

13. Smutny B, Kaempfner H, Muehlnikel G, Sterr U, Wandernoth B, Heine F, U Hildebrand, Dallmann D, Reinhardt M, Freier A, et al. 5.6 gbps optical intersatellite communication link. In: Proceedings of the SPIE, Vol. 7199, 2009:1–8.10.1117/12.812209Search in Google Scholar

14. Karafolas N, Baroni S. Optical satellite networks. J Lightwave Technol. 2000;18:1792.10.1109/50.908734Search in Google Scholar

15. Hemmati H. Deep space optical communications, Vol 11. John Wiley & Sons, 2006.10.1002/0470042419Search in Google Scholar

16. Mansour A, Mesleh R, Abaza M, New challenges in wireless and free space optical communications. Opt Lasers Eng. 2017;89:95–108.10.1016/j.optlaseng.2016.03.027Search in Google Scholar

17. Kaur R, Singh HG, Investigations on inter-satellite optical wireless communication, Ph.D. thesis, 2017.Search in Google Scholar

18. Popoola WO, Ghassemlooy Z, Allen J, Leitgeb E, Gao S. Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel. IET Optoelectron. 2008;2:16–23.10.1049/iet-opt:20070030Search in Google Scholar

19. Kiasaleh K. Performance of APD-based, ppm free-space optical communication systems in atmospheric turbulence. IEEE Trans Commun. 2005;53:1455–1461.10.1109/TCOMM.2005.855009Search in Google Scholar

20. Nistazakis HE, Karagianni EA, Tsigopoulos AD, Fafalios ME, Tombras GS. Average capacity of optical wireless communication systems over atmospheric turbulence channels. J Lightwave Technol. 2009;27:974–979.10.1109/JLT.2008.2005039Search in Google Scholar

21. Bekkali A, Naila CB, Kazaura K, Wakamori K, Matsumoto M. Transmission analysis of OFDM-based wireless services over turbulent radio-on-fso links modeled by gamma–gamma distribution. IEEE Photonics J. 2010;2:510– 520.10.1109/JPHOT.2010.2050306Search in Google Scholar

22. Andrews LC, Phillips RL, Hopen CY. Laser beam scintillation with applications, Vol 99. SPIE press, 2001.10.1117/3.412858Search in Google Scholar

23. Jurado-Navas A, Garrido-Balsells JM, Paris JF, Puerta-Notario A. A unifying statistical model for atmospheric optical scintillation, arXiv preprint arXiv:1102.1915.Search in Google Scholar

24. Nistazakis H, Stassinakis A, Sandalidis H, Tombras G. Qam and psk ofdm rofso over ##InlineEquation:IEq113##$$ m $$-turbulence induced fading channels. IEEE Photonics J. 2015;7:1–11.10.1109/JPHOT.2014.2381670Search in Google Scholar

25. Nistazakis HE. A time-diversity scheme for wireless optical links over exponentially modeled turbulence channels. Opt-Int J Light Electron Opt. 2013;124:1386–1391.10.1016/j.ijleo.2012.03.065Search in Google Scholar

26. Malik A, Singh P. Comparative analysis of point to point fso system under clear and haze weather conditions. Wirel Pers Commun. 2015;80:483–492.10.1007/s11277-014-2022-6Search in Google Scholar

27. Kaur P, Jain VK, Kar S. Performance of free space optical links in presence of turbulence, pointing errors and adverse weather conditions. Opt Quantum Electron. 2016;48:65.10.1007/s11082-015-0338-4Search in Google Scholar

28. Ciaramella E, Arimoto Y, Contestabile G, Presi M, D’Errico A, Guarino V, Matsumoto M. 1.28 terabit/s (32x40 gbit/s) wdm transmission system for free space optical communications. IEEE J Sel Areas Commun. 2009;27:210–214.10.1109/JSAC.2009.091213Search in Google Scholar

