Startseite A Novel Scheme for UDWDM-PON Broadband Access Network Using Injection-Locked Phase-to-Intensity Modulation Converter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Novel Scheme for UDWDM-PON Broadband Access Network Using Injection-Locked Phase-to-Intensity Modulation Converter

  • Meenakshi Chakraborty und Taraprasad Chattopadhyay EMAIL logo
Veröffentlicht/Copyright: 2. September 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we have proposed and analyzed a novel cost-effective ultradense wavelength division multiplexed (UDWDM) passive optical network (PON) which uses phase modulation (PM) of the optical carriers in the optical line terminal (OLT) in order to achieve inherent noise immunity in the network. In the demodulation of the optical PM signal at the optical network unit (ONU), we have proposed to use a simple injection–locked Fabry–Perot (FP) laser diode (LD) for achieving PM to intensity modulation (IM) converter which is followed by a photodiode to recover the specific channel information. A detailed analysis of PM–IM conversion in an injection–locked FPLD has been carried out and the viability of the proposed scheme has been established. The proposed UDWDM–PON which is a broadband access network is cost-effective and long reach.

References

1. Shahpari A, Ferreira RM, Luis RS, Vujicic Z, Guiomar FP, Reis JD, et al. Coherent access: A review. J Lightwave Technol. 2017 Feb 15;35(4):1050–1058.10.1109/JLT.2016.2623793Suche in Google Scholar

2. Prat J, Cano IN, Presi M, Tomkos I, Klonidis D, Vall-Iiosera G, et al. Technologies for cost effective UDWDM – PONs,”. J Lightwave Technol. 2016 Jan;34(2):793–791.10.1364/OFC.2015.Th3I.3Suche in Google Scholar

3. Texeira A, Shahpari A, Ferreira R, Guiomar FP, Reis JD, “Coherent access,” “The Optical Fiber Communication Conference,” Paper M3C.5, Anaheim, CA, USA, Mar. 2016.10.1364/OFC.2016.M3C.5Suche in Google Scholar

4. Prat J, Cano IN, Presi M, Tabares J, Ranello M, Velasquez JC, et al., “Ultra-dense WDM access network field trial,” “21st European Conference on Networks and Optical Communications (NOC), IEEE Xplore,” pp. 117–118, Lisbon, Portugal, 1–3 June, 2016, DOI: 10.1109/NOC.2016.7506996.Suche in Google Scholar

5. Savory S, “Digital coherent optical access networks,” “IEEE Photonics Conference,” pp. 125–126, Bellevue, WA, USA, Sep. 2013.10.1109/IPCon.2013.6656403Suche in Google Scholar

6. Texeira A, Shahpari A, Reis JD, Ferreira R, “Flexible access networks,” “16th International Conference on Transparent Optical Networks, IEEE Xplore,” pp. 1–3, Graz, Austria, 6–10 July, 2014.10.1109/ICTON.2014.6876382Suche in Google Scholar

7. Chen X, Yao J, “High spectral efficiency coherent radio–over–fiber link with low–cost free–running laser sources for UDWDM–PONs,” “Optical Fiber Communications Conference and Exhibition (OFC), IEEE”, pp.1–3, Anaheim, CA, USA, 20–24 March, 2016.10.1364/OFC.2016.Tu3B.2Suche in Google Scholar

8. Chen X, Yao J. High spectral efficiency coherent RoF system based on OSSB modulation with low–cost free–running laser sources for UDWDM–PONs. J Lightwave Technol. 2016;34(11):2789–2795.10.1109/JLT.2016.2550766Suche in Google Scholar

9. Zhu M, Zhang L, Wang J, Cheng L, Liu C, Chang G-K. Radio–over–fiber access architecture for integrated broadband wireless services. IEEE J Lightwave Technol. 2013;31(23):3614–3620.10.1109/JLT.2013.2286564Suche in Google Scholar

10. Presi M, Corsini R, Artiglia M, Bottoni F, Cossu G, Ciaramella E, “Low–cost 6.25 GHz UDWDM–PON based on direct intensity–modulated transmitters,” “Optical Fiber Communications Conference, Paper Th3I.1, Los Angeles, CA, USA, 2015.10.1364/OFC.2015.Th3I.1Suche in Google Scholar

