Home Comparative Study of Optical Interconnection Architectures in Data Center Networks
Article
Licensed
Unlicensed Requires Authentication

Comparative Study of Optical Interconnection Architectures in Data Center Networks

  • Abhilasha Sharma and Sangeetha R G EMAIL logo
Published/Copyright: January 5, 2018
Become an author with De Gruyter Brill

Abstract

The internet traffic is increasing exponentially with cloud services. This demands high and efficient data center networks (DCNs). Current DCNs are equipped with electronic counter parts which consumes high power to provide the cloud services. Optical interconnection network (OIN) architectures provide high scalability, low latency, high throughput and low power consumption. This paper presents a study of the OIN architectures as the future requirements of the DCNs are the need for high scalability and low latency. This paper also presents a comparative study of their average latency and scalability.

References

[1] Rosen EC, Rekhter Y. Bgp/mpls ip virtual private networks (vpns). 2006.10.17487/rfc4364Search in Google Scholar

[2] Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A et al. A view of cloud computing. Commun ACM 2010;53(4):50–58.10.1145/1721654.1721672Search in Google Scholar

[3] Kachris C, Tomkos I. Power consumption evaluation of all-optical data center networks. Cluster Computing 2013;16(3):611–623.10.1007/s10586-012-0227-6Search in Google Scholar

[4] C V N. Index. Forecast and methodology, 2014-2019 white paper. Technical report, Technical Report, Cisco, 2015.Search in Google Scholar

[5] Dean J, Mapreduce: Ghemawat S. simplified data processing on large clusters. Commun ACM 2008;51(1):107–113.10.1145/1327452.1327492Search in Google Scholar

[6] Benson T, Akella A, and Maltz DA: Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on Internet measurement. ACM, 2010:267–280.10.1145/1879141.1879175Search in Google Scholar

[7] GreenDataProject, 2008. Where does power go? http://www.greendataproject.org.Search in Google Scholar

[8] Benner A. Optical interconnect opportunities in supercomputers and high end computing. In: Optical fiber communication conference. Optical Society of America, 2012:OTu2B–4.10.1364/OFC.2012.OTu2B.4Search in Google Scholar

[9] Ghemawat S, Gobioff H, Leung S-T. The Google file system. In: ACM SIGOPS operating systems review, volume 37. ACM, 2003:29–43.10.1145/1165389.945450Search in Google Scholar

[10] Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl, 1(1):7–18, 2010.10.1007/s13174-010-0007-6Search in Google Scholar

[11] Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput Commun Rev 2008;39(1):68–73.10.1145/1496091.1496103Search in Google Scholar

[12] Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: recent trends and future challenges. IEEE Commun Mag 2013;51(9):39–45.10.1109/MCOM.2013.6588648Search in Google Scholar

[13] Guo C, Wu H, Tan K, Shi L, Zhang Y, Dcell: Lu S. a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Comput Commun Rev 2008;38(4):75–86.10.1145/1402946.1402968Search in Google Scholar

[14] Wu H, Lu G, Li D, Guo C, Mdcube: Zhang Y. a high performance network structure for modular data center interconnection. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. ACM, 2009: 25–36.10.1145/1658939.1658943Search in Google Scholar

[15] Izu C. A throughput fairness injection protocol for mesh and torus networks. In 2009 International Conference on High Performance Computing (HiPC). IEEE, 2009:294–303.10.1109/HIPC.2009.5433198Search in Google Scholar

[16] Shacham A, Bergman K. On contention resolution in the data vortex optical interconnection network. J Optical Networking 2007;6(6):777–788.10.1364/JON.6.000777Search in Google Scholar

[17] Liboiron-Ladouceur O, Small BA, Bergman K. Physical layer scalability of wdm optical packet interconnection networks. J Lightwave Technol 2006;24(1):262–270.10.1109/JLT.2005.859852Search in Google Scholar

[18] Wang H, Xia Y, Bergman K, Ng T, Sahu S, Sripanidkulchai K. Rethinking the physical layer of data center networks of the next decade: Using optics to enable efficient*-cast connectivity. ACM SIGCOMM Comput Commun Rev 2013;43(3):52–58.10.1145/2500098.2500105Search in Google Scholar

[19] Peng S, Nejabati R, Simeonidou D. Role of optical network virtualization in cloud computing [invited]. J Opt Commun Networking 20135(10):A162–A170.10.1364/JOCN.5.00A162Search in Google Scholar