29. Forzati M, Bianchi A, Chen J, Grobe K, Lannoo B, Machuca CM, Point J-C, Skubic B, Verbrugge S, Weis E, et al. Next-generation optical access seamless evolution: Concluding results of the European FP7 project OASE. J Opt Commun Network. 2015;7:109–123.10.1364/JOCN.7.000109Search in Google Scholar

30. Arimoto Y. Compact free-space optical terminal for multi-gigabit signal transmissions with a single mode fiber. In: Proceedings of the SPIE, Vol. 7199, 2009:719908.10.1117/12.808796Search in Google Scholar

31. Badar N, Jha RK, Performance comparison of various modulation schemes over free space optical (fso) link employing gamma–gamma fading model. Opt Quantum Electron. 2017;49:192.10.1007/s11082-017-1025-4Search in Google Scholar

32. Sugiyama H, Nosu K, Mppm: A method for improving the band-utilization efficiency in optical ppm. J Lightwave Technol. 1989;7:465–472.10.1109/50.16882Search in Google Scholar

33. Djordjevic IB, Denic S, Anguita J, Vasic B, Neifeld MA. LDPC-coded MIMO optical communication over the atmospheric turbulence channel. J Lightwave Technol. 2008;26:478–487.10.1109/GLOCOM.2007.424Search in Google Scholar

34. Willebrand H, Ghuman BS, Free space optics: enabling optical connectivity in today’s networks. SAMS publishing, 2002.Search in Google Scholar

35. Nadeem F, Kvicera V, Awan MS, Leitgeb E, Muhammad SS, Kandus G. Weather effects on hybrid FSO/RF communication link. IEEE J Sel Areas Commun. 2009;27:1687–1697.10.1109/JSAC.2009.091218Search in Google Scholar

36. Fadhil HA, Amphawan A, Shamsuddin HA, Abd TH, Al-Khafaji HM, Aljunid S, Ahmed N. Optimization of free space optics parameters: An optimum solution for bad weather conditions.Opt-Int J Light Electron Opt. 2013;124:3969–3973.10.1016/j.ijleo.2012.11.059Search in Google Scholar

37. Nadeem L, Saadullah Qazi M, Hassam A. Performance of FSO links using CSRZ, RZ, and NRZ and effects of atmospheric turbulence. J Opt Commun.Search in Google Scholar

38. Majumdar AK, Ricklin JC. Effects of the atmospheric channel on free-space laser communications. In: Proceedings of the SPIE, Vol. 5892, 2005.10.1117/12.617922Search in Google Scholar

39. Usman M, Yang H-C, Alouini M-S. Practical switching-based hybrid fso/rf transmission and its performance analysis. IEEE Photonics J. 2014;6:1–13.10.1109/JPHOT.2014.2352629Search in Google Scholar

40. Esmail MA, Fathallah H, Alouini M-S. Analysis of fog effects on terrestrial free space optical communication links. In: 2016 IEEE International Conference on Communications Workshops (ICC), IEEE, 2016:151–156.10.1109/ICCW.2016.7503780Search in Google Scholar

41. Bloom S, Korevaar E, Schuster J, Willebrand H. Understanding the performance of free-space optics. J Opt Networking. 2003;2:178–200.10.1364/JON.2.000178Search in Google Scholar

42. Zhang J, Dai L, Zhang Y, Wang Z. Unified performance analysis of mixed radio frequency/free-space optical dual-hop transmission systems. J Lightwave Technol. 2015;33:2286–2293.10.1109/JLT.2015.2409570Search in Google Scholar

43. Leitgeb E, Plank T, Awan M, Brandl P, Popoola W, Ghassemlooy Z, Ozek F, Wittig M. Analysis and evaluation of optimum wavelengths for free-space optical transceivers. In: 2010 12th International Conference on Transparent Optical Networks (ICTON), IEEE, 2010:1–7.10.1109/ICTON.2010.5549009Search in Google Scholar