11. Ferreira RM, Shahpari A, Reis JD, Teixeira AL. Coherent UDWDM–PON with dual–polarization transceivers in real–time. IEEE Photonics Technol Lett. 2017;29(11):909–912.10.1109/LPT.2017.2693419Suche in Google Scholar

12. Sales V, Segarra J, Polo V, Velasquez JC, Prat J. UDWDM – PON using low–cost coherent transceivers with limited tenability and heuristic DWA. IEEE/OSA J Optical Commun Netwo. 2016;8(8):582–599.10.1364/JOCN.8.000582Suche in Google Scholar

13. Muciaccia T, Gargano F, Passaro VMN. A TWDM–PON with advanced modulation techniques and a multi–pump Raman amplifier for cost–effective migration to future UDWDM–PONs. J Lightwave Technol. 2015;33(14):2986–2996.10.1109/JLT.2015.2418432Suche in Google Scholar

14. Anandarajah PM, Huynh T, Vujicic V, Zhou R, Barry LP, “UDWDM PON with 6X2.5Gbaud 16–QAM multicarrier transmitter and phase noise tolerant direct detection,” in “Optical Fiber Communications Conference and Exhibition (OFC), IEEE Xplore,” pp. 1–3, Los Angeles, CA, USA, 22–26 March, 2015.10.1364/OFC.2015.Th2A.58Suche in Google Scholar

15. Presi M, Corsini R, Artiglia A, Bottoni F, Cossu G, Ciarmella E, “Low cost 6.25 GHz UDWDM–PON based on direct intensity–modulated transmitters”, “Optical Fiber Communications Conference and Exhibition (OFC), IEEE Xplore,” pp.1–3, Los Angeles, CA, USA, 22–26 Mar., 2015.10.1364/OFC.2015.Th3I.1Suche in Google Scholar

16. Cano IN, Lerin A, Polo V, Prat J, “Simplified polarization diversity heterodyne receiver for 1.25 Gb/s cost–effective WDM–PON,” “Optical Fiber Communications Conference and Exhibition (OFC), IEEE Xplore,” pp. 1–3, San Francisco, CA, USA, 9–13 Mar., 2014, DOI: 10.1364/OFC.2014.W4G.2.Suche in Google Scholar

17. Anandarajah PM, Zhou R, Vujicic V, Pascual MDG, Martin E, Barry LP, “Long reach UDWDM PON with SCM–QPSK modulation and direct detection”, “Optical Fiber Communications Conference and Exhibition (OFC), IEEE Xplore,” pp. 1–3, San Francisco, CA, USA, 9–13 Mar., 2014, DOI: 10.1364/OFC.2014.W2A.42.Suche in Google Scholar

18. Anandarajah JPM, Zhou R, Vujicic V, Pascual MGV, Maher R, Lavery D, et al. “Long reach UDWDM-PON with direct and coherent detection”, “16th International Conference on Transparent Optical Networks (ICTON), IEEE Xplore,” pp. 1–1, Graz, Austria, 6–10 July, 2014, DOI: 10.1109/ICTON.2014.6876280.Suche in Google Scholar

19. Presi M, Bottoni F, Corsini R, Cossu G, Ciarmella E. All DFB – based coherent UDWDM PON with 6.25 GHz spacing and a>rm40rmdB power budget. IEEE Photonics Technol Lett. 2014;26(2):107–110.10.1109/LPT.2013.2285732Suche in Google Scholar

20. Shahpari A, Luis RS, Ribeiro V, Reis JD, Ferreira R. Spectrally efficient enhanced–performance bidirectional coherent PON with laserless 10 Gb/s ONU[invited]. IEEE/OSA J Optical Commun Netwo. 2015;7:A403–A413.10.1364/JOCN.7.00A403Suche in Google Scholar

21. Rohde H, Gottawald E, Teixeira A, Reis JD,Shahpari A, Pulverer K, et al. Coherent ultra–dense WDM technology for next generation optical metro and access networks. J Lightwave Technol. 2014 Apr;32(10):2041–2052.10.1109/JLT.2014.2316369Suche in Google Scholar

22. Rohde H, Gottwald E, Alves P, Oliveira C, Dedic I, Drensic T, “Digital multi-wavelength generation and real time video transmission in a coherent ultra dense WDM PON”, “Optical Fiber Communications Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), IEEE Xplore,” pp.1–3, Anaheim, CA, USA, 17–21 March, 2013, DOI: 10.1364/OFC.2013.OM3H.3.Suche in Google Scholar

