Abstract
In this paper, we aim to design an all-optical structure that can be employed as optical OR/AND logic gates. To do so, a nonlinear photonic crystal-based ring resonator will be designed whose resonant wavelength depends on the variation of optical intensity. Then, by adding some optical waveguides, the optical logic circuit structure will be obtained that can function as optical OR/AND logic gates. The maximum time delay for the proposed structure is about 1.5 ps. Total footprint of the proposed structure is about 372 mm2. The proposed structure has lower time delay, lower footprint and lower optical input power compared with previously proposed structures.
References
1. Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Opt Int J Light Electron Opt. 2013;124:2639–44.10.1016/j.ijleo.2012.07.029Search in Google Scholar
2. Youcef Mahmoud M, Bassou G, Taalbi A, Chekroun ZM. Optical channel drop filters based on photonic crystal ring resonators. Opt Commun. 2012;285:368–72.10.1016/j.optcom.2011.09.068Search in Google Scholar
3. Youcef Mahmoud M, Bassou G, Taalbi A. A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt Int J Light Electron Opt. 2013;124:2864–67.10.1016/j.ijleo.2012.08.072Search in Google Scholar
4. Dideban A, Habibiyan H, Ghafoorifard H. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys E Low-Dimensional Syst Nanostructures. 2017;87:77–83.10.1016/j.physe.2016.11.022Search in Google Scholar
5. F. Mehdizadeh, H. Alipour-Banaei, S. Serajmohammadi. Channel-drop filter based on a photonic crystal ring resonator. J Opt. 2013;15:075401. DOI:10.1088/2040-8978/15/7/075401.Search in Google Scholar
6. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M. A new proposal for PCRR-based channel drop filter using elliptical rings. Phys E Low-Dimensional Syst Nanostructures. 2014;56:211–15.10.1016/j.physe.2013.07.018Search in Google Scholar
7. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F, Hassangholizadeh-Kashtiban M. Special optical communication filter based on Thue Morse photonic crystal structure. Opt Appl. 2016;46:145–52.Search in Google Scholar
8. H. Alipour-banaei, F. Mehdizadeh, M. Hassangholizadeh-kashtiban. Important effect of defect parameters on the characteristics of Thue-Morse photonic crystal filters. Adv Optoelectron. 2013;2013:1–5. DOI:10.1155/2013/856148.Search in Google Scholar
9. Mehdizadeh F, Soroosh M, Alipour-Banaei H. An optical demultiplexer based on photonic crystal ring resonators. Opt Int J Light Electron Opt. 2016;127:8706–09.10.1016/j.ijleo.2016.06.086Search in Google Scholar
10. Rawal S, Sinha RK. Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt Commun. 2009;282:3889–94.10.1016/j.optcom.2009.06.046Search in Google Scholar
11. Zhang X, Liao Q, Yu T, Liu N, Huang Y. Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt Commun. 2012;285:274–76.10.1016/j.optcom.2011.10.001Search in Google Scholar
12. Qing-Hua L, Hong-Ming F, Shu-Wen C, Tong-Biao W, Tian-Bao Y, Yong-Zhen H. The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators. Opt Commun. 2014;331:160–64.10.1016/j.optcom.2014.05.056Search in Google Scholar
13. Gupta ND, Janyani V. Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Opt Int J Light Electron Opt. 2014;125:5833–36.10.1016/j.ijleo.2014.07.024Search in Google Scholar
14. Zhang Y, Zhang Y, Li B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express. 2007;15:9287.10.1364/OE.15.009287Search in Google Scholar PubMed