44. Wilson SG, Brandt-Pearce M, Cao Q, Leveque JH, Free-space optical mimo transmission with q-ary ppm. IEEE Trans Commun. 2005;53:1402–1412.10.1109/TCOMM.2005.852836Search in Google Scholar

45. Fan Y, Green RJ. Comparison of pulse position modulation and pulse width modulation for application in optical communications. Opt Eng. 2007;46:065001–065001.10.1117/1.2746010Search in Google Scholar

46. Rajbhandari S, Ghassemlooy Z, Aldibbiat N, Amiri M, Popoola W. Convolutional coded DPIM for indoor nondiffuse optical wireless link. In: The 7th IASTED International Conference on Wireless and Optical Communication (WOC 2007), 2007:286–290.Search in Google Scholar

47. Sharan L, Shanbhag AG, Chaubey V. Design and simulation of modified duobinary modulated 40 gbps 32 channel DWDM optical link for improved non-linear performance. Cogent Eng. 2016;3:1256562.10.1080/23311916.2016.1256562Search in Google Scholar

48. Kaur P, Gupta A, Chaudhary M. Comparative analysis of inter satellite optical wireless channel for NRZ and RZ modulation formats for different levels of input power. Procedia Comput Sci. 2015;58:572–577.10.1016/j.procs.2015.08.075Search in Google Scholar

49. Yan J, Zheng Z, Hu W, Xu A. Improved performance of m-ary ppm free-space optical communication systems in atmospheric turbulence due to forward error correction. In: 2006 IEEE International Conference on Communication Technology. ICCT 2006, 2006:1–4.10.1109/ICCT.2006.341961Search in Google Scholar

50. Muhammad SS, Javornik T, Jelovčan I, Ghassemlooy Z, Leitgeb E. Comparison of hard-decision and soft-decision channel coded m-ary ppm performance over free space optical links. Trans Emerging Telecommun Technol. 2009;20:746–757.10.1002/ett.1343Search in Google Scholar

51. Djordjevic IB, LDPC-coded mimo optical communication over the atmospheric turbulence channel using q-ary pulse-position modulation. Opt Express. 2007;15:10026–10032.10.1364/OE.15.010026Search in Google Scholar PubMed

52. Shah D, Kothari DK, Ghosh AK. Bit error rate analysis of the k channel using wavelength diversity. Opt Eng. 2017;56:056106–056106.10.1117/1.OE.56.5.056106Search in Google Scholar

53. Letzepis N, Fabregas AG. Outage probability of the Gaussian mimo free-space optical channel with ppm. IEEE Trans Commun. 2009;57:3682–3690.10.1109/ISIT.2008.4595472Search in Google Scholar

54. Kaushal H, Jain VK, Kar S. Improvement of ground to satellite FSO link performance using transmit diversity in weak atmospheric turbulence. In: 2010 International Conference on Intelligent and Advanced Systems (ICIAS), IEEE, 2010:1–6.10.1109/ICIAS.2010.5716119Search in Google Scholar

55. Navidpour SM, Uysal M, Kavehrad M, BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wireless Commun. 2007;6:2813–2819.10.1109/TWC.2007.06109Search in Google Scholar

56. Liou K-Y, Koren U, Burrows E, Zyskind J, Dreyer K. A wdm access system architecture based on spectral slicing of an amplified led and delay-line multiplexing and encoding of eight wavelength channels for 64 subscribers. IEEE Photonics Technol Lett. 1997;9:517–519.10.1109/68.559407Search in Google Scholar

57. Chung YC, Jung D, Youn C, Woo H. Spectrum-sliced bidirectional wdm pon. In: Optical Fiber Communication Conference, Optical Society of America, 2000:WJ6.Search in Google Scholar

58. Thakur A, Nagpal S, Gupta A. Kerr effect based spectrum sliced wavelength division multiplexing for free space optical communication. Opt-Int J Light Electron Opt. 2018;157:31–37.10.1016/j.ijleo.2017.08.062Search in Google Scholar

