Abstract
Light-trail (LT) has been proposed as an attractive solution for optical networks to support emerging services such as video-on-demand, pseudo-wires, data-centers, etc. Due to the fact that light-trail (LT) is a shared-medium network, the media access control (MAC) protocol is essential to be implemented in the whole network. In this paper, we propose a novel MAC protocol called DAART (Delay-aware Adaptive Round Time) to improve the throughput in LT network. DAART MAC adopts the delay-aware mechanism to calculate the actual token holding time for every transmission node. More specifically, the token holding time can be evaluated from queue delay, transmission delay and slot-synchronization delay. To estimate the throughput performance of DAART MAC protocol, we give three different patterns of traffic and compare the throughput between DAART MAC and ART MAC. Simulation results show that DAART has more stable throughput performance than ART, which in return enhances the throughput of LT networks.
©2014 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Amplifiers
- Transmission Properties of Passive Optical Network using Hybrid Raman Amplifiers
- Devices
- Design and Simulation of Four-channel Wavelength Demultiplexer Based on Photonic Crystal Circular Ring Resonators for Optical Communications
- Fibers
- Simple Method for Prediction of Far-Field Patterns of Single-mode Dispersion-shifted and Dispersion-flattened Fibers
- Networks
- In-band Bidirectional Optical Network Based on OCDMA Technique
- DAART: Delay-aware Adaptive Round Time MAC Protocol to Improve Throughput in Light-trail Networks
- Performance Analysis of Hybrid OCDMA/WDM System for Metro Area Network
- Systems
- Impact of Various Weather Condition on the Performance of Free Space Optical Communication System
- Performance Comparison of OFDM based FSO Communication System under Log-normal and Gamma-Gamma Distribution
- Phase Noise Influence in Coherent Optical DnPSK Systems with DSP based Dispersion Compensation
- 10 Gbit/s Bidirectional Long Reach WDM-PON using Externally Modulated Laser for Downlink and RSOA for Uplink with Dispersion Compensating FBG
- Novel Colorless WDM-PON Featuring Optional Broadcast Service and High Reliability
- Theory
- Laser Diode to Single-mode Circular Core Dispersion-shifted/Dispersion-flattened Fiber Excitation via Hemispherical Microlens on the Tip of the Fiber: Evaluation of Coupling Efficiency by ABCD Matrix Formalism
Articles in the same Issue
- Frontmatter
- Amplifiers
- Transmission Properties of Passive Optical Network using Hybrid Raman Amplifiers
- Devices
- Design and Simulation of Four-channel Wavelength Demultiplexer Based on Photonic Crystal Circular Ring Resonators for Optical Communications
- Fibers
- Simple Method for Prediction of Far-Field Patterns of Single-mode Dispersion-shifted and Dispersion-flattened Fibers
- Networks
- In-band Bidirectional Optical Network Based on OCDMA Technique
- DAART: Delay-aware Adaptive Round Time MAC Protocol to Improve Throughput in Light-trail Networks
- Performance Analysis of Hybrid OCDMA/WDM System for Metro Area Network
- Systems
- Impact of Various Weather Condition on the Performance of Free Space Optical Communication System
- Performance Comparison of OFDM based FSO Communication System under Log-normal and Gamma-Gamma Distribution
- Phase Noise Influence in Coherent Optical DnPSK Systems with DSP based Dispersion Compensation
- 10 Gbit/s Bidirectional Long Reach WDM-PON using Externally Modulated Laser for Downlink and RSOA for Uplink with Dispersion Compensating FBG
- Novel Colorless WDM-PON Featuring Optional Broadcast Service and High Reliability
- Theory
- Laser Diode to Single-mode Circular Core Dispersion-shifted/Dispersion-flattened Fiber Excitation via Hemispherical Microlens on the Tip of the Fiber: Evaluation of Coupling Efficiency by ABCD Matrix Formalism