23. Cano IN, Lerin A, Prat J. DQPSK directly phase modulated DFB for flexible coherent UDWDM-PON. IEEE Photonics Technol Lett. 2016;28(1):35–38.10.1109/LPT.2015.2478972Suche in Google Scholar

24. Cano IN, Lerin A, Chu GY, Polo V, Prat J, “Performance comparison between direct phase modulated DFB and RSOA for cost-effective transmitter in udWDM-PON”, “17th International Conference on Transparent Optical Networks (ICTON), IEEE Xplore,” pp. 1–4, Budapest, Hungary, 5–9 July, 2015, DOI: 10.1109/ICTON.2015.7193364.Suche in Google Scholar

25. Cano IN, Lerin A, Presi M, Polo V, Ciarmella E, Prat J, “6.25 Gb/s differential duobinary transmission in 2 GHZ BW limited direct phase modulated DFB for udWDM-PONs”, “The European Conference on Optical Communication (ECOC), IEEE Xplore pp.1–3, Cannes, France, 21–25 Sept., 2014, DOI: 10.1109/ECOC.2014.6963822.Suche in Google Scholar

26. Cano I, Lerin A, Polo V, Prat J. Direct phase modulation DFBs for cost effective ONU transmitter in udWDM PONs. IEEE Photonics Technol Lett. 2014 Mar;26(10):973–975.10.1109/LPT.2014.2309852Suche in Google Scholar

27. Cano IN, Velasquez JC, Prat J, “7.5 Gb/s direct DFB phase modulation with 8-DPSK for 6.25 GHZ spaced coherent UDWDM-PONs”, “Optical Fiber Communications Conference and Exhibition (OFC), IEEE Xplore,” pp.1–3, Anaheim, CA, USA, 20–24 March, 2016.10.1364/OFC.2016.M3C.4Suche in Google Scholar

28. Cano IN, Lerin A, Polo V, Prat J. Direct phase modulation DFBs for cost-effective ONU transmitter in udWDM PONs. IEEE Photonics Technol Lett. 2014;26(10):973–975.10.1109/LPT.2014.2309852Suche in Google Scholar

29. Cano IN, Lerin A, Polo V, Tabares J, Prat J, “Simple ONU transmitter based on direct-phase modulated DFB laser with heterodyne detection for udWDM-PON”, “39th European Conference and Exhibition on Optical Communication (ECOC 2013),” pp. 1–3, London, UK, 22–26 Sept., 2013, DOI: 10.1049/cp.2013.1433.Suche in Google Scholar

30. Cano IN, Lerin A, Polo V, Prat J, “Direct phase modulation of a DFB laser for udWDM-PON”, “16th International Conference on Transparent Optical Networks (ICTON),” pp. 1–4, Graz, Austria, 6–10 July, 2014, DOI: 10.1109/ICTON.2014.6876281.Suche in Google Scholar

31. Prat J, Polo V, Zakynthinos P, Cano I, Tabares JA, Fabrega JM, et al., “Simple intradyne PSK system for udWDM-PON”, “38th European Conference and Exhibition on Optical Communications, IEEE Xplore” pp. 1–3, Amsterdam, Netherlands, 16–20 Sept., 2012.10.1364/ECEOC.2012.We.2.B.2Suche in Google Scholar

32. Cano IN, Velasquez JC, Polo V, Prat J, “Multilevel direct DFB phase modulation in 6.25 GHZ spectrally spaced UDWDM PONs”, “18th International Conference on Transparent Optical Networks (ICTON), IEEE Xplore,” pp. 1–4, Trento, Italy, 10–14 July 2016, DOI: 10.1109/ICTON.2016.7550260.Suche in Google Scholar

33. Lin G-R, Liao Y-S, Chi Y-C, Kuo HC, Lin G-C, Wang L-H, et al. Long cavity Fabry – Perot laser amplifier transmitter with enhanced injection–locking bandwidth for WDM–PON application. J Lightwave Technol. 2010;28(20):2925–2932.10.1109/JLT.2010.2060470Suche in Google Scholar

34. Lin G-R, Wang L-H, Lin G-C, Huang Y-H, Lin Y-H, Cheng T-K. Comparison on injection–locked Fabry–Perot laser diode with front facet reflectivity of 1 % and 30 % for optical data transmission in WDM–PON system. J Lightwave Technol. 2009;27(14):2779–2985.10.1109/JLT.2009.2016676Suche in Google Scholar