59. Rashidi F, He J, Chen L. Spectrum slicing WDM for FSO communication systems under the heavy rain weather. Opt Commun. 2017;387:296–302.10.1016/j.optcom.2016.11.070Search in Google Scholar

60. Prabu K, Charanya S, Jain M, Guha D. BER analysis of SS-WDM based FSO system for Vellore weather conditions. Opt Commun. 2017;403:73–80.10.1016/j.optcom.2017.07.012Search in Google Scholar

61. Nam SS, Alouini M-S, Zhang L, Ko Y-C. Threshold-based multiple optical signal selection scheme for free-space optical wavelength division multiplexing systems. J Opt Commun Networking. 2017;9:1085–1096.10.1364/JOCN.9.001085Search in Google Scholar

62. Banerjee A, Park Y, Clarke F, Song H, Yang S, Kramer G, Kim K, Mukherjee B. Wavelength-division-multiplexed passive optical network (wdm-pon) technologies for broadband access: a review. J Opt Networking. 2005;4:737–758.10.1364/JON.4.000737Search in Google Scholar

63. Dayal N, Singh P, Kaur P. Long range cost-effective WDM-FSO system using hybrid optical amplifiers. Wireless Pers Commun. 2017;97:6055–6067.10.1007/s11277-017-4826-7Search in Google Scholar

64. Al-Gailani SA, Mohammad AB, Shaddad RQ, Sheikh UU, Elmagzoub MA. Hybrid WDM/multibeam free-space optics for multigigabit access network. Photonic Network Commun. 2015;29:138–145.10.1007/s11107-014-0482-ySearch in Google Scholar

65. Grover M, Singh P, Kaur P, Madhu C. Multibeam wdm-fso system: An optimum solution for clear and hazy weather conditions. Wireless Pers Commun. 2017;1–13.10.1007/s11277-017-4810-2Search in Google Scholar

66. Karimi M, Uysal M. Novel adaptive transmission algorithms for free-space optical links. IEEE Trans Commun. 2012;60:3808–3815.10.1109/TCOMM.2012.091012.110550Search in Google Scholar

67. Djordjevic IB. Adaptive modulation and coding for free-space optical channels. J Opt Commun Networking. 2010;2:221–229.10.1364/JOCN.2.000221Search in Google Scholar

68. Djordjevic IB, Djordjevic GT. On the communication over strong atmospheric turbulence channels by adaptive modulation and coding. Opt Express. 2009;17:18250–18262.10.1364/OE.17.018250Search in Google Scholar PubMed

69. Zhou H, Mao S, Agrawal P. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digital Commun Networks. 2015;1:171–180.10.1016/j.dcan.2015.09.001Search in Google Scholar

70. Son IK, Kim S, Mao S. Building robust spanning trees in free space optical networks. In: Military communications conference, 2010-MILCOM 2010, IEEE, 2010:1857–1862.10.1109/MILCOM.2010.5679563Search in Google Scholar

71. Safari M, Uysal M. Relay-assisted free-space optical communication. IEEE Trans Wireless Commun. 2008;7:5441–5449.10.1109/ACSSC.2007.4487565Search in Google Scholar

72. Trinh PV, Dang NT, Pham AT. All-optical relaying FSO systems using EDFA combined with optical hard-limiter over atmospheric turbulence channels. J Lightwave Technol. 2015;33:4132–4144.10.1109/JLT.2015.2466432Search in Google Scholar

73. Jee R, Chandra S. Performance analysis of WDM-free-space optical transmission system with m-QAM modulation under atmospheric and optical nonlinearities. In: 2015 IEEE International Conference on Microwave, Optical and Communication Engineering (ICMOCE), 2015:41–44.10.1109/ICMOCE.2015.7489686Search in Google Scholar