15. Selim R, Pinto D, Obayya SSA. Novel fast photonic crystal multiplexer-demultiplexer switches. Opt Quantum Electron. 2011;42:425–33.10.1007/s11082-011-9438-ySearch in Google Scholar
16. Camargo EA, Chong HMH, La Rue RMD. 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt Express. 2004;12:588–92.10.1364/OPEX.12.000588Search in Google Scholar PubMed
17. Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S, Hassangholizadeh-Kashtiban M. A 2*4 all optical decoder switch based on photonic crystal ring resonators. J Mod Opt. 2014;62:430–34.10.1080/09500340.2014.957743Search in Google Scholar
18. Mehdizadeh F, Soroosh M, Alipour-Banaei H. A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt Quantum Electron. 2015;48:20.10.1007/s11082-015-0313-0Search in Google Scholar
19. Serajmohammadi S, Alipour-Banaei H, Mehdizadeh F. All optical decoder switch based on photonic crystal ring resonators. Opt Quantum Electron. 2014;47:1109–15.10.1007/s11082-014-9967-2Search in Google Scholar
20. Mehdizadeh F, Alipour-Banaei H, Serajmohammadi S. Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J Mod Opt. 2017;0340:0.10.1080/09500340.2016.1275854Search in Google Scholar
21. Lu C, Hu X, Yang H, Gong Q. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits. Sci Rep. 2014;4:3869.10.1038/srep03869Search in Google Scholar PubMed PubMed Central
22. Fasihi K. Design and simulation of linear logic gates in the two-dimensional square-lattice photonic crystals. Optik (Stuttg). 2016;127:4669–74.10.1016/j.ijleo.2016.02.012Search in Google Scholar
23. Salmanpour A, Mohammadnejad S, Bahrami A. Photonic crystal logic gates: an overview. Opt Quantum Electron. 2015;47:2249–75.10.1007/s11082-014-0102-1Search in Google Scholar
24. Jiang Y-C, Liu S-B, Zhang H-F, Kong X-K. Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure. Opt Commun. 2014;332:359–65.10.1016/j.optcom.2014.07.038Search in Google Scholar
25. Pirzadi M, Mir A, Bodaghi D. Realization of ultra-accurate and compact all-optical photonic crystal or logic gate. IEEE Photonics Technol Lett. 2016;28:2387–90.10.1109/LPT.2016.2596580Search in Google Scholar
26. Goudarzi K, Mir A, Chaharmahali I, Goudarzi D. All-optical XOR and or logic gates based on line and point defects in 2-D photonic crystal. Opt Laser Technol. 2016;78:139–42.10.1016/j.optlastec.2015.10.013Search in Google Scholar
27. Mehdizadeh F, Soroosh M, Alipour-Banaei H. Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 2017;11(6):29–35. DOI:10.1049/iet-opt.2016.0022.Search in Google Scholar
28. Alipour-Banaei H, Rabati MG, Abdollahzadeh-Badelbou P, Mehdizadeh F. Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys E Low-Dimensional Syst Nanostructures. 2016;75:77–85.10.1016/j.physe.2015.08.011Search in Google Scholar
29. Hassangholizadeh-Kashtiban M, Sabbaghi-Nadooshan R, Alipour-Banaei H. A novel all optical reversible 4×2 encoder based on photonic crystals. Opt Int J Light Electron Opt. 2015;126:2368–72.10.1016/j.ijleo.2015.05.140Search in Google Scholar
30. Xu C, Liu X. Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters. Opt Lett. 2003;28:986–88.10.1364/OL.28.000986Search in Google Scholar PubMed
31. Miao B, Chen C, Sharkway A, Shi S, Prather DW. Two bit optical analog-to-digital converter based on photonic crystals. Opt Express. 2006;14:7966.10.1364/OE.14.007966Search in Google Scholar
32. Mehdizadeh F, Soroosh M, Alipour-Banaei H, Farshidi E. A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 2017;9:1–11.10.1109/JPHOT.2017.2690362Search in Google Scholar