[20] Zhu Z, Yoo S, Li Z, Fontaine N. Optical networks in cloud computing, 2013.10.1109/MNET.2013.6678920Search in Google Scholar

[21] Song H, Kim B-W, Mukherjee B. Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms. IEEE Commun Surv Tutorials 2010;12(1):112–123.10.1109/SURV.2010.020110.00040Search in Google Scholar

[22] Develder C, De Leenheer M, Dhoedt B, Pickavet M, Colle D, De Turck F, Demeester P. Optical networks for grid and cloud computing applications. Proc IEEE 2012;100(5): 1149–1167.10.1109/JPROC.2011.2179629Search in Google Scholar

[23] Bhadauria R, Chaki R, Chaki N, and Sanyal S. A survey on security issues in cloud computing. IEEE Commun Sur Tutorials 2011:1–15.Search in Google Scholar

[24] Calabretta N, Luo J, Lucente SD, Dorren H. Experimental assessment of low latency and large port count OPS for data center network interconnect. In: 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012:1–4.10.1109/ICTON.2012.6254381Search in Google Scholar

[25] Tucker RS. Green optical communications? Part i: Energy limitations in transport. IEEE J Sel Top Quantum Electron 2011;17(2):245–260.10.1109/JSTQE.2010.2051216Search in Google Scholar

[26] Tucker RS. Green optical communications? Part ii: Energy limitations in networks. IEEE J Sel Top Quantum Electron 2011;17(2):261–274.10.1109/JSTQE.2010.2051217Search in Google Scholar

[27] Kim J, Dally WJ, Abts D. Flattened butterfly: a cost-efficient topology for high-radix networks. ACM SIGARCH Comput Archit News 2007;35(2):126–137.10.1145/1250662.1250679Search in Google Scholar

[28] Brunina D, Lai CP, Garg AS, Bergman K. Building data centers with optically connected memory. J Opt Commun Networking 2011;3(8):A40–A48.10.1364/JOCN.3.000A40Search in Google Scholar

[29] Xu L, Zhang W, Lira HL, Lipson M, Bergman K. A hybrid optical packet and wavelength selective switching platform for high-performance data center networks. Opt express 2011;19(24):24258–24267.10.1364/OE.19.024258Search in Google Scholar PubMed

[30] Miller D. Device requirements for optical interconnects to CMOS silicon chips. In: Photonics in Switching. Optical Society of America, 2010:PMB3.10.1364/PS.2010.PMB3Search in Google Scholar

[31] Wang H, Bergman K. Optically interconnected data center architecture for bandwidth intensive energy efficient networking. In: 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012:1–4.10.1109/ICTON.2012.6253873Search in Google Scholar

[32] Kachris C, Tomkos I. A survey on optical interconnects for data centers. IEEE Commun Sur Tutorials 2012;14(4):1021–1036.10.1109/SURV.2011.122111.00069Search in Google Scholar

[33] Liboiron-Ladouceur O. Optical interconnection networks for data centers. In: 2014 IEEE Photonics Conference (IPC). IEEE, 2014:67–68.10.1109/IPCon.2014.6995213Search in Google Scholar

[34] Perelló J, Spadaro S, Ricciardi S, Careglio D, Peng S, Nejabati R et al. All-optical packet/circuit switching-based data center network for enhanced scalability, latency, and throughput. IEEE Network 2013;27(6):14–22.10.1109/MNET.2013.6678922Search in Google Scholar

[35] Shieh W. Ofdm for flexible high-speed optical networks. J Lightwave Technol 2011;29(10):1560–1577.10.1109/JLT.2011.2132115Search in Google Scholar

[36] Yang H, Zhang J, Zhao Y, Ji Y, Han J, Lin Y, Cso: Lee Y. cross stratum optimization for optical as a service. IEEE Commun Mag 2015;53(8):130–139.10.1109/MCOM.2015.7180520Search in Google Scholar

[37] Luijten R, Denzel WE, Grzybowski RR, Hemenway R. Optical interconnection networks: The osmosis project. In; The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, volume 18, 2004.Search in Google Scholar

[38] Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nat Photonics 20137(5):354–362.10.1038/nphoton.2013.94Search in Google Scholar