74. Sharma PK, Bansal A, Garg P, Tsiftsis T, Barrios R. Relayed FSO communication with aperture averaging receivers and misalignment errors. IET Commun. 2017;11:45–52.10.1049/iet-com.2016.0253Search in Google Scholar

75. Kashani MA, Rad MM, Safari M, Uysal M. All-optical amplify-and-forward relaying system for atmospheric channels. IEEE Commun Lett. 2012;16:1684–1687.10.1109/LCOMM.2012.082012.121066Search in Google Scholar

76. Bhatnagar MR. Performance analysis of decode-and-forward relaying in gamma-gamma fading channels. IEEE Photon Technol Lett. 2012;24:545–547.10.1109/LPT.2011.2176330Search in Google Scholar

77. Karimi M, Nasiri-Kenari M. BER analysis of cooperative systems in free-space optical networks. J Lightwave Technol. 2009;27:5639–5647.10.1109/JLT.2009.2032789Search in Google Scholar

78. Riediger ML, Schober R, Lampe L. Fast multiple-symbol detection for free-space optical communications. IEEE Trans Commun. 2009;57:1119–1128.10.1109/TCOMM.2009.04.070118Search in Google Scholar

79. Trinh PV, Dang NT, Pham AT. Optical amplify-and-forward multihop WDM/FSO for all-optical access networks. In: IEEE 2014 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2014:1106–1111.10.1109/CSNDSP.2014.6923995Search in Google Scholar

80. Aladeloba AO, Woolfson MS, Phillips AJ. WDM FSO network with turbulence-accentuated interchannel crosstalk. J Opt Commun Networking. 2013;5:641–651.10.1364/JOCN.5.000641Search in Google Scholar

81. Wu H, Hamzeh B, Kavehrad M. Achieving carrier class availability of FSO link via a complementary RF link. In: IEEE 2004 Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Vol 2, 2004:1483–1487.10.1109/ACSSC.2004.1399401Search in Google Scholar

82. Bloom S, Hartley WS, The last-mile solution: hybrid FSO radio, Whitepaper, AirFiber Inc 2002:1–20.Search in Google Scholar

83. AbdulHussein A, Oka A, Nguyen TT, Lampe L. Rateless coding for hybrid free-space optical and radio-frequency communication. IEEE Trans Wireless Commun. 2010;9:1–7.10.1109/TWC.2010.03.090108Search in Google Scholar

84. Tang Y, Brandt-Pearce M. Link allocation, routing, and scheduling for hybrid FSO/RF wireless mesh networks. IEEE/OSA J Opt Commun Networking. 2014;6:86–95.10.1364/JOCN.6.000086Search in Google Scholar

85. Smadi MN, Ghosh SC, Farid AA, Todd TD, Hranilovic S. Free-space optical gateway placement in hybrid wireless mesh networks. J Lightwave Technol. 2009;27:2688–2697.10.1109/JLT.2009.2014910Search in Google Scholar

86. Nguyen-Huu D, Duong T, Nguyen T. Location-assisted coding for FSO communication. IEEE Trans Commun. 2017;65:4360–4370.10.1109/TCOMM.2017.2715850Search in Google Scholar

87. Wang Q, Nguyen T, Wang AX. Channel capacity optimization for an integrated wi-fi and free-space optic communication system (wififo). In: Proceedings of the 17th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, ACM, 2014:327–330.10.1145/2641798.2641823Search in Google Scholar

88. Gupta A, Sharma N, Garg P, Alouini M-S. Cascaded FSO-VLC communication system. IEEE Wireless Commun Lett. 2017;6:810–813.10.1109/LWC.2017.2745561Search in Google Scholar

89. Giri RK, Patnaik B. Bit error rate performance analysis of hybrid subcarrier intensity modulation-based FSO with spatial diversity in various weather conditions. J Opt Commun.Search in Google Scholar

Received: 2017-11-9
Published Online: 2018-3-3

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0197/html
Scroll to top button