33. Mehdizadeh F, Soroosh M, Alipour-Banaei H, Farshidi E. All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt Quantum Electron. 2017;49:38.10.1007/s11082-016-0880-8Search in Google Scholar
34. Mehdizadeh F, Soroosh M, Alipour-Banaei H, Farshidi E. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl Opt. 2017;56:1799–806.10.1364/AO.56.001799Search in Google Scholar PubMed
35. Huang Z, Yang X, Wang Y, Meng X, Fan R, Wang L. Ultrahigh extinction ratio of polarization beam splitter based on hybrid photonic crystal waveguide structures. Opt Commun. 2015;354:9–13.10.1016/j.optcom.2015.05.040Search in Google Scholar
36. Ghaffari A, Monifi F, Djavid M, Abrishamian MS. Photonic crystal bends and power splitters based on ring resonators. Opt Commun. 2008;281:5929–34.10.1016/j.optcom.2008.09.015Search in Google Scholar
37. Wang H, He L. Proposal for high efficiently 1×4 power splitter based on photonic crystal waveguides. Mod Phys Lett B. 2015;29:1550073.10.1142/S0217984915500736Search in Google Scholar
38. Kaur S. All optical data comparator and decoder using SOA-based Mach–Zehnder interferometer. Opt Int J Light Electron Opt. 2013;124:2650–53.10.1016/j.ijleo.2012.07.041Search in Google Scholar
39. Gupta MM, Medhekar S. All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides. Opt Int J Light Electron Opt. 2015. DOI:10.1016/j.ijleo.2015.10.176.Search in Google Scholar
40. Guo X, Yang X, Li S, Liu Z, Hu M, Qu B, et al. An integrated nematic liquid crystal in-fiber modulator derivates from capillary optical fiber. Opt Commun. 2016;367:249–53.10.1016/j.optcom.2016.01.052Search in Google Scholar
41. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58:2486–89.10.1103/PhysRevLett.58.2486Search in Google Scholar PubMed
42. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58:2059–62.10.1007/978-1-4615-1963-8_41Search in Google Scholar
43. Andalib P, Granpayeh N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J Opt Soc Am B. 2008;26:10.10.1364/JOSAB.26.000010Search in Google Scholar
44. Sharifi H, Hamidi SM, Navi K. A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt Commun. 2016;370:231–38.10.1016/j.optcom.2016.03.020Search in Google Scholar
45. Haq Shaik E, Rangaswamy N. Design of photonic crystal-based all-optical AND gate using T-shaped waveguide. J Mod Opt. 2015;1–9. DOI:10.1080/09500340.2015.1111455.Search in Google Scholar
46. Haq Shaik E, Rangaswamy N. Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw Commun. 2017. DOI:10.1007/s11107-016-0683-7.Search in Google Scholar
47. Mohebbi Z, Nozhat N, Emami F. High contrast all-optical logic gates based on 2D nonlinear photonic crystal. Opt Commun. 2015;355:130–36.10.1016/j.optcom.2015.06.023Search in Google Scholar
48. Wu K-S, Dong J-W, Chen D-H, Luo X-N, Wang H-Z. Sensitive photonic crystal phase logic gates. J Mod Opt. 2009;56:1895–98.10.1080/09500340903402499Search in Google Scholar
49. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt Int J Light Electron Opt. 2014;125:5701–04.10.1016/j.ijleo.2014.06.013Search in Google Scholar
50. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt Int J Light Electron Opt. 2017;130:1214–21.10.1016/j.ijleo.2016.11.190Search in Google Scholar
51. Mehdizadeh F, Soroosh M. Designing of all optical NOR gate based on photonic crystal. Indian J Pure Appl Phys. 2016;54:35–39.Search in Google Scholar
52. Qiang Z, Zhou W, Soref RA. Optical add-drop filters based on photonic crystal ring resonators.. Opt Express. 2007;15:1823–31.10.1364/OE.15.001823Search in Google Scholar PubMed