35. Chakraborty M, Chattopadhyay T. A scheme for UDWDM–PON broadband access network using a mode–locked laser diode and optical injection locking. J Opt Commun. 2017. (in press). DOI:10.1515/joc-2017-0019.Suche in Google Scholar

36. Chattopadhyay T, Bhattacharya P. Subcarrier multiplexed phase modulated optical signal amplification by a synchronized quantum cascade laser. J Opt Commun. 2012;33(2):63–68.10.1515/joc-2012-0018Suche in Google Scholar

37. Chattopadhyay T, Bhattacharya P, “Amplification of angle modulated optical signals through synchronized quantum cascade laser”, “Proceedings of Photonics Global Conference (PGC – 2010), IEEE Xplore pp. 322–325, Nangyang Technological University, Singapore, DOI: 10.1109/PGC.2010.5706010, Dec 12–14, 2010.Suche in Google Scholar

38. Chattopadhyay T, Bhattacharya P. Linewidth enhancement factor and amplification of angle–modulated optical signals in injection – locked quantum cascade laser. J Opt Commun. 2016;37:23–30.10.1515/joc-2015-0009Suche in Google Scholar

39. Chattopadhyay T, Bhattacharya P. Higher order nonlinearity and synchronization of quantum cascade laser. Optoelectron Lett. 2011 May;20(3):186–190.10.1007/s11801-011-1013-zSuche in Google Scholar

40. Chattopadhyay T, Bhattacharya M. “Submillimeter wave generation through optical four–wave mixing using injection locked semiconductor lasers’. IEEE/OSA J Lightwave Technol. 2002 Mar;20(3):502–506.10.1109/50.989000Suche in Google Scholar

41. Fernando XN. Radio over fiber for wireless communications: From fundamentals to advanced topics, Chapter 2. John Wiley & Sons, New York, June 2014.10.1002/9781118797051Suche in Google Scholar

Received: 2017-06-02
Accepted: 2017-08-10
Published Online: 2017-09-02
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Performance Optimization of Optical Amplifiers for High Speed Multilink Optical Networks using Different Modulation Techniques
  4. Investigations of Different Amplifiers in 16 × 40 Gb/S WDM System
  5. Effect of Crosstalk in Super Dense Wavelength Division Multiplexing System using Hybrid Optical Amplifier
  6. Evaluation of Gain Spectrum of Silica-Based Single/Dual-Pumped Thulium-Doped Fiber Amplifier (TDFA) by Optimizing Its Physical and Pumping Parameters in the Scenario of Dense Wavelength Division Multiplexed Systems (DWDM)
  7. Devices
  8. Design of One-Bit Magnitude Comparator using Photonic Crystals
  9. A Novel Scheme for UDWDM-PON Broadband Access Network Using Injection-Locked Phase-to-Intensity Modulation Converter
  10. Loss-Less Elliptical Channel Drop Filter for WDM Applications
  11. Investigations with Reversible Feynman Gate and Irreversible Logic Schematics
  12. Analysis and Design of Coherent Combining of two Q-Switched Fiber Laser in Mach-Zehnder Type Cavity
  13. Fibers
  14. Proposed Square Lattice Photonic Crystal Fiber for Extremely High Nonlinearity, Birefringence and Ultra-High Negative Dispersion Compensation
  15. Ultra-low Loss with Single Mode Polymer-Based Photonic Crystal Fiber for THz Waveguide
  16. Measurements
  17. Investigation on Full Duplex WDM Hybrid Sensor to Measure the Strain
  18. Networks
  19. An Easy In-Service Optical IP Network System for Residential Complex, Employing 1550 nm-Band CWDM and Layer-3 Switch
  20. Systems
  21. High-Speed 120 Gbps AMI-WDM-PDM Free Space Optical Transmission System
  22. Impact of Different Modulation Data Formats on DWDM System Using SOA With Narrow-Channel Spacing
  23. Analysis of Atmospheric Turbulence on Free Space Optical System using Homotopy Perturbation Method
  24. Visible Light Communication – The Journey So Far
  25. Performance Investigation of 2-D Optical Orthogonal Codes for OCDMA
  26. Performance Analysis of 2-D Prime Codes Encoded Optical CDMA System
  27. An Approximation for BER of Optical Wireless System under Weak Atmospheric Turbulence using Point Estimate
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0085/html
Button zum nach oben scrollen