[39] Farjady F, Parker MC. Wavelength division multiplexing, Jan 15 2002. US Patent 6,339,664.Search in Google Scholar

[40] Reed CS. Multiple level minimum logic network, Nov 30 1999. US Patent 5,996,020.Search in Google Scholar

[41] Liboiron-Ladouceur O, Shacham A, Small BA, Lee BG, Wang H, Lai CP et al. The data vortex optical packet switched interconnection network. J Lightwave Technol 2008;26(13):1777–1789.10.1109/JLT.2007.913739Search in Google Scholar

[42] Sharma N, Chadha D, Chandra V. The augmented data vortex switch fabric: An all-optical packet switched interconnection network with enhanced fault tolerance. Opt Switching Networking 2007;4(2):92–105.10.1016/j.osn.2007.02.001Search in Google Scholar

[43] Sangeetha R, Chandra V, Chadha D. Optical interconnection reverse data vortex network: performance analysis. Photonic Network Commun 2013;25(2):79–88.10.1007/s11107-013-0392-4Search in Google Scholar

[44] Shacham A, Bergman K. Building ultralow-latency interconnection networks using photonic integration. IEEE Micro 2007;27(4):6–20.10.1109/MM.2007.64Search in Google Scholar

[45] Ye X, Yin Y, Yoo SB, Mejia P, Proietti R, Akella V. Dos: A scalable optical switch for datacenters. In: Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems. ACM, 2010:24.Search in Google Scholar

[46] Kato K, Okada A, Sakai Y, Noguchi K, Sakamoto T, Suzuki S et al. 32×32 full-mesh (1024 path) wavelength-routing wdm network based on uniform-loss cyclic-frequency arrayed-waveguide grating. Electronics Lett 2000;36(15):1294–1296.10.1049/el:20000916Search in Google Scholar

[47] Yoo S. Optical packet and burst switching technologies for the future photonic internet. J Lightwave Technol 2006;24(12):4468–4492.10.1109/JLT.2006.886060Search in Google Scholar

[48] Yoo SB, Lee HJ, Pan Z, Cao J, Yanda Z, Okamoto K, Kamei S. Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency awgr. IEEE Photonics Technol Lett 2002;14(8):1211–1213.10.1109/LPT.2002.1022021Search in Google Scholar

[49] Chao HJ, Deng K-L, Jing Z. A petabit photonic packet switch (p 3 s). In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, volume 1. IEEE, 2003:775–785.10.1109/INFCOM.2003.1208727Search in Google Scholar

[50] Xi K, Kao Y-H, Chao HJ. A petabit bufferless optical switch for data center networks. In: Optical Interconnects for Future Data Center Networks. Springer, 2013:135–154.10.1007/978-1-4614-4630-9_8Search in Google Scholar

[51] Kodi AK, Louri A. Energy-efficient and bandwidth-reconfigurable photonic networks for high-performance computing (hpc) systems. IEEE J Sel Top Quantum Electron 2011;17(2): 384–395.10.1109/JSTQE.2010.2051419Search in Google Scholar

[52] Rastegarfar H, Rusch LA, Leon-Garcia A. Wdm recirculation buffer-based optical fabric for scalable cloud computing. J Lightwave Technol 2014;32(21):3451–3465.10.1109/JLT.2014.2346136Search in Google Scholar

[53] Cao Z, Proietti R, Hi-lion: Yoo S. Hierarchical large-scale interconnection optical network with AWGRS [invited]. J Opt Commun Networking 2015;7(1):A97–A105.10.1364/JOCN.7.000A97Search in Google Scholar

[54] Imran M, Collier M, Landais P, Katrinis K. Hosa: Hybrid optical switch architecture for data center networks. In: Proceedings of the 12th ACM International Conference on Computing Frontiers. ACM, 2015:27.Search in Google Scholar

[55] Yuang MC, Tien P-L, Chen H-Y, Ruan W-Z, Hsu T-K, Zhong S et al. Opmdc: Architecture design and implementation of a new optical pyramid data center network. J Lightwave Technol 2015;33(10):2019–2031.10.1109/JLT.2015.2390495Search in Google Scholar

[56] Yang H, Zhang J, Zhao Y, Ji Y, Wu J, Lin Y, Han J, Lee Y. Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect. Opt Express 2015;23(10):13384–13398.10.1364/OE.23.013384Search in Google Scholar PubMed