53. Djavid M, Ghaffari A, Monifi F, Abrishamian MS. T-shaped channel-drop filters using photonic crystal ring resonators. Phys E Low-Dimensional Syst Nanostructures. 2008;40:3151–54.10.1016/j.physe.2008.05.002Search in Google Scholar
54. Alipour-Banaei H, Mehdizadeh F. High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw Commun. 2017;33:152–58.10.1007/s11107-016-0625-4Search in Google Scholar
55. Salmanpour A, Mohammadnejad S, Omran PT. All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt Quantum Electron. 2015;47:3689–703.10.1007/s11082-015-0238-7Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Amplifiers
- Automatic Gain-Controlled HOA with Residual Pumping
- Performance Evaluation of DPSK System with Different Combination of Hybrid Optical Amplifiers by Using Equal and Unequal Channel Spacing
- Devices
- Investigation of Photonic Integrated Circuits with Low-Loss Bragg Gratings
- Design and Performance Analysis of MZI Based 2×2 Reversible XNOR Logic Gate
- Design and Numerical Analysis of an All-optical 4-channel Power Splitter in E, S, C, L, and U Bands via Nano-line Defects in Photonic Crystal
- Tunable High Performance 16-Channel Demultiplexer on 2D Photonic Crystal Ring Resonator Operating at Telecom Wavelengths
- Fibers
- Experimental Investigation of Intensity Modulator/Direct Detection (IM/DD) Optical OFDM System with Fiber Bragg Grating (FBG)
- Integrated Optics
- A Novel Proposal for All-Optical OR/AND Gate Using Nonlinear Photonic Crystal Ring Resonators
- Design and Implementation of Electro-Optic 2×2 Switch and Optical Gates using MZI
- Networks
- A Survey of Dynamic Bandwidth Assignment Schemes for TDM-Based Passive Optical Network
- Systems
- PIIN Cancellation Using a Novel Receiving Architecture for Spectral/Spatial SAC-OCDMA System
- Design of Multiservice Code (MS) in Spectral/Temporal/Spatial Domain for OCDMA System
- Enhanced Performances of SAC-OCDMA System by Using Polarization Encoding
- PAPR Reduction in MIMO-OFDM System Using SLM Without SI
- Companding Schemes for Reducing PAPR in OFDM System: A Review
Articles in the same Issue
- Frontmatter
- Amplifiers
- Automatic Gain-Controlled HOA with Residual Pumping
- Performance Evaluation of DPSK System with Different Combination of Hybrid Optical Amplifiers by Using Equal and Unequal Channel Spacing
- Devices
- Investigation of Photonic Integrated Circuits with Low-Loss Bragg Gratings
- Design and Performance Analysis of MZI Based 2×2 Reversible XNOR Logic Gate
- Design and Numerical Analysis of an All-optical 4-channel Power Splitter in E, S, C, L, and U Bands via Nano-line Defects in Photonic Crystal
- Tunable High Performance 16-Channel Demultiplexer on 2D Photonic Crystal Ring Resonator Operating at Telecom Wavelengths
- Fibers
- Experimental Investigation of Intensity Modulator/Direct Detection (IM/DD) Optical OFDM System with Fiber Bragg Grating (FBG)
- Integrated Optics
- A Novel Proposal for All-Optical OR/AND Gate Using Nonlinear Photonic Crystal Ring Resonators
- Design and Implementation of Electro-Optic 2×2 Switch and Optical Gates using MZI
- Networks
- A Survey of Dynamic Bandwidth Assignment Schemes for TDM-Based Passive Optical Network
- Systems
- PIIN Cancellation Using a Novel Receiving Architecture for Spectral/Spatial SAC-OCDMA System
- Design of Multiservice Code (MS) in Spectral/Temporal/Spatial Domain for OCDMA System
- Enhanced Performances of SAC-OCDMA System by Using Polarization Encoding
- PAPR Reduction in MIMO-OFDM System Using SLM Without SI
- Companding Schemes for Reducing PAPR in OFDM System: A Review