[57] Yang H, Zhang J, Ji Y, Tian R, Han J, Lee Y. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect. Opt Express 2015;23(24): 31192–31205.10.1364/OE.23.031192Search in Google Scholar PubMed

[58] Yang H, Zhang J, Zhao Y, Ji Y, Li H, Lin Y et al. Performance evaluation of time-aware enhanced software defined networking (TESDN) for elastic data center optical interconnection. Opt Express 2014;22(15):17630–17643.10.1364/OE.22.017630Search in Google Scholar PubMed

[59] Yang H, Zhang J, Zhao Y, Han J, Lin Y, Lee Y. Sudoi: Software defined networking for ubiquitous data center optical interconnection. IEEE Commun Mag 2016;54(2):86–95.10.1109/MCOM.2016.7402266Search in Google Scholar

[60] Cvijetic N, Tanaka A, Ji PN, Sethuraman K, Murakami S, Wang T. Sdn and openflow for dynamic flex-grid optical access and aggregation networks. J Lightwave Technol 2014;32(4):864–870.10.1109/JLT.2013.2274991Search in Google Scholar

[61] Liu L, Zhang D, Tsuritani T, Vilalta R, Casellas R, Hong L, Morita I, Guo H, Wu J, Martinez R, et al. Field trial of an openflow-based unified control plane for multilayer multigranularity optical switching networks. J Lightwave Technol 2013;31(4): 506–514.10.1109/JLT.2012.2212179Search in Google Scholar

Received: 2017-05-08
Accepted: 2017-07-20
Published Online: 2018-01-05
Published in Print: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Flattened gain S + C + L Band RAMAN–Thulium-Doped Tellurite Fiber Amplifier Hybrid Optical Amplifier for Super Dense Wavelength Division Multiplexing System
  4. Devices
  5. Laser Diode to Single-Mode Circular Core Parabolic Index Fiber Coupling via Upside-Down Tapered Hyperbolic Microlens on the Tip of the Fiber: Prediction of Coupling Optics by ABCD Matrix Formalism
  6. Impact of Various Parameters on the Performance of Optical Directional Coupler
  7. Perfect Tunable All-Optical Diode based on Periodic Photonic Crystal Grand Graded Structures
  8. Design of All-optical Half-subtractor Circuit Device using 2-D Principle of Photonic Crystal Waveguides
  9. Networks
  10. Minimization Number of Network-Coded Links Based on Improved Adaptive Genetic Algorithm for Multi-source Optical Networks
  11. Design and Investigations with all Optical Multilogic Network
  12. Comparative Study of Optical Interconnection Architectures in Data Center Networks
  13. Fallacious Node Algorithm for Performance Enhancement in Optical-Burst-Switching Networks
  14. Receiver
  15. Effect of Pointing Error on BER Performance of a Multi-wavelength OCDMA FSO System with SIK Dual Detector Receiver
  16. Systems
  17. 40 Gbps Downstream Transmission Using DQPSK and 20 Gbps Upstream Transmission Using IRZ Modulation in Full-Duplex WDM-PON
  18. Performance Evaluation of Wavelet-Based Optical Wireless System using On-Off Keying Modulation
  19. Construction and Analysis of a Novel SAC-OCDMA System with EDW Coding using Direct Detection Technique
  20. Effects of Diverse Dispersion Compensation Formats at Different Data Rates in Light-Wave System
  21. 10 Gbps-60 GHz RoF Transmission System for 5 G Applications
  22. High Speed 4 × 2.5 Gbps-5 GHz AMI-WDM-RoF Transmission System for WLANs
  23. Theory
  24. Optical Buffer Design based on SOA and DCFBG
  25. Statistical Analysis of FSO Links Employing Multiple Transmitter/Receiver Strategy over Double-Generalized and Gamma–Gamma Fading Channel Using Different Modulation Techniques
  26. Bit Error Rate Performance Analysis of Hybrid Subcarrier Intensity Modulation-Based FSO with Spatial Diversity in Various Weather Conditions
  27. Analyzing DWDM System with Different Modulation Formats and Channel Spacing
  28. On the End-to-End Performance of a Mixed RF-FSO link with a Decode-and-Forward Relay
  29. Retraction
  30. Retraction
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0074/html
Scroll to top button